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Abstract

The Geometry of Divisors on Matroids

by

Christopher Whan Eur

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor David Eisenbud, Chair

Matroids are combinatorial abstractions of hyperplane arrangements, and have been a
bridge for fruitful interactions between combinatorics and algebraic geometry. In partic-
ular, the recent development of the Hodge theory of matroids in [AHK18] showed that
the Chow ring of a matroid satisfies properties enjoyed by cohomology rings of smooth
complex projective varieties. Namely, these are the Poincaré duality property, the hard
Lefschetz property, and the Hodge-Riemann relations. The validity of these properties
resolved several major conjectures in matroid theory.

In this thesis, we introduce a presentation of the Chow ring of a matroid by a new set of
generators, called "simplicial generators." These generators are analogous to nef divisors
on projective toric varieties, and admit a combinatorial interpretation via the theory of
matroid quotients. Using this combinatorial interpretation, we (i) produce a bijection
between a monomial basis of the Chow ring and a relative generalization of Schubert
matroids, (ii) recover the Poincaré duality property, (iii) give a formula for the volume
polynomial, which we show is log-concave in the positive orthant, and (iv) recover the
validity of Hodge-Riemann relations in degree 1, which is the part of the Hodge theory
of matroids that currently accounts for all combinatorial applications of [AHK18]. Our
work avoids the use of "flips," which is the key technical tool employed in [AHK18]. We
also apply the tools developed here to study two particular divisor classes motivated by
the geometry of wonderful compactifications of hyperplane arrangement complements.
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Chapter 1

Introduction

"It is as if one were to condense all trends of present day mathematics onto
a single finite structure, a feat that anyone would a priori deem impossible,
were it not for the fact that matroids do exist."

– Gian-Carlo Rota, Foreword in [Kun86].

Matroids are combinatorial objects that capture the essence of linear independence.
Because they admit diverse interpretations, matroids appear throughout mathematics.
For example, matroids arise as graphs in discrete mathematics and as diminishing-return
functions in optimization. In particular, the interpretation of matroids as hyperplane
arrangements has led to fruitful interactions between algebraic geometry and matroid
theory. A notable example is the development of the Hodge theory of matroids [AHK18],
a breakthrough that resolved many long-standing conjectures in matroid theory.

The central object in the Hodge theory of matroids is the Chow ring A•(M) of a
matroid M, which can be considered as a matroid theoretic analogue of the cohomology
ring of a smooth manifold. The authors of [AHK18] showed that the Chow ring A•(M)
satisfies properties enjoyed by the cohomology rings of smooth complex projective vari-
eties. Namely, these are the Poincaré duality property, the hard Lefschetz property, and
the Hodge-Riemann relations, which together form the "Kähler package." The validity
of these properties for Chow rings of matroids has far-reaching implications, including
resolutions of major conjectures in matroid theory and applications to computer science
[Huh18a; HW17; HSW18; AOV18].

We present a new approach to studying Chow rings of matroids. The key idea behind
our approach is to establish combinatorial counterparts of two particular phenomena
in algebraic geometry. The two phenomena are described in §1.1, along with tables
summarizing their combinatorial counterparts. While we apply this idea only in the
context of Chow rings of matroids in this thesis, we speculate that our approach will be
useful in contexts of other combinatorial analogues of Hodge theory.



CHAPTER 1. INTRODUCTION 2

In Chapter 2, we review tropical intersection theory, which is a suitable language for
establishing combinatorial counterparts of the two geometric phenomena, and review
relevant notions about Chow rings of matroids. We assume no knowledge of tropical
geometry, but assume familiarity with the fundamentals of matroid theory. A brief
account of matroids can be found in Appendix A.

In Chapter 3, we illuminate some structural properties of Chow rings of matroids via
the theory of matroid quotients. The key result here is that under a new presentation
of the Chow ring of a matroid, the variables now carry a combinatorial meaning as an
operation in matroid theory known as principal truncations (Theorem 3.2.3).

In Chapter 4, we use our structural understanding of Chow rings of matroids from
the previous chapter to recover the Poincaré duality property for Chow rings of matroids.
Unlike its proof in [AHK18], our proof is not inductive.

In Chapter 5, we give a formula for volume polynomials of Chow rings of matroids,
and we further show that the volume polynomials are log-concave by showing that they
are Lorentzian in the sense of [BH19].

In Chapter 6, we give a simplified proof of the combinatorially relevant portion of the
Hodge theory of matroids in [AHK18]. Our proof avoids using a technical tool called
"flips" in [AHK18]. Thus, in contrast to the proof in [AHK18], our proof involves only
classical Bergman fans associated to matroids and takes the form of a single induction
instead of a double induction.

In Chapter 7, we study the properties of some geometrically distinguished divisors on
a matroid M, motivated by the geometry of wonderful compactifications of hyperplane
arrangement complements.

Chapters 2 through 6 are reproduced from [BES19], whereas Chapter 7 is all new.

1.1 Two motivating geometric phenomena
The first phenomenon is a simple observation.

Phenomenon I. Let X be a projective variety whose Chow ring A•(X) is well-understood.
More precisely, suppose that A•(X) is generated by the degree one elements A1(X), and
suppose further that we have a distinguished collection of base-point-free divisor classes
ζ1, . . . , ζs ∈ A1(X) that generate A1(X). Let Y ⊂ X be a subvariety whose Chow ring
A•(Y) is an interest of study. If the pullback map A•(X)→ A•(Y) is surjective, then1

A•(Y) ' A•(X)/ ann([Y]) where ann([Y]) := {ξ ∈ A•(X) | ξ · [Y] = 0}.
1Technically, one needs few additional assumptions on X and Y for the relation to hold. In our case,

we may assume that rational and numerical equivalence coincide for these varieties, which is a feature
shared by all varieties that inspire the combinatorics of this thesis. See the first footnote in §2.1.
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In other words, the principal ideal 〈[Y]〉 of A•(X), considered as a ring with the multi-
plication ξ[Y] · ξ ′[Y] = (ξ · ξ ′)[Y], is naturally isomorphic to the Chow ring A•(Y). Thus,
the study of A•(Y) reduces to the study of intersection products of Y with divisor classes
ζ1, . . . , ζs, and moreover, these intersection classes can be described by hyperplane pull-
backs of the maps |ζi| : Y → Pmi (which exist because ζ1, . . . , ζs are base-point-free).

Because base-point-free divisors are nef, and because the pullbacks of nef divisor
classes along closed embeddings are again nef, this first observation is particularly useful
in conjunction with the following second phenomenon.

Phenomenon II (Inequalities of Hodge type). [Laz04, §1.6.A] Let ζ1, . . . , ζs ∈ A1(X) be
nef divisor classes on a smooth projective variety X of dimension d. Let

∫
X : Ad(X)→ Z

be the degree map, and consider the polynomial vol(t) ∈ Z[t1, . . . , ts] defined by

vol(t1, . . . , ts) :=
∫

X
(t1ζ1 + · · ·+ tsζs)

d.

Then the polynomial vol(t), as a real-valued function on Rs, is nonnegative on the or-
thant Rs

≥0, and its logarithm, as a function log vol : Rs
≥0 → R∪ {−∞}, is concave.

Objects in Phenomenon I Their counterparts for a matroid M on {0, . . . , n}

The variety X and its Chow ring
A•(X) that is well-understood.

The braid fan ΣAn and its Chow cohomology ring
A•(ΣAn). Equivalently, its toric variety XAn also
known as the permutohedral variety, and A•(XAn).

The distinguished base-point-free
divisor classes ζ1, . . . , ζs of A1(X).

Divisor classes hS ∈ A1(ΣAn), one for each nonempty
subset S of {0, . . . , n}, corresponding to (negative)
standard simplices in Rn+1.

The subvariety Y ⊂ X of interest. The Bergman fan ΣM of M, a subfan of ΣAn .
When M has a realization R(M), the wonderful com-
pactification YR(M) ⊂ XAn .

The Chow ring A•(Y) of Y. The Chow ring A•(M) of M, which is the Chow co-
homology ring A•(ΣM) of ΣM.
When M has a realization R(M), the Chow ring
A•(YR(M)) of YR(M).

The algebraic cycle [Y] ∈ A•(X). The Bergman class ∆M ∈ MW•(ΣAn) of M, which is
a Minkowski weight on ΣAn .
When M has a realization R(M), the algebraic cycle
[YR(M)] ∈ A•(XAn).

Table 1.1: Combinatorial counterparts of the objects in Phenomenon I
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Features in Phenomenon I Their counterparts for a matroid M on {0, . . . , n}

If A•(X) � A•(Y), then one has an
isomorphism

A•(Y) ' A•(X)/ ann([Y]).

(Theorem 4.2.1) By construction there is a surjection
ι∗M : A•(ΣAn)� A•(M), and we establish2

A•(M) ' A•(ΣAn)/ ann(∆M).

The properties of A•(Y) are thus de-
termined by how ζ1, . . . , ζs "inter-
sect" Y.

(Theorem 3.3.8) A monomial basis in the images of
hS’s under ι∗M acquires a combinatorial interpretation
as "relative nested quotients" of M.

If further ζi is base-point-free, then
the product ζi · [Y] can be described
as a hyperplane section of a map
Y → Pm.

(Theorem 3.2.3) The cap product hS ∩ ∆M can be de-
scribed as a principal matroid truncation of M, an
operation in matroid theory that models intersecting
a hyperplane with a linear subspace.

Table 1.2: Combinatorial counterparts of geometric features in Phenomenon I

Features in Phenomenon II Their counterparts for a matroid M on {0, . . . , n} of
rank d + 1

The polynomial vol(t) is positive on
the positive orthant Rs

>0.
In particular, every term has non-
negative coefficients.

(Theorem 5.2.4) Let {S1, . . . , Sd} be a multiset of
nonempty subsets of {0, . . . , n}, then∫

M
hS1(M) · · · hSd(M) = 1 or 0,

and the value is 1 if rkM(
⋃

j∈J Sj) ≥ |J|+ 1 for every
∅ ( J ⊆ {1, . . . , d}, and 0 otherwise.

