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4.1 Outline

In Lecture 2, we saw that we can use Markov’s Inequality to obtain probabilistic inequalities for higher order
moments. Specifically, we saw that if φ is a strictly monotonically increasing function, then

Pr [X ≥ t] = Pr [φ(X) ≥ φ(t)] ≤ E [φ(X)]
φ(t)

.

For instance, for φ(x) = x2 we obtained Chebyshev’s inequality.

Theorem 4.1 (Chebyshev’s Inequality) Let X be any random variable. Then,

Pr [|X − E [X] | ≥ t] ≤ Var [X]
t2

.

Chebyshev’s inequality tells us that the random variable X takes value E [X]+O(λVar [X]) with probability
1− O(λ−2). This means that the tail of the probability distribution decays as O(λ−2). In numerous cases,
we are able to get control of higher moments of the variable X. So we may ask, whether we can use this
to get better tail estimates. Today, we are going to discuss the exponential moment method which results
in deriving the famous Chernoff bounds. The typical setting we are going to deal with is when the random
variable is the sum of random variables which are either jointly independent or negatively associated or
“almost” independent, in the sense that there may be dependencies but they will be weak. We are going to
focus typically on integer-valued, non-negative variables in the context of our class, but keep in mind that
these results apply to other settings as well. For instance, there exist Chernoff bounds for complex-valued
random variables. Furthermore, in this and the next lectures we are going to see applications of probabilistic
tools on random graphs. Finally, since almost all of you who are registered in this class are computer
scientists, it is worth noting that these tools come up very often in the analysis of randomized algorithms.
See for instance, see the classic book of Motwani-Raghavan [Motwani and Raghavan, 2010]. We will also see
an example in Section 4.3.4.

4.2 Exponential Moment Method

In the place of φ above, we will use the exponential function. Specifically, let t > 0, λ ∈ R. Then, we obtain

Pr [X ≥ λ] = Pr
[
etX ≥ etλ

]
≤

E
[
etX

]
etλ

,

and
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Pr [X ≤ −λ] = Pr
[
e−tX ≥ etλ

]
≤

E
[
e−tX

]
etλ

.

The core idea of Chernoff bounds is to set t to a value that minimizes the right-hand side probabilities.
Sometimes, we may choose sub-optimal values of t in order to get simpler bounds that will still be good
enough for our purposes. The function MX(t) = E

[
etX

]
has a special name since it is an important function.

So let’s define it so that we can frequently refer to it.

Definition 4.2 (Moment Generating Function) The function t 7→ E
[
etX

]
is known as the moment

generating function (mgf) of X.

It is called like this since by the Taylor series for the exponential

E
[
etX

]
= 1 + tE [X] +

t2

2!
E

[
X2

]
+ . . . +

tn

n!
E [Xn] + . . .

we see that all moments of X appear. Specifically, if we take the n-th derivative of MX(t) and set t = 0,
then we see that E [Xn] = M

(n)
X (0). There is a technicality here: we assumed that we can exchange the

operands of expectation and differentiation. In general, this is valid when the moment generating function
exists in a neighborhood of zero. A well-known distribution whose moment generating function takes infinite
values for all t 6= 0 is the Cauchy distribution with density f(x) = 1

π
1

1+x2 . In the cases we are going to see
in this class, the following assumption is going to hold and therefore we can safely exchange the operands of
expectation and differentiation.

Assumption: Throughout this class, we will assume that the mgf exists in the sense that there exists a
positive number b > 0 such that MX(t) is finite for all |t| < b.

Two more facts which are useful to keep in mind about mgfs follow.

Fact 1: The moment generating function uniquely defined the distribution. Speficially, let X, Y be two
random variables. If MX(t) = MY (t) for all t ∈ (−δ, δ) for some δ > 0 then X, Y have the same distribution.

Fact 2: Let’s assume that X, Y are two independent random variables. Then the mgf MX+Y (t) of the
random variables X+Y is MX(t)MY (t). Since the proof is one line, let’s see why this is true. The only things
we need to use are definitions and the fact that etX , etY are independent.

MX+Y (t) = E
[
et(X+Y )

]
= E

[
etXetY

]
= E

[
etX

]
E

[
etY

]
= MX(t)MY (t).

Example: Let’s compute the mgf of the binomial Bin(n, p). The binomial is the sum of n independent
Bernoulli random variables with parameter p, i.e., if X ∼ Bin(n, p), then X = X1 + . . . + Xn where
Xi ∼ Bernoulli(p) for all i. The mgf of such a variable is E

[
etX1

]
= pet + (1 − p). By fact 2, the mgf of

X is MX(t) = (pet + (1− p))n.

