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introduction to graphs and networks
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graphs: a simple model

• entities – set of vertices

• pairwise relations among vertices
– set of edges

• can add directions, weights,. . .

• graphs can be used to model many real
datasets
• people who are friends
• computers that are interconnected
• web pages that point to each other
• proteins that interact
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graph theory

• graph theory started in the 18th
century, with Leonhard Euler
• the problem of Königsberg bridges
• since then, graphs have been studied

extensively
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analysis of graph datasets in the past

• graphs datasets have been studied in the past
e.g., networks of highways, social networks
• usually these datasets were small
• visual inspection can reveal a lot of information
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analysis of graph datasets now

• more and larger networks appear
• products of technological advancement

• e.g., internet, web

• result of our ability to collect more, better-quality, and
more complex data
• e.g., gene regulatory networks

• networks of thousands, millions, or billions of nodes
• impossible to visualize
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the internet map
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types of networks

• social networks

• knowledge and information networks

• technology networks

• biological networks
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social networks

• links denote a social interaction
• networks of acquaintances
• collaboration networks

• actor networks
• co-authorship networks
• director networks

• phone-call networks
• e-mail networks
• IM networks
• sexual networks
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knowledge and information networks

• nodes store information, links
associate information
• citation network (directed

acyclic)
• the web (directed)
• peer-to-peer networks
• word networks
• networks of trust
• software graphs
• bluetooth networks
• home page/blog networks
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technological networks

• networks built for distribution of a commodity
• the internet, power grids, telephone networks
• airline networks, transportation networks
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US power grid
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biological networks

• biological systems represented as networks
• protein-protein interaction networks
• gene regulation networks
• gene co-expression networks
• metabolic pathways
• the food web
• neural networks
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photo-sharing site
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what is the underlying graph?

• nodes: photos, tags, users, groups, albums, sets,
collections, geo, query, . . .

• edges: upload, belong, tag, create, join, contact, friend,
family, comment, fave, search, click, . . .

• also many interesting induced graphs
• tag graph: based on photos
• tag graph: based on users
• user graph: based on favorites
• user graph: based on groups

• which graph to pick — not an easy choice
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recurring theme

• social media, user-generated content

• user interaction is composed by many atomic actions
• post, comment, like, mark, join, comment, fave,

thumps-up, . . .
• generates all kind of interesting graphs to mine
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now what?

• the world is full with networks

• what do we do with them?
• understand their topology and measure their properties
• study their evolution and dynamics
• create realistic models
• create algorithms that make use of the network structure
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concepts to study

• paths and connectivity

• path lengths and diameter — small-world phenomena

• degree distributions and degree correlations

• communities and clusters

• flows and cuts

• processes
• evolution, random walks, information cascades,

epidemics, . . .
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What we will see in this class?

• stochastic graph models
• Erdös-Rényi random graphs
• Preferential attachment
• Small world networks

• graph partitioning
• Cheeger’s inequality
• Spectral partitioning
• Every graph is essentially sparse
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Class projects
A list with a wide range of topics will be suggested to you in
the 3rd lecture. Some keywords and few words for now.
• Random graphs and models of real-world networks

• Erdös-Rényi
• scale-free
• highly optimized tolerance (HOT)
• random geometric graphs etc
• strategic network formation
• ...

• Random processes on static graphs (cascades, rumor
spreading, Moran process etc.)

• Evolving graphs
• Algorithmic issues related to graph partitioning

• Solving Laplacians in nearly linear time
• Max flows
• Graph sparsification
• Learning and graphs
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Administrivia

Grading

• 3 homeworks, 15%

• 2 exams, 30%+30%

• Project, 20%

Homework policy

• You may discuss the problems with other students but
you must write your solutions on your own and list your
collaborators.

• You may not search the Web for solutions.

• You may consult outside materials, but you must cite
your sources in your solutions.
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Administrivia

Textbook

• There is no required textbook.

• A suggested set of books available online and notes is
available in the class Web page. I will provide you with
lecture notes and slides. If you are interested in learning
more, you are urged to read the references therein.
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Administrivia

Projects will be consist of a project report and a presentation
in class.

• Students who work on theoretical computer
science/discrete mathematics are welcome to read a
paper and present it. In case that after you choose your
favorite paper you find it hard to understand, I will be
happy to discuss it with you beforehand.

• Students who do research in data mining are welcome to
conduct an experimental project. For the latter type of
projects, collaboration in groups of two is welcomed. If
you want to collaborate with more than one person,
please contact me first.
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empirical properties of graphs and networks
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Properties of real-world networks

diverse collections of graphs arising from different phenomena

are there typical patterns?

• static networks

1 heavy tails
2 clustering coefficients
3 communities
4 small diameters

• time-evolving networks

1 densification
2 shrinking diameters

• web graph

1 bow-tie structure
2 bipartite cliques
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Heavy tails
What do the proteins in our bodies, the Internet, a
cool collection of atoms and sexual networks have in
common? One man thinks he has the answer and it
is going to transform the way we view the world.