The polynomial vol(t) is log-concave
on the positive orthant.

(Theorem 5.3.1) The polynomial VP∇M(t) is Lorent-
zian in the sense of [BH19], and hence log-concave
on its positive orthant.

Table 1.3: Combinatorial counterparts of features in Phenomenon II

2Such isomorphism fails in general for a surjection of Chow cohomology rings of fans A•(Σ) �
A•(Σ′). See [MS15, Example 6.7.13] for an example.



5

Chapter 2

Tropical intersection theory

In this chapter, we set up the language of tropical intersection theory, and review
relevant background materials on Chow rings of matroids. While these notions originate
in toric geometry, whose connection to tropical geometry is given in [FS97], familiarity
with toric or tropical geometry can be helpful but not necessary. As references we point
to [Ful93] and [CLS11] for toric geometry, and to [FS97], [MS15, Chapter 6], and [AHK18,
§4–§5] for tropical geometry.

In §2.1, we describe Chow cohomology rings and Minkowski weights of fans, and in
§2.2, we illustrate these notions in the setting of matroids. These first two sections are
purely combinatorial. In §2.3, we provide the underlying geometric picture that moti-
vates many of the combinatorial constructions, but this section is not logically necessary
for future chapters except the last Chapter 7.

2.1 Chow cohomology rings and Minkowski weights
We give a brief account of Chow cohomology rings and Minkowski weights of smooth

fans, which are combinatorial analogues of cohomology rings and homology classes of
algebraic varieties1.

We set the following notations and definitions for rational fans over a lattice.

• Let N be a lattice of rank n, and N∨ the dual lattice. We write NR := N ⊗Z R.

• For Σ ⊂ NR a rational fan, let Σ(k) be the set of k-dimensional cones of Σ.
1We use real coefficients for Chow cohomology rings and Minkowski weights, although Chow rings of

algebraic varieties initially take intrgral coefficients. The algebraic varieties that motivate the constructions
here—smooth complete toric varieties and wonderful compactifications—share the feature that the Chow
ring, the integral cohomology ring, and the ring of algebraic cycles modulo numerical equivalence all
coincide [EH16, Appendix C.3.4]. Hence, not much is lost by tensoring with R. In this paper, while most
of our arguments work over Z, we will always work over R for convenience.
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• For a ray ρ ∈ Σ(1), write uρ ∈ N for the primitive ray vector that generates ρ ∩ N.

• A fan Σ is smooth if, for all cones σ of Σ, the set of primitive ray vectors of σ can be
extended to a basis of N. A smooth fan is simplicial in that every k-dimensional
cone is generated by k rays.

• A fan Σ is said to be complete if its support |Σ| is equal to NR.

Convention. Throughout this section, we assume that Σ ⊂ NR is a smooth fan of dimen-
sion d, not necessarily complete.

Definition 2.1.1. The Chow cohomology ring A•(Σ) of Σ is a graded R-algebra

A•(Σ) :=
R[xρ : ρ ∈ Σ(1)]〈

∏ρ∈S xρ

∣∣∣ S ⊆ Σ(1) do not form a cone in Σ
〉
+
〈

∑ρ m(uρ)xρ

∣∣∣ m ∈ N∨
〉 .

Geometrically, the ring A•(Σ) is the Chow ring A•(XΣ) of the toric variety XΣ asso-
ciated to the fan Σ. See [Dan78, §10.1] for the case where Σ is complete, and [BDP90] or
[Bri96] for the general case. From this geometric description of A•(Σ), or directly from
the algebraic definition above, one can check that A`(Σ) = 0 unless 0 ≤ ` ≤ d.

We call a linear combination of the variables xρ a divisor on Σ because geometrically
it corresponds to torus-invariant divisors of XΣ. Divisors of special interest in algebraic
geometry are nef and ample divisors. They have the following combinatorial description
for a complete fan Σ (equivalently, a complete toric variety XΣ).

A divisor D = ∑ρ∈Σ(1) cρxρ on a complete fan Σ defines a piecewise-linear function
ϕD : NR → R, determined by being linear on each cone of Σ with ϕD(uρ) = cρ. We
say that D is a nef divisor if ϕD is a convex function on NR, that is, ϕD(u) + ϕD(u′) ≥
ϕ(u + u′) for all u, u′ ∈ NR. If further the inequalities ϕD(u) + ϕD(u′) ≥ ϕ(u + u′) are
strict whenever u and u′ are not in a common cone of Σ, we say that D is ample. Nef
(resp. ample) divisors on Σ correspond to polytopes in N∨R whose outer normal fans
coarsen (resp. equal) Σ.

Theorem 2.1.2. [CLS11, Theorems 6.1.5–6.1.7] Let Σ be a smooth complete fan. A nef
divisor D = ∑ρ∈Σ(1) cρxρ on Σ defines a polytope PD ⊂ N∨R by

PD := {m ∈ N∨R | m(uρ) ≤ cρ ∀ρ ∈ Σ(1)},

whose outer normal fan coarsens Σ. Conversely, such polytope P ⊂ N∨R defines a nef
divisor

DP := ∑
ρ∈Σ(1)

max{m(uρ) | m ∈ P}xρ.

A nef divisor D is ample if the outer normal fan of PD is equal to Σ.
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A divisor D defines an element [D] ∈ A1(Σ), which we call the divisor class (of D)
on Σ. We say that a divisor class ζ ∈ A1(Σ) is nef (resp. ample) if any divisor D such
that [D] = ζ is nef (resp. ample). This is well-defined because two divisors D and D′

define the same divisor class if and only if ϕD − ϕD′ is a linear function on NR. In terms
of polytopes, two nef divisors D and D′ define the same divisor class in if and only if
PD and PD′ are parallel translates.

Remark 2.1.3. We note that any nef divisor class [D] ∈ A1(Σ) is effective; that is, it can
be written as non-negative linear combination D = ∑ρ∈Σ(1) cρxρ (with cρ ≥ 0 ∀ρ ∈ Σ(1)).
This is an immediate consequence of Theorem 2.1.2: Given a nef divisor D, translating if
necessary one can assume that the polytope PD contains the origin in its relative interior.

With A•(Σ) as an analogue of a cohomology ring, we now describe an analogue of a
homology group.

Definition 2.1.4. An `-dimensional Minkowski weight on Σ is a function ∆ : Σ(`)→ R

such that for each τ ∈ Σ(`− 1), the function ∆ satisfies the balancing condition

∑
τ≺σ

∆(σ)uσ\τ ∈ spanR(τ),

where σ \ τ denotes the unique ray of an `-dimensional cone σ that is not in τ. The
support of ∆, denoted |∆|, is the union of cones σ ∈ Σ(`) such that ∆(σ) 6= 0. We write
MW`(Σ) for the group (under addition) of `-dimensional Minkowski weights on Σ.

The groups of Minkowski weights are analogues of homology groups because they
are dual to the Chow cohomology ring in the following way.

Lemma 2.1.5. [MS15, Theorem 6.7.5]2 For 0 ≤ ` ≤ d, we have an isomorphism

tΣ : MW`(Σ)
∼→ Hom(A`(Σ), Z), determined by ∆ 7→

(
(∏ρ∈σ(1) xρ) 7→ ∆(σ)

)
.

This isomorphism is an analogue of the Kronecker duality map in algebraic topology.
We use it to define combinatorial analogues of some standard operations in algebraic
topology.

Let us define the cap product by

Ak(Σ)×MW`(Σ)→ MW`−k(Σ), (ξ, ∆) 7→ ξ ∩ ∆ :=
(

σ 7→ (tΣ∆)(ξ ·∏ρ∈σ(1) xρ)
)

,

which makes MW•(Σ) a graded A•(Σ)-module. When Σ satisfies MWd(Σ) ' R, the
fundamental class ∆Σ is defined as its generator (unique up to scaling), and the cap
product with the fundamental class defines the map

δΣ : A•(Σ)→ MWd−•(Σ), ξ 7→ ξ ∩ ∆Σ.
2Currently [MS15, Theorem 6.7.5] has a typo—it is missing Hom(·, Z). The statement here was made

implicitly in [Ful+95], and follows the notation of [AHK18, Proposition 5.6].
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In particular, noting that MW0(Σ) = R, the degree map is defined as∫
Σ

: Ad(Σ)→ R, ξ 7→ ξ ∩ ∆Σ.

If Σ is complete, one can check that MWn(Σ) ' R, where the fundamental class ∆Σ
is ∆Σ(σ) = 1 ∀σ ∈ Σ(n). In this case, we have the following analogue of the Poincaré
duality theorem in algebraic topology.

Theorem 2.1.6. [FS97, Theorem 3.1, Proposition 4.1.(b), Theorem 4.2] For Σ a smooth
complete fan, the cap product with the fundamental class ∆Σ

δΣ : Ak(Σ) ∼→ MWn−k(Σ), ξ 7→ ξ ∩ ∆Σ

is an isomorphism for each 0 ≤ k ≤ n. Equivalently (by Lemma 2.1.5), the pairing

Ak(Σ)× An−k(Σ)→ R, (α, β) 7→
∫

Σ
αβ

is non-degenerate for each 0 ≤ k ≤ n.

These isomorphisms make MW•(Σ) =
⊕n

i=0 MWi(Σ) into a graded ring when Σ is
complete. We write MW•(Σ) := MWn−•(Σ) for this graded ring. The resulting multipli-
cation structure on the Minkowski weights is known as the stable intersection, denoted3

∩st, in tropical geometry. We will only need a special case of stable intersections, which
we provide explicitly in the context of matroids in §3.1 (Proposition 3.1.8).

We will need the following explicit description of the map δΣ : A1(Σ) ∼→ MWn−1(Σ)
for nef divisor classes on a complete fan Σ. It is familiar to tropical geometers as the
description of tropical hypersurfaces [MS15, Proposition 3.3.2 & Theorem 6.7.7].