Exercise: Work out the mgfs of the following two discrete probability distributions: the Poisson distribution
with parameter λ and the geometric distribution with parameter p.

The following theorem shows the way we apply the exponential moment method.

Theorem 4.3 Let Xi for 1 ≤ i ≤ n be jointly independent random variables with Pr [Xi = 1] = Pr [Xi = −1] =
1
2 . Let Sn =

∑n
i=1 Xi and α > 0. Then
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Pr [|Sn| > α] < 2e−
α2

2n .

Proof: By symmetry it suffices to prove that Pr [Sn > α] < e−
α2

2n . Let t > 0 be arbitrary. For 1 ≤ i ≤ n

E
[
etXi

]
=

et + e−t

2
= cosh(t).

Since cosh(t) ≤ et2/2, see Lemma 4.4, for all t > 0 we obtain the following valid inequality:

E
[
etSn

]
=

n∏
i=1

E
[
etXi

]
= (cosh(t))n ≤ ent2/2.

Therefore, by the exponential moment method we obtain

Pr [Sn > α] ≤ ent2/2−tα.

Setting t = α
n to minimize the right-hand side we get

Pr [Sn > α] < e−
α2

2n .

Lemma 4.4 For all t > 0

cosh(t) ≤ et2/2.

Proof: We will compare the Taylor expansions of the two hand-sides. By the definition of cosh(t) and the
Taylor expansion for et we get

cosh(t) =
et + e−t

2
=

+∞∑
i=0

t2i

(2i)!
,

since the odd terms of the Taylor expansions for the exponentials cancel out, and the even terms get multiplied
by 2 and then divided by 2. Check it. The Taylor expansion for the right-hand side is

et2/2 =
+∞∑
i=0

(t2/2)i

i!
=

+∞∑
i=0

t2i

2ii!
.

It is easy now to check that the inequality is true. Notice that for all i ≥ 1

(2i)! = (2i)(2i− 1) . . . (i + 1)× i . . . 1 ≥ 2ii!.
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One can use the exponential moment method to derive the following useful Chernoff bounds, stated as facts.
In the next homework you will have the chance to practice the exponential moment method.

Theorem 4.5 (Chernoff bound for Bin(n, p)) For any 0 ≤ t ≤ np

Pr [|Bin(n, p)− np| > t] < 2e
− t2

3np .

For t > np

Pr [|Bin(n, p)− np| > t] < Pr [|Bin(n, p)− np| > np] < 2e−
np
3 .

For all t

Pr [|Bin(n, p)− np| > t] < 2 exp
(
− np

(
(1 +

t

np
) ln(1 +

t

np
)− t

np

))
.

Let’s prove another Chernoff-type bound for a random variable Sn that is the sum of the n jointly independent
random variables X1, . . . , Xn. We will assume that Xis are bounded. Despite the strong assumptions we
make, what we will derive is a very useful bound. We will start by proving the following lemma.

Lemma 4.6 Let X be a random variable with |X| ≤ 1, E [X] = 0. Then for any |t| ≤ 1 the following holds:

MX(t) ≤ et2Var[X].

Proof: Given that |tX| ≤ 1 the inequality etX ≤ 1 + tX + (tX)2 holds. By the linearity of expectation and
the fact that E [tX] = tE [X] = 0 we obtain

E
[
etX

]
≤ 1 + t2E

[
X2

]
= 1 + t2Var [X] ≤ et2Var[X].

Theorem 4.7 (Chernoff for bounded variables) Assume that X1, . . . , Xn are jointly independent ran-
dom variables where |Xi − E [Xi] | ≤ 1 for all i. Let Sn =

∑n
i=1 Xi and σ =

√
Var [Sn] be the standard

deviation of Sn. Then for any λ > 0

Pr [|Sn − E [Sn] | ≥ λσ] ≤ 2 max
(
e−λ2/4, e−λσ/2

)
.

Proof: Without loss of generality we may assume that E [Xi] = 0 since if not we can subtract a constant
from each of the Xis and normalize. Observe that by symmetry it suffices to prove Pr [Sn ≥ λσ] ≤ e−

tλσ
2

where t = min
(

λ
2σ , 1

)
. Applying the exponential moment method and by taking into account the joint

independence of Xis,
∑n

i=1 Var [Xi] = σ2 and the previous lemma we obtain
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Pr [X ≥ λσ] ≤ e−tλσ
n∏

i=1

E
[
etXi

]
≤ e−tλσ

n∏
i=1

et2Var[Xi] = e−tλσ+t2σ2
.

Since t ≤ λ/(2σ), the proof is complete.

