
Random Graphs and Complex Networks
T-79.7003

Charalampos E. Tsourakakis

Aalto University

13 December 2013
Class website

http://www.math.cmu.edu/∼ctsourak/

t797003-graphs-and-networks.html

http://www.math.cmu.edu/~ctsourak/t797003-graphs-and-networks.html
http://www.math.cmu.edu/~ctsourak/t797003-graphs-and-networks.html

Dense subgraphs

What is a dense subgraph?

• a set of vertices with abundance of edges

• a highly connected subgraph

• key primitive for detecting communities

• related problem to community detection and
graph partitioning, but not identical

• not constrainted for a disjoint partition of all vertices

C.E. Tsourakakis T-79.7003, Introduction 3 / 96

Applications of finding dense subgraphs

• thematic communities and spam link farms
[Kumar et al., 1999]

• graph visualization [Alvarez-Hamelin et al., 2005]

• real-time story identification [Angel et al., 2012]

• motif detection [Fratkin et al., 2006]

• epilepsy prediction [Iasemidis et al., 2003]

• finding correlated genes [Zhang and Horvath, 2005]

• many more ...

C.E. Tsourakakis T-79.7003, Introduction 4 / 96

Density measures

• consider subgraph induced by S ⊆ V of G = (V , E)

• clique: each vertex in S is connected
to every other vertex in S

• α-quasiclique: the set S has at least α|S |(|S | − 1)/2
edges

• k-core: every vertex in S is connected to at least k other
vertices in S

C.E. Tsourakakis T-79.7003, Introduction 5 / 96

Density measures

• consider subgraph induced by S ⊆ V of G = (V , E)

• density:

δ(S) =
e[S](|S |

2

) =
2e[S]

|S |(|S | − 1)

• average degree:

d(S) =
2e[S]

|S |

• k-densest subgraph:

δ(S) =
2e[S]

|S |
, such that |S | = k

C.E. Tsourakakis T-79.7003, Introduction 6 / 96

Density measures

compare with measures we saw previously....

graph expansion:

α(G) = min
S

e[S , V \ S]

min{|S |, |V \ S |}

graph conductance:

φ(G) = min
S⊆V

e[S , V \ S]

min{vol(S), vol(V \ S)}

edges within (e[S]) instead of edges accross (e[S , V \ S])

C.E. Tsourakakis T-79.7003, Introduction 7 / 96

Complexity of density problems — clique

• find the max-size clique in a graph:
NP-hard problem

• strong innaproximability result:

for any ε > 0, there cannot be a polynomial-time
algorithm that approximates the maximum clique problem
within a factor better than O(n1−ε), unless P = NP

[Håstad, 1997]

C.E. Tsourakakis T-79.7003, Introduction 8 / 96

Complexity of other density problems

density δ(S) = e[S]

(|S|2)
pick a single edge

average degree d(S) = 2e[S]
|S | in P

k-densest subgraph δ(S) = 2e[S]
|S | , |S | = k NP-hard

DalkS δ(S) = 2e[S]
|S | , |S | ≥ k NP-hard

DamkS δ(S) = 2e[S]
|S | , |S | ≤ k L-reduction to DkS

C.E. Tsourakakis T-79.7003, Introduction 9 / 96

Densest subgraph problem

• find set of vertices S ⊆ V with maximum average degree
d(S) = 2e[S]/|S |

• solvable in polynomial time

• max-flow [Goldberg, 1984]

• LP relaxation [Charikar, 2000]

• simple linear-time greedy algorithm gives factor-2
approximation [Asahiro et al., 2000, Charikar, 2000]

C.E. Tsourakakis T-79.7003, Introduction 10 / 96

Greedy algorithm for densest subgraph

[Asahiro et al., 2000, Charikar, 2000]

input: undirected graph G = (V , E)
output: S , a dense sungraph of G
1 set Gn ← G
2 for k ← n downto 1
2.1 let v be the smallest degree vertex in Gk

2.2 Gk−1 ← Gk \ {v}
3 output the densest subgraph among Gn, Gn−1, . . . , G1

C.E. Tsourakakis T-79.7003, Introduction 11 / 96

Greedy algorithm for densest subgraph — example

C.E. Tsourakakis T-79.7003, Introduction 12 / 96

Greedy algorithm for densest subgraph — example

C.E. Tsourakakis T-79.7003, Introduction 13 / 96

Greedy algorithm for densest subgraph — example

C.E. Tsourakakis T-79.7003, Introduction 14 / 96

Greedy algorithm for densest subgraph — example

C.E. Tsourakakis T-79.7003, Introduction 15 / 96

Greedy algorithm for densest subgraph — example

C.E. Tsourakakis T-79.7003, Introduction 16 / 96

Greedy algorithm for densest subgraph — example

C.E. Tsourakakis T-79.7003, Introduction 17 / 96

Greedy algorithm for densest subgraph — example

C.E. Tsourakakis T-79.7003, Introduction 18 / 96

Greedy algorithm for densest subgraph — example

C.E. Tsourakakis T-79.7003, Introduction 19 / 96

Greedy algorithm for densest subgraph — example

C.E. Tsourakakis T-79.7003, Introduction 20 / 96

Greedy algorithm for densest subgraph — example

C.E. Tsourakakis T-79.7003, Introduction 21 / 96

Greedy algorithm for densest subgraph — example

C.E. Tsourakakis T-79.7003, Introduction 22 / 96

Greedy algorithm for densest subgraph — example

C.E. Tsourakakis T-79.7003, Introduction 23 / 96

Approximation guarantees

Let’s overload the notation d(S) in what follows. Let

d(S)← d(S)
2

, namely d(S) = e[S]
|S | .

Theorem
The greedy algorithm achieves a 2-approximation for the
densest subgraph problem in undirected networks.

Proof.
Let the optimal value be d(S∗) = λ. Consider the vertex with
the smallest (induced) degree in S∗. Let this degree be dmin

and |S∗| = s∗.

C.E. Tsourakakis T-79.7003, Introduction 24 / 96

Approximation guarantees

Cont.

Proof.
By the optimality of S∗

λ =
e[S∗]

s∗
≥ e[S∗]− dmin

s∗ − 1
→ dmin ≥ λ.

Consider the moment when the greedy algorithm removes a
vertex that belongs in S∗. By the way the algorithm iterates,
all remaining vertices have induced degree at least λ. Let S be
the set of these vertices, |S | = s. Then, the subgraph has
λs/2 edges and the density is d(S) = λ/2. This guarantees an
approximation ratio 1/2.

C.E. Tsourakakis T-79.7003, Introduction 25 / 96

Tightness [Khuller and Saha, 2009]

Run the greedy approximation algorithm on

Kd ,D ∪ Kd+1 ∪ . . . ∪ Kd+1︸ ︷︷ ︸
D times

.

What is the output?
What is the optimal solution?