Proposition 2.1.7. Let D be a nef divisor on Σ, and PD the corresponding polytope
whose outer normal fan ΣPD coarsens Σ. Then the Minkowski weight ∆PD := δΣ([D]) ∈
MWn−1(Σ) given by Theorem 2.1.6 is defined by

∆PD(τ) =

{
`(PD(σ)) if ∃ σ ∈ ΣPD(n− 1) with |τ| ⊆ |σ|
0 otherwise

for each τ ∈ Σ(n− 1),

where PD(σ) is the edge of PD corresponding to the cone σ ∈ ΣQ(n− 1), and `(PD(σ))
is its lattice length, i.e. the number of lattice points on PD(σ) minus one.

We end this subsection by noting the functoriality of the constructions here. An
inclusion of fans ι : Σ′ ↪→ Σ defines the pullback map ι∗, which is a surjective map of
graded rings

ι∗ : A•(Σ)� A•(Σ′), xρ 7→
{

xρ if ρ ∈ Σ′(1)
0 otherwise.

3It may help to note the suggestiveness of the notations here—we have ξ ∩ ∆ = δΣ(ξ) ∩st ∆.



CHAPTER 2. TROPICAL INTERSECTION THEORY 9

Comparing the presentations of A•(Σ) and A•(Σ′), one checks easily that this map
coincides with the quotient of A•(Σ) by the ideal 〈xρ | ρ ∈ Σ(1) \ Σ′(1)〉 ⊂ A•(Σ).
Dually, a Minkowski weight ∆′ on Σ′ is naturally a Minkowski weight on Σ. In this case
we often abuse the notation and write ∆′ for both Minkowski weights.

Remark 2.1.8. Unraveling the definitions, one checks that the cap product is functorial
in the following sense: The pullback map ι∗ : A•(Σ) → A•(Σ′) makes MW•(Σ′) into a
A•(Σ)-module. Explicitly, if ξ ∈ A•(Σ) and ∆′ ∈ MW`(Σ′), then ι∗ξ ∩∆′ = ξ ∩∆′, where
∆′ on the right hand side is considered as a Minkowski weight on Σ.

2.2 Bergman classes and Chow rings of matroids
We now specialize our discussion to matroids. We begin with the braid fan, on which

matroids will arise as certain Minkowski weights.

First, we fix some notations. Let E := {0, 1, . . . , n}, and for a subset S ⊆ E write
eS := ∑i∈S ei, where e0, . . . , en is the standard basis of ZE. Let N be the lattice N =
ZE/ZeE, and write uS for the image of eS in N. The dual lattice of N is N∨ = (ZeE)

⊥ =
{(y0, . . . , yn) ∈ ZE | ∑n

i=0 yi = 0}.
The braid fan (of dimension n), denoted ΣAn , is the outer normal fan of the standard

permutohedron (of dimension n), which is the polytope

Πn := Conv(w(0, 1, . . . , n) ∈ RE | all permutations w of E).

Concretely, the braid fan ΣAn is a complete fan in NR whose cones are Cone(uS1 , . . . , uSk) ⊂
NR, one for each chain of nonempty proper subsets ∅ ( S1 ( · · · ( Sk ( E. In particular,
the primitive rays of ΣAn are {uS | ∅ ( S ( E}. This fan is also known as the Coxeter
complex of the type A root system, hence the notation ΣAn .

Matroids will arise as certain Minkowski weights on ΣAn . We assume familiarity
with the basics of matroids, and refer to [Wel76; Oxl11] as general references. We fix the
following notation for matroids: We write Ur,E for the uniform matroid of rank r on E,
and we set a matroid M to have

• ground set E = {0, 1, . . . , n},
• B(M) the set of bases of M,

• rkM the rank function of M, or simply rk when the matroid in question is clear,

• LM the lattice of flats of M, which we also use to denote the set of flats,

• A(M) the set of atoms of LM, that is, the flats of rank 1,

• clM(S) the closure of a subset S ⊆ E, that is, the smallest flat of M containing S,

• Q(M) the base polytope of M, which is the polytope Conv(eB | B ∈ B(M)) ⊂ RE.
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Matroids define elements of MW•(ΣAn) in the following way. For the underlying
geometry and a reason for the loopless condition for matroids here, see Theorem 2.3.1
and the discussion above it.

Proposition 2.2.1. Let M be a loopless matroid M of rank r = d + 1.

(1) [MS15, Theorem 4.4.5] A function ∆M : ΣAn(d)→ R defined by

∆M(Cone(uS1 , . . . , uSd)) =

{
1 if S1, . . . , Sd are flats of M
0 otherwise

for each chain of nonempty proper subsets ∅ ( S1 ( · · · ( Sk ( E is a d-
dimensional Minkowski weight on ΣAn .

(2) [AHK18, Proposition 5.2] Let ΣM be the smooth fan structure on the support
|∆M| inherited from ΣAn . In other words, ΣM is a subfan of ΣAn whose cones
are Cone(uF1 , . . . , uFk) ⊂ NR, one for each chain of nonempty proper flats ∅ (
F1 ( · · · ( Fk ( E of M. Then the Bergman class ∆M is the unique d-dimensional
Minkowski weight on ΣM (up to scaling).

Definition 2.2.2. With notations as in Proposition 2.2.1 above, we call the Minkowski
weight ∆M the Bergman class of M, and we call the fan ΣM the Bergman fan4 of M.

We will need the following description of supports of Bergman classes in Chapter 3.

Lemma 2.2.3. [MS15, Corollary 4.2.11] Let M be a loopless matroid, and Q(M) its base
polytope. The support |∆M| of its Bergman class is equal to the union of cones σ in the
outer normal fan of Q(M) satisfying the following condition: The corresponding face
Q(M)(σ) of σ is a base polytope of a loopless matroid.

The Chow ring of a matroid is defined as the Chow cohomology ring of its Bergman
fan. Explicitly, we have the following.

Definition 2.2.4. The Chow ring of a loopless matroid M is the graded ring

A•(M) := A•(ΣM) =
R[xF : F ∈ LM \ {∅, E}]

〈xFxF′ | F, F′ incomparable〉+ 〈∑F⊇a xF −∑G⊇b xG | a, b ∈ A(M)〉 .

We call linear combinations of the variables xF divisors on M, and the elements of A1(M)
divisor classes on M. The divisor class of ∑F⊇a xF for any atom a ∈ A(M) is called the
hyperplane class of M, and is denoted α(M).

4We remark that some define the Bergman fan of M as a coarser smooth fan structure on the support
|ΣM|. A smooth fan structure on |ΣM| that coarsens ΣM correspond to a choice of a building set on the
lattice of flats LM [AK06; FS05]. Here we will always take the smooth fan structure for ΣM as a subfan of
ΣAn .
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Remark 2.2.5. The ring A•(M) was first studied in [FY04] under a slightly different
presentation, which for clarity is denoted A•FY(M) and is given as

A•FY(M) :=
R[zF : F ∈ LM \ {∅}]

〈zFzF′ | F, F′ incomparable〉+ 〈∑F⊇a zF| a ∈ A(M)〉 .

That is, we have xF = zF for every nonempty proper flat F ∈ LM, and zE = −α. As both
presentataions A•(M) and A•FY(M) are relevant for us, we will use the variable names
x, z in a consistent manner; for example, in the summation ∑F⊇F′ xF it is implied that
F ( E, whereas ∑F⊇F′ zF includes zE as a summand.

Since MW(ΣM) ' R by Proposition 2.2.1.(2), with the Bergman class as the funda-
mental class, the Chow ring of a matroid M has the degree map

∫
M : Ad(ΣM) → R,

defined by the cap product ξ 7→ ξ ∩ ∆M. Explicitly, it is determined by∫
M

xF1 xF2 · · · xFd = 1 for every maximal chain F1 ( · · · ( Fd in LM \ {∅, E}.

Note that the braid fan ΣAn is the Bergman fan of the Boolean matroid U|E|,E, and
its fundamental class ∆ΣAn

is the Bergman class of U|E|,E. We will thus always identify
A•(ΣAn) = A•(U|E|,E).

We end this subsection with a discussion of nef and ample divisors on the brain fan,
and the resulting analogous notions for Bergman fans. The following characterization
of nef divisors on ΣAn , which is a specialization of Theorem 2.1.2, was recognized in
various works [Edm70; Mur03; Pos09; AA17]; for a modern treatment and generalization
to arbitrary Coxeter root systems we point to [Ard+20].

Proposition 2.2.6. The following are equivalent for a divisor D = ∑∅(S(E cSxS ∈ A1(ΣAn).

(1) D is a nef divisor on ΣAn ,

(2) the function c(·) : 2E → R satisfies the submodular property

cA + cB ≥ cA∪B + cA∩B for every A, B ⊆ E where c∅ = cE = 0,

(3) the normal fan of the polytope PD = {m ∈ N∨R | m(uS) ≤ cS ∀∅ ( S ( E} coarsens
ΣAn ,

(4) every edge of PD is parallel to ei − ej for some i 6= j ∈ E.

Remark 2.2.7. Often the polytope PD is constructed in an affine translate of N∨R in RE, for
which the presentation A•FY(ΣAn) is useful. Given a submodular function c(·) : 2E → Z

with c∅ = 0 but cE possibly nonzero, the generalized permutohedron associated to c(·)
is the polytope

P(c) := {y ∈ (RE)∨ | y(eE) = cE and y(eS) ≤ cS ∀∅ ( S ( [n]}.
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This polytope lives in the translate of N∨R where the points have coordinate sum cE. One
translates P(c) to N∨R as follows. Fix an element i ∈ E. We have

P(c)− cEei = {m ∈ N∨R | m(uS) ≤ cS − cEα
(i)
S ∀S} ⊂ N∨R

where α
(i)
S = 1 if i ∈ S and 0 otherwise. Since the divisor class of ∑∅(S(E α

(i)
S xS is the

hyperplane class α in A1(U|E|,E) = A1(ΣAn), the nef divisor class that the polytope P(c)
corresponds to is

−cEα + ∑
∅(S(E

cSxS = ∑
∅(S⊆E

cSzS.