Finally, a bound due to Hoeffding which is also known as Chernoff bound or Chernoff-Hoeffding bound is
the following. Again, we make the same assumptions, namely Sn = X1 + . . . + Xn where Xis are jointly
independent and bounded.

Theorem 4.8 (Chernoff-Hoeffding bound) Suppose ai ≤ Xi ≤ bi for i = 1, . . . , n. Then for all t > 0

Pr [Sn ≥ E [Sn] + t] ≤ e
− 2t2Pn

i=1(bi−ai)
2 ,

and

Pr [Sn ≤ E [Sn]− t] ≤ e
− 2t2Pn

i=1(bi−ai)
2
.

Combining them we get that

Pr [|Sn − E [Sn] | ≥ t] ≤ 2e
− 2t2Pn

i=1(bi−ai)
2
.

4.3 Applications

Before we see two applications of Chernoff bound on random graphs in Sections 4.3.2, 4.3.3 let’s see what we
have gained with Chernoff bounds over the first and second moment method for a coin tossing experiment
in Section 4.3.1. We also see an application of Chernoff bounds in the analysis of a simple randomized
algorithm in Section 4.3.4.

4.3.1 Coin tossing

Let’s assume we have a fair coin which we toss n times. We count how many times heads appeared. Clearly
the number of heads Sn in n experiments follows the binomial distribution with parameters n and p = 1

2 .
In expectation we will see heads n/2 times, i.e., E [Sn] = n

2 . The variance of Sn is equal to n times the
variance of each toss given that the tosses are made independently. Therefore, Var [Sn] = n 1

2

(
1− 1

2

)
. Now,

let’s compute the probability that what we observe in our experiment deviates from the expectation by a
multiplicative factor of 0 < δ < 1.

By Markov’s inequality we obtain that Pr [Sn ≥ (1 + δ)E [Sn]] ≤ 1
1+δ . Similarly, we can bound the proba-

bility Pr [Sn ≤ (1− δ)E [Sn]] ≤ 1
1+δ since n−Sn is also distributed binomially with the same parameters as

Sn. Therefore, Markov’s inequality results in

Pr [|Sn − E [Sn] | ≥ δE [Sn]] ≤ 2
1 + δ

.
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Chebyshev’s inequality results in

Pr [|Sn − E [Sn] | ≥ δE [Sn]] ≤ Var [Sn]
δ2E [Sn]2

=
1

δ2n
.

Finally, Chernoff’s bound for the binomial results in the following

Pr [|Sn − E [Sn] | ≥ δE [Sn]] ≤ 2e−δ2E[Sn]/3 = 2e−δ2n/6.

Notice that the tail decays exponentially fast in n.

4.3.2 Maximum and minimum degree

We use the standard graph-theoretic notation: δ(G) = minimum degree in G and ∆(G) = maximum degree
in G.

Theorem 4.9 (a) If p = c
n for some constant c > 0 then ∆(G(n, p)) = O( log n

log log n ) whp . (b) If np =
ω(n) log n for some slowly growing function ω(n) → +∞ as n → +∞ then δ(G(n, p)) = ∆(G(n, p)) ∼ np
whp .

Proof: (a) Let k = log n
log log n−2 log log log n . By substituting the value of k in the expression k log k and the fact

that when x is small then 1
1−x = 1 + x + O(x2) is a good approximation, it is easy to check that

k log k ≥ log n

log log n
(log log n + log log log n + o(1)).

Let’s use the first moment method and the union bound to prove that whp there exists no vertex in G(n, p)
with degree greater than k.

Pr [∃v : d(v) ≥ k] ≤ n

(
n− 1

k

)
pk ≤ exp

(
log n− k log k + O(k)

)
= o(1).

(b) We apply the union bound and the Chernoff bound with ε = ω(n)−1/3.

Pr [∃v : |d(v)− (n− 1)p| ≥ εp(n− 1)] ≤ n2e−ε2np/3 = 2n1−ω1/3(n)
3 = o(1).

Exercise: In Theorem 4.9(a) we proved that whp there is no degree greater than a constant fraction of
log n

log log n . Prove by using the second moment method that there exist vertices with degree log n
log log n+2 log log log n .

By combining the two results you see that the maximum degree for this range of p is Θ( log n
log log n ).
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4.3.3 Diameter

Theorem 4.10 Let d ≥ 2 be a fixed integer. Suppose c > 0 and pdnd−1 = ln n2

c . Then whp diam(G(n, p)) ≥
d.

Proof: Let’s define for v ∈ V (G) the set Nk(v) to be the set of vertices whose distance is exactly k from v.
Namely, let

Nk(v) = {w : d(v, w) = k}.