C.E. Tsourakakis T-79.7003, Introduction 26 / 96

Other notions and generalizations

• k-core: every vertex in S is connected to at least k other
vertices in S

• α-quasiclique: the set S has at least α|S |(|S | − 1)/2
edges

• enumerate all α-quasicliques [Uno, 2010]

• dense subgraphs of directed graphs: find sets S , T ⊆ V
to maximize

d(S , T) =
e[S , T]√
|S | |T |

[Charikar, 2000, Khuller and Saha, 2009]

C.E. Tsourakakis T-79.7003, Introduction 27 / 96

Edge-surplus framework

• Introduced in
[Tsourakakis et al., 2013, Tsourakakis, 2013]

• for a set of vertices S define edge surplus

f (S) = g(e[S])− h(|S |)

where g and h are both strictly increasing

• optimal (g , h)-edge-surplus problem:

find S∗ such that

f (S∗) ≥ f (S), for all sets S ⊆ S∗

C.E. Tsourakakis T-79.7003, Introduction 28 / 96

Edge-surplus framework

• edge surplus f (S) = g(e[S])− h(|S |)

• example 1
g(x) = h(x) = log x

find S that maximizes log e[S]
|S |

densest-subgraph problem

• example 2

g(x) = x , h(x) =

{
0 if x = k
+∞ otherwise

k-densest-subgraph problem

C.E. Tsourakakis T-79.7003, Introduction 29 / 96

The optimal quasiclique problem

[Tsourakakis et al., 2013, Tsourakakis, 2013]

• edge surplus f (S) = g(e[S])− h(|S |)

• consider

g(x) = x , h(x) = α
x(x − 1)

2

find S that maximizes e[S]− α
(|S |

2

)
optimal quasiclique problem

• theorem: let g(x) = x and h(x) concave

then the optimal (g , h)-edge-surplus problem is
polynomially-time solvable

C.E. Tsourakakis T-79.7003, Introduction 30 / 96

The optimal quasiclique problem

theorem: let g(x) = x and h(x) concave

then the optimal (g , h)-edge-surplus problem is
polynomially-time solvable

proof

g(x) = x is supermodular

if h(x) concave h(x) is submodular

−h(x) is supermodular

g(x)− h(x) is supermodular

maximizing supermodular functions is solvable in
polynomial time

C.E. Tsourakakis T-79.7003, Introduction 31 / 96

The optimal quasiclique problem

theorem: let g(x) = x and h(x) concave

then the optimal (g , h)-edge-surplus problem is
polynomially-time solvable

• However, this is not a particularly interesting case. The
output will be too big, if not the whole graph.

C.E. Tsourakakis T-79.7003, Introduction 32 / 96

Optimal quasicliques in practice

densest subgraph vs. optimal quasiclique

fined as 2e[S]

|S| The densest-subgraph problem is to find a set
S that maximizes the average degree. The densest subgraph
can be identified in polynomial time by solving a parametric
maximum-flow problem [17, 19]. Charikar [10] shows that
the greedy algorithm proposed by Asashiro et al. [6] pro-
duces a 1

2

-approximation of the densest subgraph in linear
time.

In the classic definition of densest subgraph there is no
size restriction of the output. When restrictions on the size
|S| are imposed, the problem becomes NP-hard. Specifi-
cally, the DkS problem of finding the densest subgraph of k
vertices is known to be NP-hard [5]. For general k, Feige
et al. [14] provide an approximation guarantee of O(n↵),
where ↵ < 1

3

. The greedy algorithm by Asahiro et al. [6]
gives instead an approximation factor of O(n

k

). Better ap-
proximation factors for specific values of k are provided by
algorithms based on semidefinite programming [15]. From
the perspective of (in)approximability, Khot [22] shows that
there cannot exist any PTAS for the DkS problem under a
reasonable complexity assumption. Arora et al. [4] propose
a PTAS for the special case k = ⌦(n) and m = ⌦(n2). Fi-
nally, two variants of the DkS problem are introduced by
Andersen and Chellapilla [2]. The two problems ask for the
set S that maximizes the average degree subject to |S| k
(DamkS) and |S| � k (DalkS), respectively. They provide
constant factor approximation algorithms for DalkS and ev-
idence that DamkS is hard. The latter was verified by [23].

Quasi-cliques. A set of vertices S is an ↵-quasi-clique if
e[S] � ↵

�|S|
2

�
, i.e., if the edge density of the induced sub-

graph G[S] exceeds a threshold parameter ↵ 2 (0, 1). Simi-
larly to cliques, maximum quasi-cliques and maximal quasi-
cliques [8] are quasi-cliques of maximum size and quasi-
cliques not contained into any other quasi-clique, respec-
tively. Abello et al. [1] propose an algorithm for finding a
single maximal ↵-quasi-clique, while Uno [31] introduces an
algorithm to enumerate all ↵-quasi-cliques.

1.2 Contributions
Extracting the densest subgraph (i.e., finding the sub-

graph that maximizes the average degree) is particularly
attractive as it can be solved exactly in polynomial time
or approximated within a factor of 2 in linear time. Indeed
it is a popular choice in many applications. However, as we
will see in detail next, maximizing the average degree tends
to favor large subgraphs with not very large edge density
�. The prototypical dense graph is the clique, but, as dis-
cussed above, finding the largest clique is inapproximable.
Also, the clique definition is too strict in practice, as not
even a single edge can be missed from an otherwise dense
subgraph. This observation leads to the definition of quasi-
clique, whose underlying intuition is the following: assuming
that each edge in a subgraph G[S] exists with probability ↵,
then the expected number of edges in G[S] is ↵

�|S|
2

�
. Thus,

the condition of the ↵-quasi-clique expresses the fact that
the subgraph G[S] has more edges than those expected by
this binomial model.

Motivated by this definition, we turn the quasi-clique con-
dition into an objective function. In particular, we define the
density function f

↵

(S) = e[S]� ↵
�|S|

2

�
, which expresses the

edge surplus of a set S over the expected number of edges
under the random-graph model. We consider the problem of
finding the best ↵-quasi-clique, i.e., a set of vertices S that
maximizes the function f

↵

(S). We refer to the subgraphs

Table 1: Di↵erence between densest subgraph and
optimal quasi-clique on some popular graphs. � =
e[S]/

�|S|
2

�
is the edge density of the extracted sub-

graph, D is the diameter, and ⌧ = t[S]/
�|S|

3

�
is the

triangle density.
densest subgraph optimal quasi-clique

|S|
|V | � D ⌧ |S|

|V | � D ⌧

Dolphins 0.32 0.33 3 0.04 0.12 0.68 2 0.32

Football 1 0.09 4 0.03 0.10 0.73 2 0.34

Jazz 0.50 0.34 3 0.08 0.15 1 1 1

Celeg. N. 0.46 0.13 3 0.05 0.07 0.61 2 0.26

that maximize f
↵

(S) as optimal quasi-cliques. To the best
of our knowledge, the problem of extracting optimal quasi-

cliques from a graph has never been studied before. We
show that optimal quasi-cliques are subgraphs of high qual-
ity, with edge density � much larger than densest subgraphs

and with smaller diameter. We also show that our novel den-
sity function comes indeed from a more general framework
which subsumes other well-known density functions and has
appreciable theoretical properties.

Our contributions are summarized as follows.

• We introduce a general framework for finding dense sub-
graphs, which subsumes popular density functions. We
provide theoretical insights into our framework: show-
ing that a large family of objectives are e�ciently solv-
able while other subcases are NP-hard.

• As a special instance of our framework, we introduce
the novel problem of extracting optimal quasi-cliques.

• We design two e�cient algorithms for extracting opti-

mal quasi-cliques. The first one is a greedy algorithm
where the smallest-degree vertex is repeatedly removed
from the graph, and achieves an additive approximation
guarantee. The second algorithm is a heuristic based on
the local-search paradigm.

• Motivated by real-world scenarios, we define interesting
variants of our original problem definition: (i) finding
the top-k optimal quasi-cliques, and (ii) finding optimal

quasi-cliques that contain a given set of vertices.

• We extensively evaluate our algorithms and problem
variants on numerous datasets, both synthetic and
real, showing that they produce high-quality dense sub-
graphs, which clearly outperform densest subgraphs. We
also present applications of our problem in data-mining
and bioinformatics tasks, such as forming a successful
team of domain experts and finding highly-correlated
genes from a microarray dataset.

1.3 A preview of the results
Table 1 compares our optimal quasi-cliques with densest

subgraphs on some popular graphs.1 The results in the table
clearly show that optimal quasi-cliques have much larger edge
density than densest subgraphs, smaller diameters and larger
triangle densities. Moreover, densest subgraphs are usually
quite large-sized: in the graphs we report in Table 1, the
densest subgraphs contain always more than the 30% of the
vertices in the input graph. For instance, in the Football

1

Densest subgraphs are extracted here with the exact Goldberg’s algo-
rithm [19]. As far as optimal quasi-cliques, we optimize f↵ with ↵ = 1

3
and use our local-search algorithm.