The notion of nef and ample divisors on a matroid is inherited from the braid fan.
First, note that for a loopless matroid M, the inclusion of fans ιM : ΣM ↪→ ΣAn induces
the pullback map

ι∗M : A•(ΣAn)→ A•(M), defined by xS 7→
{

xS if S ( E is a flat of M
0 otherwise.

When we wish to clarify whether a variable xS is an element of A•(M) or A•(ΣAn), we
write

xS(M) := ι∗MxS,

in which case xS is considered as an element of A•(ΣAn) and xS(M) of A•(M).

The pullback map motivates the following notions regarding divisors on M. We say
that a divisor (class) on M is combinatorially nef if it is a pullback of a nef divisor
(class) on ΣAn . A combinatorially ample divisor (class) is defined in a likewise manner.
Explicitly, a divisor ∑F∈LM\{∅,E} cF · xF(M) is combinatorially nef (resp. ample) if there
exists a function a(·) : 2E → Z with a∅ = aE = 0 such that aF = cF for all flats F ∈ LM
and

aA + aB ≥ aA∪B + aA∩B for every A, B ⊆ E
(resp. with strict inequality whenever A, B incomparable).

Combinatorially nef (resp. ample) divisor classes on M are closed under nonnega-
tive linear combinations, since nef (resp. ample) divisor classes on complete fans are in
general. We thus let K M (resp. KM) be the cone in A1(M) of combinatorially nef (resp.
ample) divisor classes on M, called the combinatorially nef (resp. ample) cone of M.

Remark 2.2.8. It follows from Remark 2.1.3 that a combinatorially nef divisor class [D] ∈
A1(M) is effective; that is, it can be written as D = ∑F cFxF where cF ≥ 0 for all
F ∈ LM \ {∅, E}.
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2.3 The geometry of matroids via wonderful
compactifications

We provide the underlying algebraic geometry of the combinatorial constructions in
the previous two subsections §2.1 and §2.2. While this section is not logically necessary
for future chapters except Chapter 7, it may provide helpful motivation for geometrically
oriented readers.

We begin by sketching how Minkowski weights arise as Chow homology classes. Let
TN ' (k∗)n be the algebraic torus of a lattice N over an algebraically closed field k, and
let Y̊ be an `-dimensional subvariety of TN. An operation in tropical geometry called
tropicalization assigns to Y̊ a pure `-dimensional polyhedral complex in NR, denoted
trop(Y̊), with a weight function on the `-dimensional cells, such that any smooth fan
structure Σ′ on the support of trop(Y̊) defines a Minkowski weight on Σ′. Let us denote
this Minkowski weight by ∆Σ′(trop(Y̊)).

For any complete fan Σ ⊂ NR containing Σ′ as a subfan, let Y be the closure of
Y̊ in the toric variety XΣ, and let [Y] be the class of Y in the Chow ring A•(XΣ).
Then, under mild assumptions, the isomorphism δΣ : A•(XΣ)

∼→ MWn−•(Σ) of The-
orem 2.1.6 satisfies δΣ([Y]) = ∆Σ′(trop(Y̊)). In other words, the Minkowski weight
∆Σ′(trop(Y̊)) can be considered as the Chow homology class of the variety Y in XΣ.
Furthermore, if [Y1] and [Y2] are two such Chow homology classes, then δΣ([Y1] · [Y2]) =
∆Σ′(trop(Y̊1)) ∩st ∆Σ′(trop(Y̊2)), the latter being the stable intersection5 of ∆Σ′(trop(Y̊1))
and ∆Σ′(trop(Y̊2)). See [MS15, §6.4 & §6.7] for proofs and further details.

Matroids arise in this context by setting Y̊ to be linear subvarieties. Let us now
describe this in detail, and describe the connection to Bergman classes and Chow rings
of matroids.

Let M be a loopless matroid on E of rank r = d + 1 realizable over a field k, which
we may assume to be algebraically closed. A realization R(M) of M consists of any of
the following equivalent pieces of data:

• a list of vectors E = {v0, . . . , vn} spanning a k-vector space V ' k
r,

• a surjection k
n+1 � V where ei 7→ vi, or

• an injection PV∗ ↪→ Pn
k

, dualizing the surjection k
n+1 � V.

5A sketch of the definition of stable intersections of Minkowski weights, reminiscent of the moving
lemma in intersection theory, is as follows. Considering Minkowski weights as weighted polyhedral
complexes in NR, generically translate the Minkowski weights an ε > 0 amount, so that all the resulting
weighted cones intersect transversally, and then take the limit of these transversal intersections as ε → 0.
See [FS97], [MS15, §3.6 & §6.7], or [JY16] for details
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For a realization R(M) of M with PV∗ ↪→ Pn, the coordinate hyperplanes of Pn in-
tersect with PV∗ to give the associated hyperplane arrangement AR(M) on PV∗, which
is encoded by the flats of M in the following way. For each nonempty flat F of M, let LF
be a linear subspace of V∗ defined by

LF := { f ∈ V∗ | f (vi) = 0 ∀vi ∈ F},

and let PLF be the linear subvariety of PV∗. The hyperplanes of AR(M) are {PLa}a∈A(M)
corresponding to the atoms, and more generally, a flat F of rank c corresponds to the
c-codimensional linear subvariety PLF.

We denote by Y̊R(M) the hyperplane arrangement complement PV∗ \ ⋃AR(M). It
is a linear subvariety of an algebraic torus in the following way. The algebraic torus
TN = (k∗)n+1/k∗ of the lattice N = Zn+1/Z(1, 1, . . . , 1) is the complement of the union
of coordinate hyperplanes in Pn, and hence Y̊R(M) is the intersection of PV∗ with TN.

Theorem 2.3.1 below relates the linear subvariety Y̊R(M) ⊂ TN to the Bergman class
of M via tropicalization. Note that if M had loops, then PV∗ is contained in a coordinate
hyperplane of Pn, so that Y̊R(M) is empty, hence our loopless assumption for M.

Theorem 2.3.1. [MS15, Theorem 4.1.11] Let R(M) be a realization of a loopless matroid
M, and let Y̊R(M) be the associated hyperplane arrangement complement. Then the
support of trop(Y̊R(M)) equals the support of the Bergman fan ∆M, and hence we have

∆ΣAn
(Y̊R(M)) = ∆M.

In other words, the Bergman class ∆M corresponds to the Chow homology class of the
closure YR(M) of Y̊R(M) in the toric variety XΣAn

of the braid fan ΣAn . The variety YR(M)
is called the wonderful compactification of the hyperplane arrangement complement
Y̊R(M).

Remark 2.3.2. The wonderful compactification YR(M) can be described in two equivalent
ways [DP95, §3.2].

(1) The variety YR(M) is obtained as a series of blow-ups on PV∗ by the following
process: First blow-up the points {PLF}rk(F)=rk(E)−1, then blow-up the strict trans-
forms of the lines {PLF}rk(F)=rk(E)−2, and continue until having blown-up strict
transforms of {PLF}rk(F)=1. We denote by πR(M) : YR(M) → PV∗ be the blow-
down map.

(2) For each nonempty flat F of M, the projection away from the linear subvariety
PLF ⊂ PV∗ is a rational map PV∗ 99K P(V∗/LF). The variety YR(M) then is the
(closure of) the graph of the rational map

PV∗ 99K ∏
F∈LM\{∅}

P(V∗/LF).
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When Un+1,n+1 is realized as the standard basis of kn+1, the associated wonderful
compactification is the toric variety XΣAn

of the braid fan. It is obtained from Pn by
blowing up the coordinate points, then the (strict transforms of) coordinate lines, and
so forth. Let us write πAn : XΣAn

→ Pn for the blow-down map. Then for a realization
PV∗ ↪→ Pn of a loopless matroid M, Remark 2.3.2.(1) above expresses the wonderful
compactification YR(M) as the strict transform of PV∗ ⊂ Pn under the sequence of blow-
ups πAn . In other words, we have a diagram

YR(M)
� � ιM //

πR(M)

��

XΣAn

πAn
��

PV∗ �
� // Pn.

The boundary of YR(M) \ Y̊R(M) consists of the exceptional divisors EF obtained by blow-
ing up (strict transforms of) PLF. These divisors have simple-normal-crossings [DP95],
and consequently the intersection theory of the boundary divisors of YR(M) is encoded
in the matroid. More precisely, the Chow ring A•(YR(M)) of the variety YR(M) is isomor-
phic to the Chow cohomology ring A•(M) of the Bergman fan of M [FY04, Corollary
2].

Remark 2.3.3. We note the following geometric observations about the presentation

A•(YR(M)) ' A•(M) =
R[xF : F ∈ LM \ {∅, E}]

〈xFxF′ | F, F′ incomparable〉+ 〈∑F⊇a xF −∑G⊇b xG | a, b ∈ A(M)〉 .

(1) The variables xF correspond to the exceptional divisors EF obtained by blowing up
(strict transforms of) PLF.

(2) The quadric relations xFxF′ = 0 reflect that two exceptional divisors from blowing
up two non-intersecting linear subspaces do not intersect.

(3) The linear relations defining A•(M) reflect that for any atom a ∈ A(M), we have
−zE = α(M) = ∑F⊇a xF = π∗R(M)h where h = c1(OPV∗(1)) is the hyperplane class
of PV∗.

(4) Under A•(YR(M)) ' A•(M) and A•(XΣAn
) ' A•(ΣAn), the pullback map ι∗M :

A•(XΣAn
) → A•(YR(M)) along the closed embedding ιM : YR(M) ↪→ XΣAn

is the
pullback map of Chow cohomology rings of ΣM and ΣAn induced by the inclusion
of fans ΣM ↪→ ΣAn .