We will show that whp for 0 ≤ k < d, the k-th neighborhood of v is o(n). Notice that since d is a
constant, we have at least one witness (actually a huge number of witnesses, namely (1 − o(1))n) that
the diameter is at least d whp . Specifically, we will prove that |Nk(v)| ≤ (2np)k whp . Notice that
|Nk(v)| ∼ Bin]

(
n−

∑k−1
i=0 |Ni(v)|, 1− (1−p)|Nk−1(v)|

)
. Let’s define event Ai = {|Ni(v)| ≤ (2np)i} for each i

and condition on A1, . . . ,Ak−1. Then the number of neighbors of v k steps away is distributed binomially as
|Nk(v)| ∼ Bin(ν, q) where ν < n and q = 1− (1− p)|Nk−1(v)| ≤ p|Nk−1(v)|. Given what we have conditioned
on, q ≤ p(2pn)k−1. Notice that q < 1 given that p satisfies pdnd−1 = ln n2

c and k < d. The conditional
expectation is

E [|Nk(v)||A1, . . . ,Ak−1] = νq ≤ np|Nk−1(v)|.

Now we use the Chernoff bound for the binomial to upper bound the probability of the bad eventAk|A1, . . . ,Ak−1.
Namely,

Pr
[
|Nk(v)| ≥ (2np)k|A1, . . . ,Ak−1

]
≤ Pr

[
Bin(n, p|Nk−1(v)|) ≥ (2np)k|Ak−1

]
≤ Pr

[
Bin(n, p(2np)k−1) ≥ (2np)k|Ak−1

]
≤ e−

nkpk2k−1

3

= o(n−2).

Therefore, the claim follows by observing that

Pr
[
∪d−1

k=0Nk(v) = [n]
]
≤

d−1∑
k=1

Pr
[
Āk|A1, . . . ,Ak−1

]
= o(n−2).

For the sake of completeness and in order to see how parameter c affects the diameter, it is worth mentioning
the following theorem.

Theorem 4.11 Let d ≥ 2 be a fixed integer. Suppose c > 0 and pdnd−1 = ln n2

c . Then with probability e−c/2

the diameter is d and with the remaining probability 1− e−c/2 the diameter is d + 1.
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Figure 4.1: Joel Spencer proved his favorite result [Spencer, 1985] known as “six standard deviations suffice”
while being in the audience of a talk.

4.3.4 Discrepancy

Consider a set system, a.k.a. hypergraph, (V,F) where V = [n] is the ground set and F = {A1, . . . , Am}
where Ai ⊆ V . We wish to color the ground set V with two colors, say red and blue, in such way that
all sets in the family are colored in a “balanced” way, i.e., each set has nearly the same number of red
and blue points. As it can be seen from the family F = 2[n] this is not possible, since by the pidgeonhole
principle at least one color will appear at least n/2 times and all the possible subsets of those points will
be monochromatic. We formalize the above ideas immediately. It shall be convenient to use in the place of
red/blue colorings, the coloring

χ : V → {−1,+1}.

For any A ⊆ V define

χ(A) =
∑
i∈A

χ(i).

Define the discrepancy of F with respect to χ by

discχ(F) = max
Ai∈F

|χ(Ai)|.

The discrepancy of F is

disc(F) = min
χ

discχ(F).

It is worth outlining that the discrepancy can be defined in a linear algebraic way. Specifically, let A be the
m× n incidence matrix of F . Then,

disc(F) = min
x∈{−1,+1}

||Ax||+∞.

Let’s prove the next theorem by applying union and Chernoff bounds.
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Theorem 4.12
disc(F) ≤

√
2n log (2m).

Proof: Select a coloring χ uniformly at random from the set of all possible random colorings. Let us call Ai

bad if its discrepancy exceeds t =
√

2n log 2m. Applying the Chernoff-Hoeffding bound for set Ai we obtain:

Pr [Ai is bad] = Pr [|χ(Ai)| > t] < 2 exp
(
− t2

2|Ai|

)
≤ 2 exp

(
− t2

2n

)
=

1
m

.

Using a simple union bound we see that

Pr [disc(F) > t] = Pr [∃ bad Ai] < m× 1
m

.

Theorem 4.12 serves as our basis for a randomized algorithm that succeeds with as high probability as we
want. Let t =

√
2n log 2m. Since the probability of obtaining a coloring that gives discrepancy larger than t

is less than 1√
m

, we can boost the success probability by repeating the random coloring k times. The failure
probability is at most 1

mk/2 . Assume m = n. We have proved that the discrepancy is O(
√

n log n). Again,
for the sake of completeness, a famous result of Joel Spencer states that disc(F ) = O(

√
n).
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