[Tsourakakis et al., 2013]

C.E. Tsourakakis T-79.7003, Introduction 33 / 96

Understanding the objective

[Tsourakakis, 2013]

• α = 0: Optimal solution=G. Not interesting

• 0 < α < 1: In general hard. Let’s see.
• Assume that finding a hidden clique of order O(n1/2−δ)

where δ > 0 in a random binomial graph G ∼ G (n, 1/2)
is hard.

• Hidden clique score = (1− α)
(n1/2−δ

2

)
.

• Score of a random set= (1/2− α)
(n1/2−δ

2

)
.

• Set α > 1/2 to solve the problem in expectation.
• By setting α = 1− 1

Ω(n2)
we solve the max-clique

problem.
• Straightforward inapproximability results.

C.E. Tsourakakis T-79.7003, Introduction 34 / 96

Understanding the objective

• α = 1: Clearly optimal score is always 0 and achieved by
an edge. In general all cliques achieve this score.

• α > 1 Not interesting. Let α = 1 + ε, where ε > 0. The

score is of the form e[S]−
(
|S |
2

)
︸ ︷︷ ︸

≤0

−ε
(|S |

2

)
. Hence, a single

edge minimizes the score.

C.E. Tsourakakis T-79.7003, Introduction 35 / 96

Finding and optimal quasiclique

adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V , E)
output: a quasiclique S
1 set Gn ← G
2 for k ← n downto 1
2.1 let v be the smallest degree vertex in Gk

2.2 Gk−1 ← Gk \ {v}
3 output the subgraph in Gn, . . . , G1 that maximizes f (S)

additive approximation guarantee [Tsourakakis et al., 2013]

C.E. Tsourakakis T-79.7003, Introduction 36 / 96

top-k densest subgraphs and quasicliques

Table 3: Densest subgraphs extracted with Charikar’s method vs. optimal quasi-cliques extracted with the pro-
posed GreedyOQC algorithm (greedy) and LocalSearchOQC algorithm (ls). � = e[S]/

�|S|
2

�
is the edge density

of the extracted subgraph S, D is the diameter, and ⌧ = t[S]/
�|S|

3

�
is the triangle density.

|S| � D ⌧
densest opt. quasi-clique densest opt. quasi-clique densest opt. quasi-clique densest opt. quasi-clique

subgraph greedy ls subgraph greedy ls subgraph greedy ls subgraph greedy ls
Dolphins 19 13 8 0.27 0.47 0.68 3 3 2 0.05 0.12 0.32

Polbooks 53 13 16 0.18 0.67 0.61 6 2 2 0.02 0.28 0.24

Adjnoun 45 16 15 0.20 0.48 0.60 3 3 2 0.01 0.10 0.12

Football 115 10 12 0.09 0.89 0.73 4 2 2 0.03 0.67 0.34

Jazz 99 59 30 0.35 0.54 1 3 2 1 0.08 0.23 1

Celeg. N. 126 27 21 0.14 0.55 0.61 3 2 2 0.07 0.20 0.26

Celeg. M. 44 22 17 0.35 0.61 0.67 3 2 2 0.07 0.26 0.33

Email 289 12 8 0.05 1 0.71 4 1 2 0.01 1 0.30

AS-22july06 204 73 12 0.40 0.53 0.58 3 2 2 0.09 0.19 0.20

Web-Google 230 46 20 0.22 1 0.98 3 2 2 0.03 0.99 0.95

Youtube 1874 124 119 0.05 0.46 0.49 4 2 2 0.02 0.12 0.14

AS-Skitter 433 319 96 0.41 0.53 0.49 2 2 2 0.10 0.19 0.13

Wiki ’05 24555 451 321 0.26 0.43 0.48 3 3 2 0.02 0.06 0.10

Wiki ’06/9 1594 526 376 0.17 0.43 0.49 3 3 2 0.10 0.06 0.11

Wiki ’06/11 1638 527 46 0.17 0.43 0.56 3 3 2 0.31 0.06 0.35

Our main goal is to compare our optimal quasi-cliques with
densest subgraphs. For extracting optimal quasi-cliques, we
involve both our proposed algorithms, i.e., GreedyOQC
and LocalSearchOQC, which, following the discussion in
Section 3.1, we run with ↵ = 1

3

(for LocalSearchOQC, we
also set T

max

= 50). For finding densest subgraphs, we use
the Goldberg’s exact algorithm [19] for small graphs, while
for graphs whose size does not allow the Goldberg’s algo-
rithm to terminate in reasonable time we use the Charikar’s
1

2

-approximation algorithm [10].
All algorithms are implemented in java, and all experi-

ments are performed on a single machine with Intel Xeon
cpu at 2.83GHz and 50GB ram.

5.1 Real-world graphs
Results on real graphs are shown in Table 3. We compare

optimal quasi-cliques outputted by the proposed Greedy-
OQC and LocalSearchOQC algorithms with densest sub-

graphs extracted with the Charikar’s algorithm. Particu-
larly, we use the Charikar’s method to be able to handle
the largest graphs. For consistency, Table 3 reports on re-
sults achieved by Charikar’s method also for the smallest
graphs. We recall that the results in Table 1 in the Intro-
duction refer instead to the exact Goldberg’s method. How-
ever, a comparison of the two tables on their common rows
shows that the Charikar’s algorithm, even though it is ap-
proximate, produces almost identical results with the results
produced by the Goldberg’s algorithm.

Table 3 clearly confirms the preliminary results reported
in the Introduction: optimal quasi-cliques have larger edge
and triangle densities, and smaller diameter than densest

subgraphs. Particularly, the edge density of optimal quasi-

cliques is evidently larger on all graphs. For instance, on
Football and Youtube, the edge density of optimal quasi-

cliques (for both the GreedyOQC and LocalSearchOQC
algorithms) is about 9 times larger than the edge den-
sity of densest subgraphs, while on Email the di↵erence in-
creases up to 20 times (GreedyOQC) and 14 times (Local-
SearchOQC). Still, the triangle density of the optimal

quasi-cliques outputted by both GreedyOQC and Local-
SearchOQC is one order of magnitude larger than the tri-
angle density of densest subgraphs on 11 out of 15 graphs.

Figure 1: Edge density and diameter of the top-
10 subgraphs found by our GreedyOQC and Local-
SearchOQC methods, and Charikar’s algorithm, on
the AS-skitter graph (top) and the Wikipedia 2006/11

graph (bottom).

Comparing our two algorithms to each other, we can
see that LocalSearchOQC performs generally better than
GreedyOQC. Indeed, the edge density achieved by Local-
SearchOQC is higher than that of GreedyOQC on 10 out
of 15 graphs, while the diameter of the LocalSearchOQC
optimal quasi-cliques is never larger than the diameter of the
GreedyOQC optimal quasi-cliques.

Concerning e�ciency, all algorithms are linear in the num-
ber of edges of the graph. Charikar’s and GreedyOQC
algorithm are somewhat slower than LocalSearchOQC,
but mainly due to bookkeeping. LocalSearchOQC algo-
rithm’s running times vary from milliseconds for the small
graphs (e.g., 0.004s for Dolphins, 0.002s for Celegans N.), few
seconds for the larger graphs (e.g., 7.94s for Web-Google and
3.52s for Youtube) and less than one minute for the largest
graphs (e.g., 59.27s for Wikipedia 2006/11).