(5) A divisor class D ∈ A1(M) is an combinatorially ample (nef) if and only if there
exists an ample (nef) divisor class L on XAn such that ι∗ML = D. Combinatorially
ample (nef) divisors are ample (nef) on the variety YR(M).
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Remark 2.3.4 (Relation to Phenomenon I). The toric variety XΣAn
is also called the per-

mutohedral variety (of dimension n). The geometry and the combinatorics of the permu-
tohedral variety have been widely studied in various contexts including moduli spaces
[LM00; BB11], convex optimization [Edm70; Mur03], Hopf monoids [DF10; AA17], and
lattice polyhedra [PRW08; Pos09].

In our case, the variety XΣAn
plays the role of "the variety whose Chow ring has been

well-studied" in Phenomenon I, and the wonderful compactification YR(M) plays the role
of "the subvariety Y whose Chow ring is an interest of study." Moreover, since we have
a surjection A•(XΣAn

) � A•(M) ' A•(YR(M)), we have an isomorphism A•(YR(M)) '
A•(XΣAn

)/ ann([YR(M)]). We will realize this isomorphism combinatorially in §4.2 as
Theorem 4.2.1.



17

Chapter 3

The simplicial presentation and its
monomials

We now introduce the main object of study: a new presentation of the Chow ring
of a matroid which we call the simplicial presentation A•∇(M) of A•(M). While alge-
braically this involves only an upper triangular linear change of variables, its geometric
and combinatorial implications are far-reaching as we will see in subsequent chapters.

After a combinatorial preparation in §3.1, we introduce the simplicial presentation
in §3.2 and show that its variables correspond to a matroid operation called principal
truncations. In §3.3, we extend this correspondence to establish a combinatorial inter-
pretation of a monomial basis of the Chow ring of a matroid.

3.1 Matroid quotients, principal truncations, and matroid
intersections

We first prepare by reviewing the relevant combinatorial notions. We point to [Oxl11,
§7] and [Ham17, §2.3] for further details.

Let M and M′ be matroids on a common ground set E.

Definition 3.1.1. The matroid M′ is a (matroid) quotient of M, written f : M′ � M, if
any every flat of M′ is also a flat of M. In particular, if M and M′ are loopless, then
f : M′ � M if and only if ΣM′ ⊆ ΣM.

Example 3.1.2. Any matroid on ground set E is a quotient of the Boolean matroid U|E|,E.
Any Bergman fan of a loopless matroid is a subfan of the braid fan.

Example 3.1.3 (Realizable matroid quotients). Matroid quotients model linear surjections
(dually, linear injections) in the following way. Let M and M′ have realizations by k

E �
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V and k
E � V′ (respectively). Then having a commuting diagram

k
E V

k
E V′

or dually,

PE
k

PV∗

PE
k

PV′∗

implies that M′ is a matroid quotient of M. Matroid quotients M′ � M arising in this
way are called realizable matroid quotients. A matroid quotient M′ � M with M′ and
M both realizable over a same field need not be realizable (for an example, see [BGW03,
§1.7.5]).

For a matroid quotient f : M′ � M, the f -nullity of a subset A ⊆ E is defined to be

n f (A) := rkM(A)− rkM′(A).

We say that M′ is an elementary (matroid) quotient of M if n f (E) = 1, or equivalently
if rk(M′) = rk(M)− 1. An elementary quotient of M corresponds to a modular cut K
of M, which is a nonempty collection of flats K ⊂ LM satisfying

1. if F1 ∈ K and F1 ⊂ F2, then F2 ∈ K, and

2. if F1, F2 ∈ K and rkM(F1) + rkM(F2) = rkM(F1 ∪ F2) + rkM(F1 ∩ F2), then F1 ∩ F2 ∈
K.

A modular cut K of M defines an elementary quotient M′ � M by

LM′ := {F ∈ LM : F is not covered by an element of K} ∪K.

Conversely, given an elementary quotient f : M′ � M, one recovers the modular cut K
of M defining the elementary quotient by

K = {F ∈ LM′ : n f (F) = 1}.

We write M′
K
� M to denote an elementary quotient of M given by a modular cut K.

Example 3.1.4. Let M have a realization k
E � V. For K a modular cut of M, let vK be a

general vector1 in
⋂

F∈K span
k
(F). Dually, with the notation as in §2.3, we have a general

hyperplane HK = { f ∈ V∗ | f (vK) = 0} in V∗ containing
⋃

F∈K LF. Let us consider the
commuting diagram

k
E V

k
E V/ span

k
(vK)

or dually,

PE
k

PV∗

PE
k

PHK.
1For vK to be sufficiently general and nonzero, the field k must be large enough (let us assume infinite),

and the elementary matroid quotient defined by the modular cut K must be realizable.
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The map k
E � V/ span

k
(vK) is a realization of the matroid M′ of the elementary quo-

tient M′
K
� M defined by K. Dually, with the notation as in §2.3, the associated hyper-

plane arrangement AR(M′) is the intersection of PHK with the coordinate hyperplanes
in PE

k
. Equivalently, the hyperplane arrangement AR(M′) is the intersection of PHK with

the hyperplanes in the hyperplane arrangementAR(M) under the inclusion PHK ⊂ PV∗.

Of particular interest in our case is when K is the interval [F, E] ⊂ LM, since an
interval in LM is always a modular cut. We call the resulting elementary quotient,
denoted TF(M), the principal truncation of M associated to the flat F. We note an
explicit description of principal truncations.

Proposition 3.1.5. [Oxl11, Exercise 7.2.4.] The principal truncation TF(M) of a matroid
M associated to a nonempty flat F ∈ LM has bases

B(TF(M)) = {B \ f such that B ∈ B(M) and f ∈ B ∩ F 6= ∅},

and the flats of TF(M) partition into two sets LTF(M) = K t L according to their f -
nullities by

K = {G ∈ LTF(M) | n f (G) = 1} = {G ∈ LM | F ⊆ G},
L = {G ∈ LTF(M) | n f (G) = 0} = {G ∈ LM | G not covered by an element in [F, E]}.

Remark 3.1.6. In Example 3.1.4, if K = [F, E] for some flat F, then we can set vK = vF,
a general vector in span

k
(F), and dually, we can set HK = HF, a general hyperplane in

V∗ containing LF.

We end our combinatorial preparation by illustrating the relevance of matroid quo-
tients to Minkowski weights on braid fans via the notion of matroid intersections.

Definition 3.1.7. The matroid intersection of two matroids M and N on a common
ground set E is a new matroid M ∧ N on E whose spanning sets S(M ∧ N) are {S ∩
S′ | S ∈ S(M), S′ ∈ S(N)}.

The matroid M ∧ N is a matroid quotient of both M and N. Matroid intersection
behaves well in relation to Minkowski weights in the following way. Recall that the
isomorphism A•(ΣAn) ' MWn−•(ΣAn) of Theorem 2.1.6 makes MWn−•(ΣAn) into a
graded ring, with multiplication called the stable intersection ∩st. The following propo-
sition states that stable intersections of Bergman classes are Bergman classes of matroid
intersections.

Proposition 3.1.8. [Spe08, Theorem 4.11], [Ham17, Remark 2.31] Let M and N be two
matroids on a common ground set E, and let ∆M and ∆N be their Bergman classes, which
are Minkowski weights on ΣAn . Then we have

∆M ∩st ∆N =

{
∆M∧N if M ∧ N is loopless
0 otherwise.
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3.2 The variables of the simplicial presentation
We now define a new presentation A•∇(M) of the Chow ring of a matroid M, and

discuss its first properties. The key result here is that the variables of A•∇(M) correspond
to principal truncations of M.

We prepare by noting a distinguished set of nef divisors on ΣAn and their polytopes
considered in [Pos09]. For a nonempty subset S of E, denote by

∇S := Conv(−ei | i ∈ S) ⊂ RE

the negative standard simplex of S. As the edges of ∇S are parallel translates of ei − ej
for i 6= j ∈ S, Proposition 2.2.6 (in the form of Remark 2.2.7) implies that∇S is a polytope
with the corresponding nef divisor

hS := − ∑
S⊆T

zT ∈ A•FY(ΣAn).

These divisors were considered in [Pos09]2 and implicitly in [Ham17]. We now consider
the presentation of A•(M) given by pullbacks of these nef divisors of (negative) standard
simplices. For M a loopless matroid on E, and ∅ 6= S ⊆ E, denote hS(M) := ι∗MhS. If
F = clM(S) is the smallest flat containing S, note that we have

hS(M) := ι∗MhS = − ∑
S⊆T

zT(M) = − ∑
F⊆G∈LM

zG(M) = ι∗MhF, (3.1)

as zT(M) = ι∗MzT = 0 for all T ⊆ E not a flat of M. By construction, the elements
hF(M) ∈ A1(M) are (combinatorially) nef divisor classes on M. We will simply write hF
for hF(M) when there is no confusion.

Definition 3.2.1. For M a loopless matroid on E, the simplicial presentation A•∇(M) of
the Chow ring of M is the presentation of A•(M) whose generators are {hF}F∈LM\{∅}
where

hF := − ∑
F⊆G

zG ∈ A•FY(M).

The variable h here stands for “hyperplane"; for the geometric origin of the simplicial
presentation see Remark 3.2.6. The linear change of variables from {zF}F∈LM\{∅} to
{hF}F∈LM\{∅} is evidently invertible, given by an upper triangular matrix. Explicitly, by
Möbius inversion we have

− zF = ∑
F⊆G

µ(F, G)hG (3.2)

2We note a minor difference that in [Pos09] the author uses yS to denote the nef divisor of the standard
simplex of S instead of the negative standard simplex.
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where µ is the Möbius function on the lattice LM. Thus, the explicit presentation of
A•∇(M) is

A•∇(M) := R[hF : F ∈ LM \ {∅}] / (I + J)

where

I = 〈ha : a ∈ A(M)〉 and

J =

〈(
∑

F⊆G
µ(F, G)hG

)(
∑

F′⊆G′
µ(F′, G′)hG′

)
: F, F′ incomparable

〉
.

