Random Graphs and Complex Networks T-79.7003

Charalampos E. Tsourakakis

Aalto University

Lecture 3 27 September 2013

Announcement

- Homework 1 is out, due in two weeks from now.
- Exercises:
	- Probabilistic inequalities
	- Erdös-Rényi graphs
	- Empirical properties of networks
- You need to do 100 out of 150 points.
- You all have to do Problems 1.2(b) and 1.3.
- If you decide to do everything in the homework, the extra points count as bonus.

Announcement

- You can find a list of of suggested papers for your project in the class Web page. Topics of interest include:
	- Stochastic graph models
	- Estimating models from network data
	- Strategic graph models
	- Diffusion
	- Social learning
	- Subgraphs
	- Learning
	- Cuckoo hashing
	- Kidney exchange
	- Financial networks
	- \bullet . . .
- You can still propose your own project.
- Reminder: programming projects in groups of at most 2 persons.

C.E. Tsourakakis T-79.7003, Giant component Erdös-Rényi graphs 3 / 17

werview

Figure: In the last lecture we proved that the threshold for connectivity in $G(n, p)$ is $\frac{\log n}{n}$. Today, we will see the phase transition of the giant component of $G(n, p)$ where $p = \frac{1}{n}$ $\frac{1}{n}$.

We will go over two different proofs which are based on different tools.

- Branching processes (Lecture notes from Stanford available on the Web site)
- Depth first search (Readings: Krivelevich-Sudakov paper)

Phase transition

Michael Krivelevich Benny Sudakov

the phase transition in random graphs — a simple proof

The Erdős-Rényi paper, which launched the modern theory of random graphs, has had enormous influence on the development of the field and is generally considered to be a single most important paper in Probabilistic Combinatorics, if not in all of **Combinatorics**

C.E. Tsourakakis T-79.7003, Giant component Erdös-Rényi graphs 5 / 17

[\[Krivelevich and Sudakov, 2013\]](#page-16-0) give a simple proof for the transition based on running depth first search (DFS) on G

- S : vertices whose exploration is complete
- \top : unvisited vertices
- $U = V (S \cup T)$: vertices in stack

observation:

- the set U always spans a path
- when a vertex μ is added in U , it happens because μ is a neighbor of the last vertex v in U; thus, u augments the path spanned by U , of which V is the last vertex
- epoch is the period of time between two consecutive emptyings of U
- each epoch corresponds to a connected component

Lemma

Let $\epsilon > 0$ be a small enough constant and let $N = \binom{n}{2}$ $\binom{n}{2}$ Consider the sequence $\bar{X} = (X_i)_{i=1}^N$ of i.i.d. Bernoulli random variables with parameter p

1 let
$$
p = \frac{1-\epsilon}{n}
$$
 and $k = \frac{7}{\epsilon^2} \ln n$

then whp there is no interval of length kn in $[N]$, in which at least k of the random variables X_i take value 1

2 let
$$
p = \frac{1+\epsilon}{n}
$$
 and $N_0 = \frac{\epsilon n^2}{2}$
then **whp** $\left| \sum_{i=1}^{N_0} X_i - \frac{\epsilon (1+\epsilon)n}{2} \right| \le n^{2/3}$

Phase transition — useful tools

Lemma (Union bound)

For any events A_1, \ldots, A_n , Pr $[A_1 \cup \ldots A_n] \leq \sum_{i=1}^n \Pr[A_i]$

Lemma (Chebyshev's inequality)

Let X be a random variable with finite expectation $\mathbb{E}[X]$ and finite non-zero variance \mathbb{V} ar $[X]$. Then for any $t > 0$,

$$
\Pr\left[|X - \mathbb{E}[X]\right| \geq t\right] \leq \frac{\mathbb{V}ar\left[X\right]}{t^2}
$$

Lemma (Chernoff bound, upper tail)

Let $0 < \epsilon \leq 1$. Then,

$$
\Pr\left[\textit{Bin}(n, p) \geq (1+\epsilon) \textit{np}\right] \leq e^{-\frac{\epsilon^2}{3} \textit{np}}
$$

Proof.

- fix interval *l* of length kn in [N], $N = \binom{n}{2}$ $\binom{n}{2}$ then $\sum_{i\in I}X_i\sim Bin(kn, p)$
	- 1. apply Chernoff bound to the upper tail of $B(kn, p)$.
	- 2. apply union bound on all $(N k + 1)$ possible intervals of length kn
		- upper bound the probability of the existence of a violating interval

 $(N-k+1)Pr[B(kn, p) \ge k] < n^2 \cdot e^{-\frac{\epsilon^2}{3}}$ $\frac{\frac{1}{3} (1-\epsilon) k}{3} = o(1)$

- $\bullet \,$ sum $\sum_{i=1}^{N_0} X_i$ distributed binomially (params N_0 and $\rho)$
- expectation: $N_0p = \frac{\epsilon n^2p}{2} = \frac{\epsilon(1+\epsilon)n}{2}$ 2
- standard deviation of order *n*
- applying Chebyshev's inequality gives the estimate

П

Proof.