C.E. Tsourakakis T-79.7003, Introduction 37 / 96

Multiplicative Approximation: a

0.796-approximation algorithm

[Tsourakakis, 2013]

• fα(S)← fα(S) + α
(
n
2

)
. Then fα(S) ≥ 0 for any S ⊆ V .

• This shifting is not necessary since the optimal objective
value is positive in the interesting range of 0 < α < 1 as
a single edge results in a positive score 1− α.

• Adds a huge additive error but does not render the
objective useless for all graphs.

• Result of limited value due to the large additive error for
realistic cases.

C.E. Tsourakakis T-79.7003, Introduction 38 / 96

Multiplicative Approximation: a

0.796-approximation algorithm

• We introduce a variable xi ∈ {−1, +1} for each vertex
i ∈ V = {1, . . . , n} and an extra variable x0 which
expresses whether a vertex belongs to S or not:

It is i ∈ S if and only if x0xi = 1.

• Notice that the term
1+x0xi+x0xj+xixj

4
equals 1 if and only if

both i , j belong in S , otherwise it equals 0. Furthemore,
the term

(
n
2

)
enters the objective as 1

2

∑
i 6=j 1.

C.E. Tsourakakis T-79.7003, Introduction 39 / 96

Multiplicative Approximation: a

0.796-approximation algorithm

Therefore, we get the following integer program:

max
∑

e=(i ,j)

1 + x0xi + x0xj + xixj

4
+

α

2

∑
i 6=j

(
1− 1 + x0xi + x0xj + xixj

4

)
subject to xi ∈ {−1, +1}, for all i ∈ {0, 1, .., n}.

(1)

C.E. Tsourakakis T-79.7003, Introduction 40 / 96

Multiplicative Approximation: a

0.796-approximation algorithm
We relax the integrality constraint and we allow the variables
to be vectors in the unit sphere in Rn+1. By using the variable
transformation yij = xixj , we obtain the following semidefinite
programming relaxation:

max α
∑

e=(i ,j)

1 + y0i + y0j + yij

4
+

1

2

∑
i 6=j

(
1− 1 + y0i + y0j + yij

4

)
subject to yii = 1, for all i ∈ {0, 1, .., n}

and Y � 0, Y symmetric.

(2)

C.E. Tsourakakis T-79.7003, Introduction 41 / 96

Multiplicative Approximation: a

0.796-approximation algorithm

SDP-Edge-Surplus

• Relaxation: Solve the semidefinite program and compute a
Cholesky decomposition of Y . Let v0, v1, . . . , vn be the
resulting vectors.

• Randomized Rounding: Randomly choose a unit length
vector r ∈ Rn+1 and set
S = {i ∈ [n] : sgn(vi r) = sgn(v0r)}.

• Boosting Success Probability: Repeat steps 1-2 for
t = 1, .., T and output the best solution found over the
T = cε,α,β log n runs. Here, 1 > ε > 0 is a small positive

constant and cε,α,β =
1− (1−ε)3β

2(α+1)

ε 3β
2(α+1)

.

C.E. Tsourakakis T-79.7003, Introduction 42 / 96

Multiplicative Approximation: a

0.796-approximation algorithm

Theorem ([Tsourakakis, 2013])

Algorithm SDP-Edge-Surplus is a β-approximation algorithm
for f where β > 0.79607 with probability at least 1− O(n−1).

C.E. Tsourakakis T-79.7003, Introduction 43 / 96

The community-search problem

• a dense subgraph that contains a given subset
of vertices Q ⊆ V (the query vertices)

• the center-piece subgraph problem

• the team formation problem

• the cocktail party problem

applications

• find the community of a given set of users
• a meaningful way to address the issue of

overlapping communities

• find a set of proteins related to a given set

• form a team to solve a problem

C.E. Tsourakakis T-79.7003, Introduction 44 / 96

Center-piece subgraph [Tong and Faloutsos, 2006]

• given: graph G = (V , E) and set of query vertices Q ⊆ V

• find: a connected subgraph H that

(a) contains Q
(b) optimizes a goodness function g(H)

• main concepts:

• k softAND: a node in H should be well connected to at
least k vertices of Q

• r(i , j) goodness score of j wrt qi ∈ Q

• r(Q, j) goodness score of j wrt Q

• g(H) goodness score of a candidate subgraph H

• H∗ = arg maxH g(H)

C.E. Tsourakakis T-79.7003, Introduction 45 / 96

Center-piece subgraph

[Tong and Faloutsos, 2006]

• r(i , j) goodness score of j wrt qi ∈ Q

probability to meet j in a random walk with restart to qi

• r(Q, j) goodness score of j wrt Q

probability to meet j in a random walk with restart to k
vertices of Q

• proposed algorithm:

1. greedy: find a good destination vertex j ito add in H

2. add a path from each of top-k vertices of Q path to j

3. stop when H becomes large enough

C.E. Tsourakakis T-79.7003, Introduction 46 / 96

Center-piece subgraph — example results

(a) “K softANDquery”: k = 2

(b) “AND query”

Figure 1: Center-piece subgraph among Rakesh Agrawal, Jiawei Han, Michael I. Jordan and Vladimir Vapnik.

Thus, we define the center-piece subgraph problem, as
follows:

Problem 1. Center-Piece Subgraph Discovery(CEPS)

Given: an edge-weighted undirected graph W, Q nodes as
source queries Q = {qi} (i = 1, ..., Q), the softAND
coefficient k and an integer budget b

Find: a suitably connected subgraph H that (a) contains all
query nodes qi (b) at most b other vertices and (c) it
maximizes a “goodness” function g(H).

Allowing Q query nodes creates a subtle problem: do we
want the qualifying nodes to have strong ties to all the query
nodes? to at least one? to at least a few? We handle all
of the above cases with our proposed K softAND queries.
Figure 1(a) illustrates the case where we want intermediate
nodes with good connections to at least k = 2 of the query
nodes. Notice that the resulting subgraph is much different
now: there are two disconnected components, reflecting the
two sub-communities (databases/statistics).

The contributions of this work are the following

• The problem definition, for arbitrary number Q of
query nodes, with careful handling of a lot of the sub-
tleties.

• The introduction and handling of K softAND queries.

• EXTRACT, a novel subgraph extraction algorithm.

• The design of a fast, approximate method, which pro-
vides a 6 : 1 speedup with little loss of accuracy.

The system is operational, with careful design and nu-
merous optimizations, like alternative normalizations of the
adjacency matrix, a fast algorithm to compute the scores for
K softAND queries.

Our experiments on a large real dataset (DBLP) show that
our method returns results that agree with our intuition, and
that it can be made fast (a few seconds response time), while
retaining most of the accuracy (about 90%).

The rest of the paper is organized as follows: in Section 2,
we review some related work; Section 3 provides an overview
of the proposed method: CEPS. The goodness score calcu-
lation is proposed Section 4 and its variants are presented in
the Appendix. The “EXTRACT” algorithm and the speed-
ing up strategy are provided in Section 5 and Section 6,
respectively. We present experimental results in Section 7;
and conclude the paper in Section 8.

2. RELATED WORK
In recent years, there is increasing research interest in

large graph mining, such as pattern and law mining [2][5][7][20],
frequent substructure discovery [27], influence propagation [18],
community mining [9][11][12] and so on. Here, we make a
brief review of the related work, which can be categorized
into four groups: 1) measuring the goodness of connection;
2) community mining; 3) random walk and electricity re-
lated methods; 4) graph partition.

The goodness of connection. Defining a goodness cri-
terion is the core for center-piece subgraph discovery. The
two most natural measures for “good” paths are shortest dis-
tance and maximum flow. However, as pointed out in [6],
both measurements might fail to capture some preferred
characteristics for social network. The goodness function for
survivable network [13], which is the count of edge-disjoint
or vertex-disjoint paths from source to destination, also fails
to adequately model social relationship. A more related dis-
tance function is proposed in [19] [23]. However, It can-
not describe the multi-faceted relationship in social network
since center-piece subgraph aims to discover collection of
paths rather than a single path.