Denote by L ≥2
M the set of flats of M of rank at least 2. Noting that ha = 0 ∈ A•∇(M) for

any atom a ∈ A(M), we define {hF | F ∈ L ≥2
M } to be the simplicial generators of the

Chow ring of M. They form a basis of A1
∇(M).

Remark 3.2.2. When the matroid M is the cyclic matroid of the complete graph Kn−1 on
n − 1 vertices, the Chow ring of M is the cohomology ring of the Deligne-Knudson-
Mumford space M0,n of rational curves with n marked points [DP95, §4.3], [MS15,
Theorem 6.4.12]. In this case, after suitable modifications3 the simplicial presentation
recovers the Etingof-Henriques-Kamnitzer-Rains-Singh presentation of the cohomology
ring ofM0,n [Eti+10; Sin04]. In this presentation, the author of [Dot19] showed that the
cohomology ring of M0,n is Koszul because it has a quadratic Gröbner basis. In the
classical presentation, the Chow ring of any matroid with rank > 3 has no quadratic
Gröbner basis.

The following theorem, which relates the variables of the simplicial presentation
to principal truncations, is the key property of the simplicial presentation that we use
throughout this paper.

Theorem 3.2.3. Let M be a loopless matroid on E, and S a nonempty subset of E. Denote
by HS be the matroid whoses bases are B(HS) = {E \ i : i ∈ E}, and write F for
the smallest flat of M containing S. Then HS ∧ M = TF(M), and the nef divisor class
hS ∈ A1

∇(ΣAn) satisfies

hS ∩ ∆M =

{
∆TF(M) if rkM(S) > 1
0 otherwise.

The theorem will follow mostly from the following lemma.

Lemma 3.2.4. Let M be a loopless matroid on E, and S a nonempty subset of E. Denote
by HS be the matroid whoses bases are B(HS) = {E \ i : i ∈ E}, and write F for the
smallest flat of M containing S. Then we have

HS ∧M = TF(M),
3One uses the minimal building set instead of the maximal building set.
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and hence we have

∆HF ∩st ∆M =

{
∆TF(M) if rkM(F) > 1
0 otherwise.

Proof. A matroid is loopless if and only if the emptyset ∅ is a flat, and by Proposi-
tion 3.1.5, the matroid TF(M) is thus loopless if and only if ∅ is not covered by an
element in the interval [F, E]. This happens if and only if rkM(F) > 1, and hence the
second statement follows from the first by Proposition 3.1.8.

By definition of HS ∧M, the minimal elements in the set of spanning sets S(HF ∧M)
are B \ i where B ∈ B(M) and i ∈ B ∩ S 6= ∅. Since minimal spanning sets are bases, we
have

B(HS ∧M) = {B \ i such that B ∈ B(M), i ∈ B ∩ S 6= ∅}.
When S = F, this is the description of the bases of TF(M) in Proposition 3.1.5, so it
remains to show HS ∧M = HF ∧M. Evidently, we have B(HS ∧M) ⊆ B(HF ∧M) since
S ⊆ F. For the other inclusion, suppose we have a basis B \ f of HF ∧M where B ∈ B(M)
and f ∈ B ∩ F 6= ∅. Note that rkM((B \ f ) ∪ S) = rkM((B \ f ) ∪ F) = rkM(E), where the
first equality follows from F being the closure of S. Since B \ f is independent in M, we
thus conclude that there exists an element s ∈ S such that (B \ f ) ∪ s is a basis of M, so
that B \ f is a basis of HS ∧M also.

Proof of Theorem 3.2.3. Let δΣAn
: A•(ΣAn)

∼→ MWn−•(ΣAn) be the isomorphism map in
Theorem 2.1.6. We claim that δΣAn

(hS) = ∆HS , which is proved in Lemma 3.2.5 below.
Our desired statement then follows immediately from Lemma 3.2.4, since hS ∩ ∆M =
(δΣAn

(hS)) ∩st ∆M by definition of stable intersection ∩st.

Lemma 3.2.5. Let δΣAn
: A•(ΣAn)

∼→ MWn−•(ΣAn) be the isomorphism map in Theo-
rem 2.1.6. Then we have

δΣAn
(hS) = ∆HS

Proof. We claim that the support |∆HS | of ∆HS is equal to the support of the (n − 1)-
skeleton of the outer normal fan of negative standard simplex ∇S. If this is the case,
then Proposition 2.1.7 implies δΣAn

(hS) = ∆HS because all the edges of the negative
standard simplex ∇S has lattice length 1.

Now, for the claim, note first that the translate ∇S + eE of ∇S is Conv(eE\i | i ∈ S) ⊂
RE, which is equal to the base polytope Q(HS) of HS. Since every face of Q(HS), except
for the vertices, are base polytopes of loopless matroids, by Lemma 2.2.3 the support of
|∆HS | equals the support of the (n− 1)-dimensional skeleton of the outer normal fan of
∇S.

Theorem 3.2.3 encodes the combinatorics of the following geometric motivation for
the simplicial presentation.
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Remark 3.2.6. We recall the following standard fact in algebraic geometry. Let L ⊂ V∗ be
an inclusion of vector spaces, so that PL is a linear subvariety of PV∗. Let X = BlPL PV∗

be the blow-up of PV∗ along PL, which is also the graph of the rational map PV∗ 99K
P(V∗/L), and let π : X → PV∗ be the blow-down map. Denote by h = c1(OPn(1))
the hyperplane class, and by E the exceptional divisor of the blow-up. Then the map
BlPL PV∗ → P(V∗/L) corresponds to the linear series |OX(π

∗h− E)|, so the sections of
the line bundle OX(π

∗h− E) correspond to the hyperplanes in PV∗ that contain PL.
Now, suppose M has a realization R(M) over an algebraically closed field k as

PV∗ ↪→ Pn, and let notations be as in §2.3. The geometry of A•(YR(M)) ' A•(M)
in Remark 2.3.3 implies

hF = ∑
G⊇F
−zG = −zE − ∑

G⊇F
xG = π∗R(M)h− ∑

G⊇F
EG,

and hence hF represents the divisor class of the strict transform of a general hyperplane
in PV∗ containing the linear subvariety PLF. Thus multiplying by hF corresponds to
intersecting by a general hyperplane in PV∗ containing PLF, which corresponds to the
principal truncation TF(M) by Example 3.1.4 (in the form of Remark 3.1.6). More pre-
cisely, we have hF · [YR(M)] = [YR(TF(M))] ∈ A•(XΣAn

). Theorem 3.2.3 is the combinatorial
generalization of this geometric observation.

Remark 3.2.7 (cf. Phenomenon I). Suppose M has a realization R(M) by PV∗ ↪→ Pn.
By the second description in Remark 2.3.2.(2), the wonderful compactification YR(M) is
embedded in the product of projective spaces ∏F∈LM\{∅}P(V∗/LF). We described hF
as a divisor class represented by the strict transform of a general hyperplane in PV∗

containing PLF in the previous Remark 3.2.6. Alternatively, the variable hF thus repre-
sents the base-point-free divisor obtained as the hyperplane class pullback of the map
YR(M) → P(V∗/LF). In particular, the divisor classes hS ∈ A•(XΣAn

) play the role of
"distinguished base-point-free divisor classes" in Phenomenon I, and their intersection
product with [YR(M)] can be described by their hyperplane pullbacks, which we have
interpreted combinatorially as principal truncations.

Remark 3.2.8. In the classical presentation A•(ΣAn), the cap product xS ∩ ∆M is almost
never a Bergman class of a matroid—it is a Minkowski weight that usually has negative
weights on some cones. This reflects the geometry that the divisor xS is effective but
usually not nef.

Notation. Let us fix a notation for the rest of the paper: For a nonempty subset S ⊆ E,
we denote by HS the matroid with bases

B(HS) := {E \ i : i ∈ S},

or equivalently, HS = U|E\S|,E\S ⊕U|S|−1,S.
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3.3 A monomial basis of the simplicial presentation and
relative nested quotients

We introduce the notion of relative nested quotients, which are relative generaliza-
tions of (loopless) Schubert matroids in matroid theory, and we show that they are in in
bijection with elements of a monomial basis of A•∇(M).

We start by producing a monomial basis of A•∇(M) via the Gröbner basis computa-
tion in [FY04]. Pick a total order > on elements of LM such that F > G if rkM(F) ≤
rkM(G), and take the induced lex monomial order on A•FY(M). A Gröbner basis for
A•FY(M) was given as follows.

Theorem 3.3.1. [FY04, Theorem 1] The following form a Gröbner basis for the ideal of
A•FY(M):

zFzG F and G are incomparable nonempty flats
zF
(
∑H≥G zH

)rk G−rk F F ( G nonempty flats(
∑H≥G zH

)rk G G a nonempty flat
.

The Gröbner basis computation in [FY04] carries over to the simplicial presentation
easily. Again, pick a total ordering > of LM such that if rkM(F) ≤ rkM(G), then F > G.

Proposition 3.3.2. The following is a Gröbner basis for the defining ideal of A•∇(M) with
respect to the lex monomial ordering induced by >:

(∑F⊆G µ(F, G)hG)(∑F′⊆G′ µ(F′, G′)hG′) F, F′ incomparable

(∑F⊆G µ(F, G)hG) · hrk F′−rk F
F′ F ( F′

hrk F
F F ∈ LM \ {∅}

.

Proof. Let SFY = R[zF : F ∈ LM \ {∅}] and S∇ = R[hF : F ∈ LM \ {∅}], and define
ϕ : SFY → S∇ to be the substitution zF 7→ −∑F⊆G µ(F, G)hG.

Observe that ϕ is lower triangular with −1’s on the diagonal when the variables zF
and hF are written in descending order with respect to >. Hence, if f ∈ S with initial
monomial ze1

F1
· · · zek

Fk
, then the initial monomial of ϕ( f ) is he1

F1
· · · hek

Fk
. The proposition now

follows from the fact that the elements of the Gröbner basis above are the images under
ϕ of the elements of the Gröbner basis given in Theorem 3.3.1.