- We run the DFS on a random input $G \sim G(n, p)$, fixing the order σ on $V(G) = [n]$ to be the identity permutation.
- The DFS algorithm is given a sequence of i.i.d. Bernoulli (p) random variables $\bar{X} = (X_i)_{i=1}^N$.
- The DFS algorithm gets its *i*-th query answered positively if $X_i = 1$, and answered negatively otherwise.
- The obtained graph is clearly distributed according to $G(n, p)$.

Proof.

- assume to the contrary that G contains a connected component C with more than $k=\frac{7}{\epsilon^2}$ $\frac{7}{e^2}$ ln *n* vertices
- consider the moment inside this epoch when the algorithm has found the $(k + 1)$ -st vertex of C and is about to move it to U
- denote $\Delta S = S \cap C$ at that moment then $|\Delta S \cup U| = k$, and thus the algorithm got exactly k positive answers to its queries to random variables X_i during the epoch, with each positive answer being responsible for revealing a new vertex of C , after the first vertex of C was put into U in the beginning of the epoch.

Proof.

- at that moment during the epoch only pairs of edges touching $\Delta S \cup U$ have been queried, and the number of such pairs is therefore at most $\binom{k}{2}$ $\binom{k}{2} + k(n-k) < kn$
- it thus follows that the sequence X contains an interval of length at most kn with at least k 1's inside $-$ a contradiction to Property 1 of our Lemma.

Proof.

- Assume that the sequence \overline{X} satisfies Property 2 of our Lemma.
- Claim: After the first $N_0 = \frac{\epsilon n^2}{2}$ $\frac{n^2}{2}$ queries of the DFS algorithm, the set U contains at least $\frac{\epsilon^2 n}{5}$ $rac{2}{5}$ vertices. This means:
	- the giant component contains $O(f(\epsilon)n)$ vertices. The function $f(\epsilon) = \frac{\epsilon^2}{5}$ $\frac{\varepsilon}{5}$ can be further improved by tightening the analysis of the probabilistic lemma. Check [\[Krivelevich and Sudakov, 2013\]](#page-16-0), page 6.
	- the longest path is $O(n)$ since U forms a path.
- The fact that we have performed N_0 queries implies an upper bound on $|S|$. Let's see why.
C.E. Tsourakakis T-79.7003, Giant component Erdös-Rényi graphs 13/17

Proof.

- Assume for the sake of contradiction $|S| \geq \frac{n}{3}$.
- Always $|U|\leq 1+\sum_{i=1}^t X_i.$ Hence now $|U|<\frac{n}{3}$ $\frac{n}{3}$.
- Combining the above and the fact that S, T, U are disjoint sets, we get $|T| > \frac{n}{3}$ $\frac{n}{3}$.
- Contradiction! Why?
- Hence $|S| < \frac{n}{3}$ $\frac{n}{3}$. Let's assume now that $|U| < \frac{\epsilon^2 n}{5}$ $rac{2n}{5}$ for the sake of contradiction. Clearly, $T \neq \emptyset$.

Proof.

- Since $T \neq \emptyset$ the algorithm is still revealing the connected components of G.
- Each positive answer it got resulted in moving a vertex from T to U .
- By property 2 of the lemma, the number of positive answers is at least $\frac{\epsilon(1+\epsilon)n}{2} - n^{2/3}$.
- These positive answers correspond to S, U , namely $|S \cup U| \geq \frac{\epsilon(1+\epsilon)n}{2} - n^{2/3}.$

• Since
$$
|U| \leq \frac{\epsilon^2 n}{5}
$$
, then $|S| \geq \frac{\epsilon n}{2} + \frac{3\epsilon^2 n}{10} - n^{2/3}$.

Proof.

- All $|S||T|$ pairs between S, T have been queried.
- However $|S||T| > N_0$, contradiction!

$$
\frac{\epsilon n^2}{2} = N_0 \ge |S| \left(n - |S| - \frac{\epsilon^2 n}{5} \right)
$$
\n
$$
\ge \left(\frac{\epsilon n}{2} + \frac{3\epsilon^2 n}{10} - n^{2/3} \right) \left(n - \frac{\epsilon n}{2} - \frac{\epsilon^2 n}{2} + n^{2/3} \right)
$$
\n
$$
= \frac{\epsilon n^2}{2} + \frac{\epsilon^2 n^2}{20} - O(\epsilon^3) n^2 > \frac{\epsilon n^2}{2}
$$

references I

Krivelevich, M. and Sudakov, B. (2013).

The phase transition in random graphs - a simple proof.