In [6], the authors propose an delivered current based
method. By interpreting the graph as an electric network,
applying +1 voltage to one query node and setting the other
query node 0 voltage, their method proposes to choose the
subgraph which delivers maximum current between the query
nodes. In [25], the authors further apply the delivered cur-
rent based method to multi-relational graph. However, the
delivered current criterion can only deal with pairwise source

405

Research Track Paper

[Tong and Faloutsos, 2006]
C.E. Tsourakakis T-79.7003, Introduction 47 / 96

The community-search problem

[Sozio and Gionis, 2010]

• given: graph G = (V , E) and set of query vertices Q ⊆ V

• find: a connected subgraph H that

(a) contains Q
(b) vertices of H are close to Q
(c) optimizes a density function d(H)

• distance constraint (b):

d(Q, j) =
∑
q∈Q

d2(qi , j) ≤ B

• density function (c):

average degree, minimum degree, quasiclique, measured
on the induced subgraph H

C.E. Tsourakakis T-79.7003, Introduction 48 / 96

The community-search problem

both the distance constraint and the minimum-degree density
help addressing the problem of free riders

C.E. Tsourakakis T-79.7003, Introduction 49 / 96

The community-search problem

algorithm proposed by [Sozio and Gionis, 2010]

adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V , E), query vertices Q ⊆ V
output: connected, dense subgraph H
1 set Gn ← G
2 for k ← n downto 1
2.1 remove all vertices violating distance constraints
2.2 let v be the smallest degree vertex in Gk

among all vertices not in Q
2.3 Gk−1 ← Gk \ {v}
2.4 if left only with vertices in Q or disconnected graph, stop
3 output the subgraph in Gn, . . . , G1 that maximizes f (H)

C.E. Tsourakakis T-79.7003, Introduction 50 / 96

Properties of the greedy algorithm

• returns optimal solution if no size constraints or
lower-bound constraints

• heuristic variants proposed when upper-bound constraints

• generalized for monotone constraints and monotone
objective functions

C.E. Tsourakakis T-79.7003, Introduction 51 / 96

The community-search problem — example results

Kanellakis

Papadimitriou

Abiteboul

Buneman

Vianu
Vardi

Hull

Delobel

Ioannidis

Hellerstein

Ross

Ullman

Bernstein

(a) Database theory

Fortnow

Babai

Nisan

Wigderson

Zuckerman

Safra

Saks

Papadimitriou

Karp

Itai

Lipton

Goldreich

(b) Complexity theory

Karp

Blum

Papadimitriou

Afrati

Johnson

Goldman

Piccolboni

Yannakakis

Crescenzi

TarjanUllman

Sagiv

(c) Algorithms I

Kleinberg

Raghavan

Rajagopalan

Tomkins

Hirsch

Dantsin

Kannan

Goerdt

Papadimitriou

Chakrabarti

Gibson

Kumar

Dom

Schoning

(d) Algorithms II

Figure 4: Different communities of Christos Papadimitriou. Rectangular nodes indicate the query nodes, and elliptical
nodes indicate nodes discover by our algorithm.

[10] C. Faloutsos, K. McCurley, and A. Tomkins. Fast discovery
of connection subgraphs. In KDD, 2004.

[11] U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph
problem. Algorithmica, 29:2001, 1999.

[12] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient
identification of web communities. In KDD, 2000.

[13] G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee.
Self-organization and identification of web communities.
Computer, 35(3):66–71, 2002.

[14] S. Fortunato and M. Barthelemy. Resolution limit in
community detection. PNAS, 104(1), 2007.

[15] D. Gibson, R. Kumar, and A. Tomkins. Discovering large
dense subgraphs in massive graphs. In VLDB, 2005.

[16] M. Girvan and M. E. J. Newman. Community structure in
social and biological networks. Proceedings of the National
Academy of Sciences of the USA, 99(12):7821–7826, 2002.

[17] J. H̊astad. Clique is hard to approximate within n1−ε.
Electronic Colloquium on Computational Complexity
(ECCC), 4(38), 1997.

[18] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs. JSC,
20(1), 1998.

[19] G. Kasneci, S. Elbassuoni, and G. Weikum. Ming: mining
informative entity relationship subgraphs. In CIKM, 2009.

[20] S. Khuller and B. Saha. On finding dense subgraphs. In
ICALP, 2009.

[21] Y. Koren, S. C. North, and C. Volinsky. Measuring and
extracting proximity graphs in networks. TKDD, 1(3),
2007.

[22] B. Korte and J. Vygen. Combinatorial Optimization:
Theory and Algorithms (Algorithms and Combinatorics).
Springer, 2007.

[23] L. Kou, G. Markowsky, and L. Berman. A fast algorithm
for steiner trees. Acta Informatica, 15(2):141–145, 1981.

[24] T. Lappas, K. Liu, and E. Terzi. Finding a team of experts
in social networks. In KDD, 2009.

[25] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Statistical properties of community structure in large social
and information networks. In WWW, 2008.

[26] M. Newman. Fast algorithm for detecting community
structure in networks. Physical Review E, 69, 2003.

[27] P. Sevon, L. Eronen, P. Hintsanen, K. Kulovesi, and
H. Toivonen. Link discovery in graphs derived from
biological databases. In DILS, 2006.

[28] H. Tong and C. Faloutsos. Center-piece subgraphs:
problem definition and fast solutions. In KDD, 2006.

[29] S. White and P. Smyth. A spectral clustering approach to
finding communities in graph. In SDM, 2005.

948

(from [Sozio and Gionis, 2010])

C.E. Tsourakakis T-79.7003, Introduction 52 / 96

Conclusions (dense subgraphs)

summary

• discussed a number of different density measures

• discussed a number of diiferent problem formulations

• polynomial-time solvable or NP-hard problems

• global dense subgraphs or relative to query vertices

promising future directions

• explore further the concept of α-quasiclique (no shifting,
better additive guarantees)

• better algorithms for upper-bound constraints

• top-k versions of dense subgraphs

• adapt concepts for labeled graphs

• local algorithms

C.E. Tsourakakis T-79.7003, Introduction 53 / 96

Streaming Graph partitioning

Need for scalable algorithms

• spectral, agglomerative, LP-based algorithms

• not scalable to very large graphs

• handle datasets with billions of vertices and edges

• facebook: ∼ 1 billion users with avg degree 130

• twitter: ≥ 1.5 billion social relations

• google: web graph more than a trillion edges (2011)

• design algorithms for streaming scenarios

• real-time story identification using twitter posts

• election trends, twitter as election barometer

C.E. Tsourakakis T-79.7003, Introduction 55 / 96

Graph partitioning

• graph partitioning is a way to split the graph vertices in
multiple machines

• graph partitioning objectives guarantee low
communication overhead among different machines

• additionally balanced partitioning is desirable

G = (V, E)

Sunday, August 4, 13

• each partition contains ≈ n/k vertices

C.E. Tsourakakis T-79.7003, Introduction 56 / 96

Off-line k-way graph partitioning

METIS algorithm [Karypis and Kumar, 1998]

• popular family of algorithms and software

• multilevel algorithm

• coarsening phase in which the size of the graph is
successively decreased

• followed by bisection (based on spectral or KL method)

• followed by uncoarsening phase in which the bisection is
successively refined and projected to larger graphs

C.E. Tsourakakis T-79.7003, Introduction 57 / 96

Off-line k-way graph partitioning

Krauthgamer, Naor and Schwartz [Krauthgamer et al., 2009]

• problem: minimize number of edges cut, subject to
cluster sizes Θ(n/k)

• approximation guarantee: O(
√

log k log n)