As a result, we obtain a monomial basis of A•∇(M).

Corollary 3.3.3. For c ∈ Z≥0, a monomial R-basis for the degree c part Ac
∇(M) of the

Chow ring A•∇(M) of a matroid M is

{ha1
F1
· · · hak

Fk
| ∑ ai = c, ∅ = F0 ( F1 ( · · · ( Fk, 1 ≤ ai < rkM(Fi)− rkM(Fi−1)}.

We call this basis of A•∇(M) the nested basis of the Chow ring of M.
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While the nested basis of A•∇(M) looks identical to the one given for A•FY(M) in
[FY04, Corollary 1], we show here that with the simplicial presentation the monomials
in the basis now allow for a combinatorial interpretation as a distinguished set of matroid
quotients of M.

Let f : M� M′ be a matroid quotient on a ground set E.

Definition 3.3.4. An f -cyclic flat of f is a flat F ∈ LM′ such that F is minimal (with
respect to inclusion) among the flats F′ ∈ LM′ such that n f (F′) = n f (F). A matroid M′

is a relative nested quotient of M if the f -cyclic flats of M′ form a chain.

Relative nested quotients are relative generalizations of (loopless) Schubert matroids:

Example 3.3.5. If M = U|E|,E then any matroid M′ is a quotient f : M′ � M. In this case,
the f -cyclic flats of M′ are precisely the cyclic flats of M′, which are flats F of M′ such
that M′|F has no coloops. Moreover, the relative nested quotients of U|E|,E are called
nested matroids, which in the literature also go by (loopless) Schubert matroids. See
[Ham17, §2.2] for more on cyclic flats and nested matroids.

The data of cyclic flats of a matroid and their ranks determine the matroid [Bry75,
Proposition 2.1]. We generalize the statement to f -cyclic flats of a matroid quotient.
We first need the following fact about obtaining any matroid quotient as a sequence of
elementary quotients.

Lemma 3.3.6.

(1) [Hig68], [Bry86, Exercise 7.20] Any matroid quotient f : M′ � M can be obtained
as a sequence of elementary quotients in a canonical way called the Higgs factor-
ization of f . The Higgs factorization of a quotient f : M′ � M with n f (E) = c is a
sequence of elementary quotients

M′ = M0
K1
� M1

K2
� · · ·

Kc
� Mc = M

where the bases of Mi for i = 1, . . . , c are defined as

B(Mi) = {A ⊆ E | A spanning in M′, independent in M, and |A| = rk(M′) + i}.

(2) [KK78, Theorem 3.4] The modular cuts Ki of the Higgs factorization are

Ki = {G ∈ LMi | n f (G) ≥ i}.

Proposition 3.3.7. The data of the f -cyclic flats, their f -nullities, and the matroid M
determine the quotient f : M′ � M. More precisely, writing n f (E) = c, the data

recovers the Higgs factorization M′ = M0
K1
� M1

K2
� · · ·

Kc
� Mc = M of f by specifying

the modular cuts Ki to be

Ki = {G ∈ LMi | G ⊇ F for some F ∈ cyc( f ) with n f (F) ≥ i}
for each i = 1, . . . , c.
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Proof. Lemma 3.3.6.(2) implies that the modular cut Ki is {G ∈ LMi | n f (G) ≥ i} for
each i = 1, . . . , c. This can equivalently be written as {G ∈ LMi | G ⊇ F for some F ∈
cyc( f ) with n f (F) ≥ i} by the definition of f -cyclic flats.

We now show that the nested basis of A•∇(M) given in Corollary 3.3.3 is in bijection
with the set of relative nested quotients of M.

Theorem 3.3.8. Let M be a loopless matroid of rank r = d + 1. For each 0 ≤ c ≤ d, the
cap product map

Ac
∇(M)→ MWd−c(ΣM), ξ 7→ ξ ∩ ∆M

induces a bijection between the monomial basis for Ac
∇(M) given in Corollary 3.3.3

and the set of Bergman classes ∆M′ of loopless relative nested quotients M′ � M with
rk(M′) = rk(M)− c.

Proof. Let ha1
F1
· · · hak

Fk
be an element of the monomial basis given in Corollary 3.3.3. By

repeated application of Theorem 3.2.3, we have

ha1
F1
· · · hak

Fk
∩ ∆M = ∆M′

where

M′ = M
∧ak HFk · · ·

∧a1 HF1 := M ∧ HFk ∧ · · · ∧ HFk︸ ︷︷ ︸
ak times

∧ · · · ∧ HF1 ∧ · · · ∧ HF1︸ ︷︷ ︸
a1 times

.

By Lemma 3.2.4, we can consider the matroid M′ to be the result of a sequence of
principal truncations on M, first by Fk repeated ak times, then by Fk−1 repeated ak−1
times, and so forth. Taking a principal truncation by Fi in this process makes sense
due to the following observation: The description of the flats in a principal truncation
(Proposition 3.1.5) implies that the inequalities on the ai’s in Corollary 3.3.3 ensure that
Fi is a flat in M

∧ak HFk · · ·
∧ai+1 HFi+1 , and in particular rk(F1)− a1 > 0 ensures loopless.

The flats that decrease in rank under a principal truncation by Fi are exactly those
that contain Fi. Hence, our consideration of M′ as the sequence of principal truncations
implies that f : M′ � M is a matroid quotient with cyc( f ) = {F1, . . . , Fk} and n f (Fj) =

∑
j
i=1 ai. We have thus shown that an element of the nested basis defines a relative nested

quotient by the cap product.
Conversely, Proposition 3.3.7 implies that the f -cyclic flats and their f -nullities of a

relative nested quotient f : M′ � M recovers the Higgs factorization

M′ = M0
K1
� M1

K2
� · · ·

Kc
� Mc = M

of f by specifying the modular cuts to be

Ki = {G ∈ LMi | G ⊇ F for some F ∈ cyc( f ) with n f (F) ≥ i}.

Thus, if cyc( f ) = {F1 ( · · · ( Fk}, then M′ = M
∧ak HFk · · ·

∧a1 HF1 where aj = n f (Fj)−
n f (Fj−1) for j > 1, and a1 = n f (F1).
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Moreover, the bijection given in the previous theorem respects linear independence.

Proposition 3.3.9. The elements

{∆M′ : M′ is a loopless relative nested quotient of M}

are linearly independent in MW•(ΣAn).

The proof given below is a modification of the one given for nested matroids in
[Ham17, Proposition 3.2].

Proof. For a loopless nested matroid quotient f : M′ � M of corank c = rk(M)− rk(M′)
given by a sequence of (F0 := ∅, r0 := 0), (F1, r1), . . . , (Fk, rk) of the f -cyclic flats and their
ranks, define

γ( f ) := (di)i=1,...,r, di :=
{

ri − ri−1 if i ≤ k
0 otherwise .

Denote by Mr the set of loopless nested matroid quotients f : M′ � M of rank rk(M′) =
r. Assume that we have a linear relation

∑
f :M′�M∈Mr

aM′∆M′ = 0.

We show by lexicographic induction on γ( f ) that aM′ = 0 ∀M′ ∈Mr.
For the base case, consider the case of f : M′ � M with f -cyclic flats ∅ = F0 ( F1 (

· · · ( Fk satisfying
γ( f ) = (1, . . . , 1︸ ︷︷ ︸

k many

, 0, . . . , 0).

Extend the chain of cyclic flats of M′ to any maximal chain of flats in M′, and consider
a loopless nested matroid quotient g : N′ � M also containing this chain as a maximal
chain of flats. We show that N′ = M′. Note that by construction rkN′(Fi) = rkM′(Fi) for
all 0 ≤ i ≤ k. By induction assume F0, . . . , Fj−1 are g-cyclic. If Fj is not g-cyclic, then it
contains a g-cyclic flat G with the same g-nullity as that of Fj. But then ng(G) = ng(Fj) =
n f (Fj) > n f (Fj−1) = ng(Fj−1), implies G ) Fj−1, which contradicts rkN′(G) < rkN′(Fj) =
rkN′(Fj−1) + 1. Thus, all Fi’s are g-cyclic as well with rkN′(Fi) = i, and there are are no
other g-cyclic flats since n f (E) = ng(E).

Now suppose γ( f ) = (d1, . . . , dr) > (0, . . . , 0) and consider g : N′ � M that has a
maximal chain of flats that is also a maximal chain in LM′ containing the f -cyclic flats.
We show that if N′ 6= M′ then γ(g) <lex γ( f ), thereby completing the induction to
conclude that aM′ = 0 ∀M′.

Let γ(g) = (c1, . . . , cr), and suppose 1 ≤ j ≤ k is the minimum j such that Fj is
not g-cyclic, which exists since N′ 6= M′. By the same arguments given in the case of
γ( f ) = (1, . . . , 1, 0, . . . , 0), we then have a g-cyclic flat G such that Fj−1 ( G ( Fj, which
decreases cj by at least one. Hence, γ(g) < γ( f ), as desired.
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Chapter 4

The Poincaré duality property

In this chapter, we recover the first component of the Kähler package for the Chow
ring of a matroid, called the Poincaré duality property. We review some facts about
Poincaré duality algebras in §4.1, but we will only need a small portion of these facts in
this chapter—the rest will be needed only later in Chapter 6. We establish the Poincaré
duality property of Chow rings of matroids and discuss some consequences in §4.2

4.1 Poincaŕe duality algebras and their transports
We review some general algebraic notions about Poincaré duality algebras. Let k be

a field.

Definition 4.1.1. A graded finite (commutative) k-algebra A• =
⊕d

i=0 Ai is a (graded)
Poincaré duality algebra of dimension d if (i) A0 = k, and (ii) there exists an isomor-
phism

∫
: Ad ∼→ k, called the degree map of A•, such that the map

Ak → Hom(Ad−k,k), ξ 7→ (ζ 7→
∫

ξ · ζ)

is an isomorphism for all 0 ≤ k ≤ d, or equivalently, the pairing

Ai × Ad−i → Ad ' k, (ξ, ζ) 7→
∫

ξ · ζ

is a non-degenerate for all 0 ≤ i ≤ d.