Scientist 2002

Albert-László Barabási
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Degree distribution

• Ck = number of vertices with degree k

• problem : find the probability distribution that fits best
the observed data
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Power-law degree distribution

• Ck = number of vertices with degree k , then

Ck = ck−γ

with γ > 1, or

ln Ck = ln c − γ ln k

• plotting ln Ck versus ln k gives a straight line with
slope −γ

• heavy-tail distribution : there is a non-negligible fraction
of nodes that has very high degree (hubs)

• scale free : average is not informative
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Power-law degree distribution

power-laws in a wide variety of networks ([Newman, 2003])
sheer contrast with Erdős-Rényi random graphs
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Power-law degree distribution

do the degrees follow a power-law distribution?

three problems with the initial studies

• graphs generated with traceroute sampling, which
produces power-law distributions, even for regular graphs
[Lakhina et al., 2003].

• methodological flaws in determining the exponent
see [Clauset et al., 2009] for a proper methodology

• other distributions could potentially fit the data better
but were not considered, e.g., lognormal.

disclaimer: we will be referring to these distributions as
heavy-tailed, avoiding a specific characterization
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Power-law degree distribution

• frequently, we hear about “scale-free networks”
correct term is networks with scale-free degree
distribution

all networks above have the same degree sequence but
structurally are very different (source [Li et al., 2005])
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Maximum degree

• for random graphs, the maximum degree is highly
concentrated around the average degree z

• for power-law graphs

dmax ≈ n1/(α−1)

• hand-waving argument: solve n Pr[X ≥ d ] = Θ(1)
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Heavy tails, eigenvalues

log-log plot of eigenvalues of the Internet graph in
decreasing order

again a power law emerges [Faloutsos et al., 1999]
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Heavy tails, triangles

• triangle distribution in flickr

• figure shows the count of nodes with k triangles vs. k in
log-log scale

• again, heavy tails emerge [Tsourakakis, 2008]
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Clustering coefficients

• a proposed measure to capture local clustering is the
graph transitivity

T (G ) =
3× number of triangles in the network

number of connected triples of vertices

• captures “transitivity of clustering”

• if u is connected to v and
v is connected to w , it is also likely that
u is connected to w
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Clustering coefficients

• alternative definition

• local clustering coefficient

Ci =
Number of triangles connected to vertex i

Number of triples centered at vertex i

• global clustering coefficient

C (G ) =
1

n

∑
i

Ci
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Community structure
loose definition of community: a set of vertices densely
connected to each other and sparsely connected to the rest of
the graph

artificial communities:
http://projects.skewed.de/graph-tool/
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Community structure

[Leskovec et al., 2009]

• study community structure in an extensive collection of
real-world networks

• authors introduce the network community profile plot

• it characterizes the best possible community over a range
of scales
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Community structure

dolphins network and its NCP
(source [Leskovec et al., 2009])
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Community structure

• do large-scale real-world networks have this nice artifical
structure? NO!

NCP of a DBLP graph (source [Leskovec et al., 2009])
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Community structure

important findings of [Leskovec et al., 2009]

1. up to a certain size k (k ∼ 100 vertices) there exist good
cuts

- as the size increases so does the quality of the community

2. at the size k we observe the best possible community

- such communities are typically connected to the
remainder with a single edge

3. above the size k the community quality decreases

- this is because they blend in and gradually disappear
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Small-world phenomena

small worlds : graphs with short paths

• Stanley Milgram (1933-1984)
“The man who shocked the world”

• obedience to authority (1963)

• small-World experiment (1967)

• we live in a small-world

• for criticism on the small-world experiment, see “Could It
Be a Big World After All? What the Milgram Papers in
the Yale Archives Reveal About the Original Small World
Study” by Judith Kleinfeld
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Small-world experiments

• letters were handed out to people in Nebraska to be sent
to a target in Boston

• people were instructed to pass on the letters to someone
they knew on first-name basis

• the letters that reached the destination (64 / 296)
followed paths of length around 6

• Six degrees of separation : (play of John Guare)

• also:
• the Kevin Bacon game
• the Erdős number

• small-World project:
http://smallworld.columbia.edu/index.html
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Small diameter

proposed measures

• diameter : largest shortest-path over all pairs.

• effective diameter : upper bound of the shortest path of
90% of the pairs of vertices.

• average shortest path : average of the shortest paths over
all pairs of vertices.

• characteristic path length : median of the shortest paths
over all pairs of vertices.

• hop-plots : plot of |Nh(u)|, the number of neighbors of u
at distance at most h, as a function of h
[Faloutsos et al., 1999].
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Other properties

• assortativity

• distribution of size of connected components

• distribution of motifs

• ...
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Time-evolving networks

J. Leskovec J. Kleinberg C. Faloutsos

[Leskovec et al., 2005]

• densification power law:

|Et | ∝ |Vt |α 1 ≤ α ≤ 2

• shrinking diameters: diameter is shrinking over time.
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Web graph

• the Web graph is a particularly important real-world
network

Few events in the history of computing have
wrought as profound an influence on society as
the advent and growth of the World Wide Web

[Kleinberg et al., 1999]

• vertices correspond to static web pages

• directed edge (i , j) models a link from page i to page j

• will discuss two structural properties of the web graph:

1. the bow-tie structure [Broder et al., 2000]
2. abundance of bipartite cliques

[Kleinberg et al., 1999, Kumar et al., 2000]
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Web is a bow-tie

(source [Broder et al., 2000])
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Bipartite subgraphs

• websites that are part of the same community frequently
do not reference one another

(competitive reasons, disagreements, ignorance)
[Kumar et al., 1999].

• similar websites are co-cited

• therefore, web communities are characterized by
dense directed bipartite subgraphs

(source [Kleinberg et al., 1999])
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