• based on the work of Arora-Rao-Vazirani for the
sparsest-cut problem (k = 2) [Arora et al., 2009]

C.E. Tsourakakis T-79.7003, Introduction 58 / 96

streaming k-way graph partitioning

• input is a data stream

• graph is ordered
• arbitrarily
• breadth-first search
• depth-first search

• generate an approximately balanced graph partitioning

graph stream
partitioner

⇥(n/k)
each partition
holds
vertices

Monday, August 5, 13

C.E. Tsourakakis T-79.7003, Introduction 59 / 96

Graph representations

• adjacency stream

• at time t, a vertex arrives with its neighbors

• edge stream

• at time t, an edge arrives

C.E. Tsourakakis T-79.7003, Introduction 60 / 96

Partitioning strategies

• hashing: place a new vertex to a cluster/machine chosen
uniformly at random

• neighbors heuristic: place a new vertex to the
cluster/machine with the maximum number of neighbors

• non-neighbors heuristic: place a new vertex to the
cluster/machine with the minimum number of
non-neighbors

C.E. Tsourakakis T-79.7003, Introduction 61 / 96

Partitioning strategies

[Stanton and Kliot, 2012]

• dc(v): neighbors of v in cluster c

• tc(v): number of triangles that v participates in cluster c

• balanced: vertex v goes to cluster with least number of
vertices

• hashing: random assignment

• weighted degree: v goes to cluster c that maximizes
dc(v) · w(c)

• weighted triangles: v goes to cluster j that maximizes
tc(v)/

(
dc (v)

2

)
· w(c)

C.E. Tsourakakis T-79.7003, Introduction 62 / 96

Weight functions

• sc : number of vertices in cluster c

• unweighted: w(c) = 1

• linearly weighted: w(c) = 1− sc(k/n)

• exponentially weighted: w(c) = 1− e(sc−n/k)

C.E. Tsourakakis T-79.7003, Introduction 63 / 96

fennel algorithm

[Tsourakakis et al., 2012]

minimize P=(S1,...,Sk) |∂ e(P)|

subject to |Si | ≤ ν
n

k
, for all 1 ≤ i ≤ k

• hits the arv barrier

minimize P=(S1,...,Sk) |∂ E (P)|+ cIN(P)

where cIN(P) =
∑

i s(|Si |), so that objective self-balances

• relax hard cardinality constraints

C.E. Tsourakakis T-79.7003, Introduction 64 / 96

fennel algorithm

[Tsourakakis et al., 2012]

• for S ⊆ V , f (S) = e[S]− α|S |γ, with γ ≥ 1

• given partition P = (S1, . . . , Sk) of V in k parts define

g(P) = f (S1) + . . . + f (Sk)

• the goal: maximize g(P) over all possible k-partitions

• notice:
g(P) =

∑
i

e[S1]︸ ︷︷ ︸
number of
edges cut

− α
∑

i

|Si |γ︸ ︷︷ ︸
minimized for

balanced partition!

C.E. Tsourakakis T-79.7003, Introduction 65 / 96

Connection

notice

f (S) = e[S]− α

(
|S |
2

)
• related to modularity

• related to quasicliques (see next)

C.E. Tsourakakis T-79.7003, Introduction 66 / 96

fennel algorithm

theorem [Tsourakakis et al., 2012]

• γ = 2 gives approximation factor log(k)/k

where k is the number of clusters

• random partitioning gives approximation factor 1/k

• no dependence on n

mainly because relaxing the hard cardinality constraints

C.E. Tsourakakis T-79.7003, Introduction 67 / 96

fennel algorithm — greedy scheme

• γ = 2 gives non-neighbors heuristic

• γ = 1 gives neighbors heuristic

• interpolate between the two heuristics, e.g., γ = 1.5

C.E. Tsourakakis T-79.7003, Introduction 68 / 96

fennel algorithm — greedy scheme

graph stream
partitioner

⇥(n/k)
each partition
holds
vertices

Monday, August 5, 13

• send v to the partition / machine that maximizes

f (Si ∪{v})− f (Si)

= e[Si ∪ {v}]− α(|Si |+ 1)γ − (e[Si]− α|Si |γ)
= dSi

(v)− αO(|Si |γ−1)

• fast, amenable to streaming and distributed setting

C.E. Tsourakakis T-79.7003, Introduction 69 / 96

fennel algorithm — results

λ =
#{edges cut}

m
ρ = max

1≤i≤k

|Si |
n/k

Fennel METIS
m k � ⇢ � ⇢

7 185 314 4 62.5 % 1.04 65.2% 1.02
6 714 510 8 82.2 % 1.04 81.5% 1.02
6 483 201 16 92.9 % 1.01 92.2% 1.02
6 364 819 32 96.3% 1.00 96.2% 1.02
6 308 013 64 98.2% 1.01 97.9% 1.02
6 279 566 128 98.4 % 1.02 98.8% 1.02

Table 4: Fraction of edges cut � and normalized
maximum load ⇢ for Fennel and METIS [29] averaged
over 5 random graphs generated according to the
HP(5000,0.8,0.5) model. As we see, Fennel despite
its small computational overhead and deciding on-
the-fly where each vertex should go, achieves com-
parable performance to METIS.

• Linear Weighted Deterministic Greedy (LDG): place v

to S
i

that maximizes |N(v) \ S
i

|⇥ (1� |Si|
n

k

).

• Exponentially Weighted Deterministic Greedy (EDG):

place v to S
i

that maximizes |N(v)\S
i

|⇥
⇣
1�exp

�
|S

i

|� n

k

�⌘
.

• Triangles (T): place v to S
i

that maximizes t
Si(v).

• Linear Weighted Triangles (LT): place v to S
i

that

maximizes t
Si(v)⇥

⇣
1� |Si|

n

k

⌘
.

• Exponentially Weighted Triangles (ET): place v to S
i

that maximizes t
Si(v)⇥

⇣
1� exp

�
|S

i

|� n

k

�⌘
.

• Non-Neighbors (NN): place v to S
i

that minimizes |S
i

\
N(v)|.

In accordance with [54], we observed that LDG is the best
performing heuristic. Even if Stanton and Kliot do not com-
pare with NN, LDG outperforms it also. Non-neighbors typ-
ically have very good load balancing properties, as LDG as
well, but cut significantly more edges. Table 3 shows the
typical performance we observe across all datasets. Specif-
ically, it shows � and ⇢ for both BFS and random order
for amazon0312. DFS order is omitted since qualitatively it
does not di↵er from BFS. We observe that LDG is the best
competitor, Fennel outperforms all existing competitors and
is inferior to METIS, but of comparable performance. In
whatever follows, whenever we refer to the best competi-
tor, unless otherwise mentioned we refer to LDG. Time-wise
METIS is the fastest, taking 11.4 seconds to run. Hashing
follows with 12 seconds and the rest of the methods except
for T, LT, ET take the same time up the integer part, i.e., 13
seconds. Triangle based methods take about 10 times more
time. Existing approximate counting methods can mitigate
this [57, 58]. It is also worth emphasizing that for larger
graphs Fennel is faster than METIS.

5.2 Synthetic Datasets
Before we delve into our findings, it is worth summarizing

the main findings of this section. (a) For all synthetic graphs
we generated, the value � = 3

2
achieves the best performance

pointwise, not in average. (b) The e↵ect of the stream or-
der is minimal on the results. Specifically, when � � 3

2
all

orders result in the same qualitative results. When � < 3
2

BFS and DFS orders result in the same results which are
worse with respect to load balancing –and hence better for
the edge cuts– compared to the random order. (c) Fennel’s
performance is comparable to METIS.

Hidden Partition: We report averages over five randomly
generated graphs according to the model HP(5000, k, 0.8, 0.5)
for each value of k we use. We study (a) the e↵ect of the
parameter �, which parameterizes the function c(x) = ↵x� ,
and (b) the e↵ect of the number of clusters k.

We range � from 1 to 4 with a step of 1/4, for six di↵erent
values of k shown in the second column of Table 4. For
all k, we observe, consistently, the following behavior: for
� = 1 we observe that � = 0 and ⇢ = k. This means that
one cluster receives all vertices. For any � greater than 1,
we obtain excellent load balancing with ⇢ ranging from 1 to
1.05, and the same fraction of edges cut with METIS up the
the first decimal digit. This behavior was not expected a
priori, since in general we expect � shifting from small to
large values and see ⇢ shifting from large to small values
as � grows. Given the insensitivity of Fennel to � in this
setting, we fix � = 3

2
and present in Table 4 our findings. For

each k shown in the second column we generate five random
graphs. The first column shows the average number of edges.
Notice that despite the fact that we have only 5,000 vertices,
we obtain graphs with several millions of edges. The four
last columns show the performance of Fennel and METIS.
As we see, their performance is comparable and in one case
(k=128) Fennel clearly outperforms METIS.

Power Law: It is well known that power law graphs have
no good cuts [23], but they are commonly observed in prac-
tice. We examine the e↵ect of parameter � for k fixed to
10. In contrast to the hidden partition experiment, we ob-
serve the expected tradeo↵ between � and ⇢ as � changes.
We generate five random power law graphs CL(20 000,2.5),
since this value matches the slope of numerous real-world
networks [45]. Figure 1 shows the tradeo↵ when � ranges
from 1 to 4 with a step of 0.25 for the random stream order.
The straight line shows the performance of METIS. As we
see, when � < 1.5, ⇢ is unacceptably large for demanding
real-world applications. When � = 1.5 we obtain essentially
the same load balancing performance with METIS. Specifi-
cally, ⇢Fennel = 1.02, ⇢METIS = 1.03. The corresponding cut
behavior for � = 1.5 is �Fennel = 62.58%, �METIS = 54.46%.
Furthermore, we experimented with the random, BFS and
DFS stream orders. We observe that the only major di↵er-
ence between the stream orders is obtained for � = 1.25. For
all other � values the behavior is identical. For � = 1.25 we
observe that BFS and DFS stream orders result in signifi-
cantly worse load balancing properties. Specifically, ⇢BFS =
3.81, ⇢DFS = 3.73, ⇢Random = 1.7130. The corresponding
fractions of edges cut are �BFS = 37.83%, �DFS = 38.85%,
and �Random = 63.51%.

5.3 Real-World Datasets
Again, before we delve into the details of the experimen-

tal results, we summarize the main points of this Section:
(1) Fennel is superior to existing streaming partitioning al-
gorithms. Specifically, it consistently, over a wide range of k
values and over all datasets, performs better than the cur-
rent state-of-the-art. Fennel achieves excellent load balanc-
ing with significantly smaller edge cuts. (2) For smaller val-
ues of k (less or equal than 64) the observed gain is more
pronounced. (c) Fennel is fast. Our implementation scales

• γ = 1.5

• comparable results in quality, but fennel is lightway,
fast, and streamable

C.E. Tsourakakis T-79.7003, Introduction 70 / 96

Conclusions (graph partitioning)

summary

• spectral techniques, modularity-based methods,
graph partitioning

• well-studied and mature area

future directions

• develop alternative notions for communities,
e.g., accounting for graph labels, constraints, etc.

• further improve efficiency of methods

• overlapping communities

C.E. Tsourakakis T-79.7003, Introduction 71 / 96

Rainbow connection

Rainbow connection

• Suppose we wish to route messages in a cellular network
G , between any two vertices in a pipeline, and require that
each link on the route between the vertices (namely, each
edge on the path) is assigned a distinct channel (e.g., a
distinct frequency). The minimum number of distinct
channels we need to use is the rainbow connectivity of G .

C.E. Tsourakakis T-79.7003, Introduction 73 / 96

Rainbow connection

• An edge colored graph G is rainbow edge connected iff
any two vertices are connected by a path whose edges
have distinct colors. The rainbow connectivity rc(G) of a
connected graph G is the smallest number of colors that
are needed in order to make G rainbow edge connected.

• rc(G) ≤ n − 1 Exercise

• rc(G) = n − 1 iff G is a tree Exercise

• rc(G) = 1 iff G is the complete graph Kn Exercise

• rc(G) ≤ n 4 log n+3
δ

[Caro et al., 2008]

C.E. Tsourakakis T-79.7003, Introduction 74 / 96

Rainbow connection

Let

L =
log n

log log n
(3)

and let A ∼ B denote A = (1 + o(1))B as n→∞. We shall
sketch the proof of the following theorem
[Frieze and Tsourakakis, 2012a,
Frieze and Tsourakakis, 2012b].

Theorem

Let G = G (n, p), p = log n+ω
n

, ω →∞, ω = o(log n). Also, let
Z1 be the number of vertices of degree 1 in G. Then, with
high probability(whp)

rc(G) ∼ max{Z1, L},

C.E. Tsourakakis T-79.7003, Introduction 75 / 96

Rainbow connection
Let a vertex be large if deg(x) ≥ log n/100 and small
otherwise.

Lemma

Whp, there do not exist two small vertices within distance at
most 3L/4.

Proof.

Pr

[
∃x , y ∈ [n] : deg(x), deg(y) ≤ log n/100, dist(x , y) ≤ 3L

4

]

≤
(

n

2

) 3L/4∑
k=1

nk−1pk

log n/100∑
i=0

(
n − 1− k

i

)
pi(1− p)n−1−k

2

C.E. Tsourakakis T-79.7003, Introduction 76 / 96

Rainbow connection

Proof.

≤
3L/4∑
k=1

n(2 log n)k

(
2

(
n

log n/100

)
plog n/100(1− p)n−1−log n/100

)2

≤
3L/4∑
k=1

n(2 log n)k
(
2(100e1+o(1))log n/100n−1+o(1)

)2

≤
3L/4∑
k=1

n(2 log n)kn−1.9

≤ 2n(2 log n)3L/4n−1.9

≤ n−.1.

C.E. Tsourakakis T-79.7003, Introduction 77 / 96

Rainbow connection
High-level sketch of the proof

1 Randomly color the edges of the graph in question, using
a uniformly random coloring.

2 To prove that this works, we have to find, for each pair of
vertices x , y , a large collection of edge disjoint paths
joining them. It will then be easy to argue that at least
one of these paths is rainbow colored.

3 To find these paths we pick a typical vertex x . We grow a
regular tree Tx with root x . The depth is chosen
carefully. We argue that for a typical pair of vertices x , y ,
many of the leaves of Tx and Ty can be put into 1-1
correspondence f so that (i) the path Px from x to leaf v
of Tx is rainbow colored, (ii) the path Py from y to the
leaf f (v) of Ty is rainbow colored and (iii) Px , Py do not
share color.

C.E. Tsourakakis T-79.7003, Introduction 78 / 96

Rainbow connection

4 We argue that from most of the leaves of Tx , Ty we can
grow a tree of depth approximately equal to half the
diameter. These latter trees themselves contain a bit
more than n1/2 leaves. These can be constructed so that
they are vertex disjoint. Now we argue that each pair of
trees, one associated with x and one associated with y ,
are joined by an edge.

5 We now have, by construction, a large set of edge disjoint
paths joining leaves v of Tx to leaves f (v) of Ty . A
simple estimation shows that whp for at least one leaf v
of Tx , the path from v to f (v) is rainbow colored and
does not use a color already used in the path from x to v
in Tx or the path from y to f (v) in Ty .

C.E. Tsourakakis T-79.7003, Introduction 79 / 96

Rainbow connection

Lemma

Fix t ∈ Z+ and 0 < α < 1. Then, whp there does not exist a
subset S ⊆ [n], such that |S | ≤ αtL and e[S] ≥ |S |+ t.

Proof.
For convenience, let s = |S | be the cardinality of the set
S .Then,

Pr [∃S : s ≤ αtL and e[S] ≥ s + t] ≤
∑

s≤αtL

(
n

s

)((
s
2

)
s + t

)
ps+t

C.E. Tsourakakis T-79.7003, Introduction 80 / 96

Rainbow connection

Proof.

≤
∑

s≤αtL

(ne

s

)s
(

es2p

2(s + t)

)s+t

≤
∑

s≤αtL

(e2+o(1) log n)s

(
es log n

n

)t

≤ αtL

(
(e2+o(1) log n)αL

(
eαt log2 n

n log log n

))t

<
1

n(1−α−o(1))t
.

C.E. Tsourakakis T-79.7003, Introduction 81 / 96

Rainbow connection

Lemma

Whp for all pairs of large vertices x , y ∈ [n] there exists a
subgraph Gx ,y(Vx ,y , Ex ,y) of G as shown in the next figure.
The subgraph consists of two isomorphic vertex disjoint trees
Tx , Ty rooted at x , y each of depth k. Tx and Ty both have a
branching factor of log n/101. I.e. each vertex of Tx , Ty has
at least log n/101 neighbors, excluding its parent in the tree.
Let the leaves of Tx be x1, x2, . . . , xτ where τ ≥ n4ε/5 and
those of Ty be y1, y2, . . . , yτ . Then yi = f (xi) where f is a
natural isomporphism that preserves the parent-child relation.
Between each pair of leaves (xi , yi), i = 1, 2, . . . , τ there is a
path Pi of length (1 + 2ε)L. The paths Pi , i = 1, 2, . . . , τ are
edge disjoint.

C.E. Tsourakakis T-79.7003, Introduction 82 / 96

Rainbow connection

C.E. Tsourakakis T-79.7003, Introduction 83 / 96

Rainbow connection

Top-down coloring, think of it as an evolutionary process. We
show that there are many “alive” pairs.

C.E. Tsourakakis T-79.7003, Introduction 84 / 96

Rainbow connection

Lemma

Color each edge of G using one color at random from q
available. Then, the probability of having at least one rainbow
path between two fixed large vertices x , y ∈ [n] is at least
1− 1

n3 .

Two key steps

• Step 1: Existence of at least n
4
5

ε living pairs of leaves
• Step 2: Existence of rainbow paths between x , y in Gx ,y

C.E. Tsourakakis T-79.7003, Introduction 85 / 96

Rainbow connection
Taking care of small vertices.

C.E. Tsourakakis T-79.7003, Introduction 86 / 96

Rainbow connection

Also results for random regular graphs
[?, Frieze and Tsourakakis, 2012b].

Theorem
Let G = G (n, r) be a random r-regular graph where r ≥ 3 is a
fixed integer. Then, whp

rc(G) =

{
O(log4 n) r = 3

O(log n) r ≥ 4.

Open problem: r = 3

C.E. Tsourakakis T-79.7003, Introduction 87 / 96

Best wishes for the rest of your
studies!

C.E. Tsourakakis T-79.7003, Introduction 88 / 96

references I

Alvarez-Hamelin, J. I., Dall’Asta, L., Barrat, A., and Vespignani, A.
(2005).

Large scale networks fingerprinting and visualization using the k-core
decomposition.

In NIPS.

Angel, A., Koudas, N., Sarkas, N., and Srivastava, D. (2012).

Dense Subgraph Maintenance under Streaming Edge Weight
Updates for Real-time Story Identification.

arXiv.org.

Arora, S., Rao, S., and Vazirani, U. (2009).

Expander flows, geometric embeddings and graph partitioning.

Journal of the ACM (JACM), 56(2).

C.E. Tsourakakis T-79.7003, Introduction 89 / 96

references II

Asahiro, Y., Iwama, K., Tamaki, H., and Tokuyama, T. (2000).

Greedily finding a dense subgraph.

Journal of Algorithms, 34(2):203–221.

Caro, Y., Lev, A., Roditty, Y., Tuza, Z., and Yuster, R. (2008).

On rainbow connection.

Electron. J. Combin, 15(1):R57.

Charikar, M. (2000).

Greedy approximation algorithms for finding dense components in a
graph.

In APPROX.

C.E. Tsourakakis T-79.7003, Introduction 90 / 96

references III

Fratkin, E., Naughton, B. T., Brutlag, D. L., and Batzoglou, S.
(2006).

MotifCut: regulatory motifs finding with maximum density
subgraphs.

Bioinformatics, 22(14).

Frieze, A. M. and Tsourakakis, C. E. (2012a).

Rainbow connection of sparse random graphs.

The Electronic Journal of Combinatorics, 19.

Frieze, A. M. and Tsourakakis, C. E. (2012b).

Rainbow connectivity of sparse random graphs.

In APPROX-RANDOM, pages 541–552.

Goldberg, A. V. (1984).

Finding a maximum density subgraph.

Technical report.

C.E. Tsourakakis T-79.7003, Introduction 91 / 96

references IV

Håstad, J. (1997).

Clique is hard to approximate within n1−ε.

In Electronic Colloquium on Computational Complexity (ECCC).

Iasemidis, L. D., Shiau, D.-S., Chaovalitwongse, W. A., Sackellares,
J. C., Pardalos, P. M., Principe, J. C., Carney, P. R., Prasad, A.,
Veeramani, B., and Tsakalis, K. (2003).

Adaptive epileptic seizure prediction system.

IEEE Transactions on Biomedical Engineering, 50(5).

Karypis, G. and Kumar, V. (1998).

A fast and high quality multilevel scheme for partitioning irregular
graphs.

SIAM J. Sci. Comput., 20(1):359–392.

C.E. Tsourakakis T-79.7003, Introduction 92 / 96

references V

Khuller, S. and Saha, B. (2009).

On finding dense subgraphs.

In ICALP.

Krauthgamer, R., Naor, J. S., and Schwartz, R. (2009).

Partitioning graphs into balanced components.

In SODA.

Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A. (1999).

Trawling the Web for emerging cyber-communities.

Computer Networks, 31(11–16):1481–1493.

Sozio, M. and Gionis, A. (2010).

The community-search problem and how to plan a successful
cocktail party.

In KDD.

C.E. Tsourakakis T-79.7003, Introduction 93 / 96

file:citeseer.ist.psu.edu/kumar99trawling.html

references VI

Stanton, I. and Kliot, G. (2012).

Streaming graph partitioning for large distributed graphs.

In KDD.

Tong, H. and Faloutsos, C. (2006).

Center-piece subgraphs: problem definition and fast solutions.

In KDD.

Tsourakakis, C. (2013).

Mathematical and Algorithmic Analysis of Network and Biological
Data.

PhD thesis, Carnegie Mellon University.

C.E. Tsourakakis T-79.7003, Introduction 94 / 96

references VII

Tsourakakis, C., Bonchi, F., Gionis, A., Gullo, F., and Tsiarli, M.
(2013).

Denser than the densest subgraph: extracting optimal quasi-cliques
with quality guarantees.

In KDD.

Tsourakakis, C. E., Gkantsidis, C., Radunovic, B., and Vojnovic, M.
(2012).

FENNEL: Streaming graph partitioning for massive scale graphs.

Technical report.

Uno, T. (2010).

An efficient algorithm for solving pseudo clique enumeration
problem.

Algorithmica, 56(1).

C.E. Tsourakakis T-79.7003, Introduction 95 / 96

references VIII

Zhang, B. and Horvath, S. (2005).

A general framework for weighted gene co-expression network
analysis.

Statistical applications in genetics and molecular biology, 4(1):1128.

C.E. Tsourakakis T-79.7003, Introduction 96 / 96