We write (A•,
∫
) for a Poincaré duality algebra with a chosen degree map

∫
. In

Chapter 6, we will often drop the degree symbol
∫

when the context is clear; in particu-
lar, for ζ ∈ A1 we will often write ζd to mean

∫
ζd.

We will use the following construction to establish that Chow rings of matroids are
Poincaré duality algebras.
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Proposition 4.1.2. If (A•,
∫
) is a Poincaré duality algebra of dimension d, and f ∈ A• a

homogeneous element of degree k. Then the k-algebra

A•/ ann( f ), where ann( f ) = {a ∈ A• | a f = 0}

is a Poincaré duality algebra of dimension d− k with the induced degree map
∫

f defined

by
∫

f (a + ann( f )) :=
∫

a f for a ∈ Ad−k.

Proof. This is a straightforward check; see [MS05, Corollary I.2.3.] for example.

It will sometimes be convenient to identify elements of the ring A•/ ann( f ) to el-
ements of the principal ideal 〈 f 〉 ⊂ A•, with multiplication is by a f · b f = (ab) · f .
The construction in Proposition 4.1.2 will arise in next subsection §4.2 with f being the
Bergman class.

The rest of this subsection on Poincaré duality algebras will not be needed until
Chapter 6.

We describe another way the construction in Proposition 4.1.2 arises in the context
of Chow cohomology rings of fans. Let Σ be a d-dimensional smooth rational fan in
NR for a lattice N, and let ρ ∈ Σ(1) be ray. Denote by u the image of u ∈ NR under
the projection NR � NR/ span(ρ). The star of Σ at ρ is a (d − 1)-dimensional fan in
NR/ span(ρ) defined by

star(ρ, Σ) := {σ | σ ∈ Σ contains ρ}.

By definition of the Chow cohomology ring, one can check that there is a surjection
A•(Σ)� A•(star(ρ, Σ)) determined by

xρ′ 7→
{

xρ′ if ρ′ and ρ form a cone in Σ

0 otherwise
for each ρ′ 6= ρ.

Since 〈xρ′ | ρ′ and ρ do not form a cone in Σ〉 ⊂ annA•(Σ)(xρ), thus we get an induced
map

πρ : A•(star(ρ, Σ))� A•(Σ)/ ann(xρ).

Geometrically, a ray ρ corresponds to a torus-invariant divisor V(ρ) of the toric va-
riety XΣ via the orbit-cone correspondence [CLS11, Theorem 3.2.6], and the toric va-
riety Xstar(ρ,Σ) of the star is the subvariety V(ρ). The map A•(Σ) → A•(star(ρ, Σ))
described above is the pullback map of algebraic cycles along the closed embedding
Xstar(ρ,Σ) ' V(ρ) ↪→ XΣ.

In Chapter 6, we will use the following criterion for when the map πρ is an isomor-
phism.
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Proposition 4.1.3. [AHK18, Proposition 7.13] Suppose that the Chow cohomology ring
A•(Σ) is a Poincaré duality algebra. Then, the map πρ : A•(star(ρ, Σ))� A•(Σ)/ ann(xρ)
is an isomorphism if and only if A•(star(ρ, Σ)) is a Poincaré duality algebra.

Proof. The algebra A•(Σ)/ ann(xρ) is a Poincare duality algebra by Proposition 4.1.2. The
statement thus follows from Proposition 4.1.4.(2) below, which states that a surjection of
Poincare duality algebras of same dimension is an isomorphism.

Two useful facts about Poincaré duality algebras follow. Both are straightforward to
check.

Proposition 4.1.4. Let (A•,
∫

A) and (B•,
∫

B) be Poincaré duality algebras of dimension
dA and dB over a common field k.

(1) The tensor product (A ⊗ B)• =
⊕
•
(⊕

i+j=• Ai ⊗ Bj) is also a Poincaré duality
algebra of dimension dA + dB with degree map∫

A⊗B
: (A⊗ B)dA+dB = AdA ⊗ BdB → k, a⊗ b 7→

∫
A

a ·
∫

B
b.

(2) A surjection A• � B• of Poincaré duality algebras of the same dimension (that is,
if dA = dB) is an isomorphism.

4.2 Poincaré duality for matroids
We show that the Chow ring A•(M) of a loopless matroid M is a Poincaré duality

algebra with
∫

M as the degree map. While this was proved in [AHK18, Theorem 6.19],
we give a non-inductive proof by using the simplicial presentation that avoids flips, a
technical tool in [AHK18] which introduces combinatorial objects from outside the realm
of matroids.

Our main theorem of the section is the following.

Theorem 4.2.1. Let M be a loopless matroid of rank r = d + 1 on a ground set E =
{0, 1, . . . , n}, and consider the Bergman class ∆M ∈ MWd(ΣAn) as an element of A•(ΣAn)
via the isomorphism A•(ΣAn) ' MWn−•(ΣAn) in Theorem 2.1.6. Then, we have

A•(M) ' A•(ΣAn)/ ann(∆M).

Since A•(ΣAn) is a Poincare duality algebra (Theorem 2.1.6), Proposition 4.1.2 imme-
diately implies the following corollary.

Corollary 4.2.2. The Chow ring A•(M) is a graded Poincaré duality algebra of dimension
rk(M)− 1 with

∫
M as the degree map.
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Remark 4.2.3. Because ΣAn is a smooth projective fan, there exist a purely combinatorial
proof of the Poincaré duality for its Chow cohomology ring via the line shelling of the
fan; see [FK10]. While Bergman fans of matroids are also shellable [Bjo92], they are
not complete (and hence not projective), and the arguments of [FK10] does not readily
modify to give Poincaré duality for Chow rings of matroids.

We also obtain the following generalization of [Ham17, Corollary 3.13].

Corollary 4.2.4. For each 0 ≤ c ≤ d, the cap product map

Ac(M)→ MWd−c(ΣM), ξ 7→ ξ ∩ ∆M

is an isomorphism of R-vector spaces. Thus, the Bergman classes of relative nested
quotients form a basis of MW•(ΣM).

Proof. The first statement follows from Corollary 4.2.2 and the fact that Hom(Ac(M), R) '
MWd−c(ΣM) (Lemma 2.1.5). Theorem 3.3.8 then implies the second statement.

Proof of Theorem 4.2.1. Recall that the isomorphism A•(ΣAn) ' MWn−•(ΣAn) makes the
set of Minkowski weights into a graded ring, denoted MW•(ΣAn). Let ι∗M be the pullback
map of the inclusion ιM : ΣM ↪→ ΣAn . A formal property of cap products, given below
in Lemma 4.2.5, gives us a commuting diagram of surjections

A•(ΣAn) MW•(ΣAn)

A•(M) MW•(ΣAn)/ ann(∆M)

∼

ι∗M

ζ ζ ∩ ∆ΣAn

ι∗Mζ ζ ∩ ∆M.

(Here we have identified the elements of MW•(ΣAn)/ ann(∆M) with the elements of the
principal ideal 〈∆M〉 ⊂ MW•(ΣAn).) Proposition 3.3.9 states that the bottom horizontal
map preserves linear independence, and hence is injective.

Lemma 4.2.5. Let ι∗ be the pullback map of an inclusion of fans ι : Σ′ ↪→ Σ where Σ is
complete, and let δΣ : A•(Σ) ∼→ MW•(Σ) be the isomorphism in Theorem 2.1.6. Suppose
∆ is a Minkowski weight on Σ whose support |∆| is contained the support |Σ′|. Then we
have a diagram

A•(Σ) MW•(Σ)

A•(Σ′) MW•(Σ)/ ann(∆)

∼

ι∗

ζ ζ ∩ ∆Σ

ι∗ζ ζ ∩ ∆.
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Proof. We need show that the kernel 〈xρ | ρ ∈ Σ(1) \Σ′(1)〉 ⊂ A•(Σ) of the pullback map
ι∗ is contained in the kernel of the map A•(Σ) ∼→ MW•(Σ) � MW•(Σ)/ ann(∆). Since
|∆| ⊆ |Σ′|, we may consider ∆ as a Minkowski weight on Σ′, and thus by functoriality
of the cap product (Remark 2.1.8), we have xρ ∩ ∆ = ι∗xρ ∩ ∆ = 0 for xρ ∈ A•(Σ) where
ρ ∈ Σ(1) \ Σ′(1).

Remark 4.2.6 (cf. Phenomenon I). Let YR(M) be the wonderful compactification of a
realization of M. Since the pullback map A•(XΣAn

) → A•(YR(M)) along the closed
embedding YR(M) ↪→ XAn is surjective (Remark 2.3.3), we have A•(M) ' A•(YR(M)) '
A•(XΣAn

)/ ann([YR(M)]).

Remark 4.2.7. Let M be a loopless of rank d = r + 1 < n + 1. Then the isomorphism
A•(M) ' MWd−•(ΣM) that we have established makes MW•(ΣM) := MWd−•(ΣM) into
a graded ring. We caution that the resulting multiplication structure is not the usual
stable intersection of Minkowski weights.
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Chapter 5

Log-concavity of the volume polynomial

A presentation of a graded Poincaré duality algebra A• can be encoded via the
Macaulay inverse system of commutative algebra into a single polynomial VPA called the
volume polynomial of A• [Eis95, §21.2]. In geometric contexts, the volume polynomial
takes on an additional meaning: if A• is the ring of algebraic cycles modulo numerical
equivalence of a smooth projective variety, then VPA measures degrees of ample divi-
sors (see [Ein+05] for a survey), and if A• is the Chow cohomology ring of a complete
smooth fan Σ, then VPA measures the volumes of polytopes whose normal fans coarsen
Σ [CLS11, §13]. Furthermore, in both geometric contexts, the volume polynomial of A•

is positive and log-concave on the ample cone when considered as a function A1 → R

[Laz04, Corollary 1.6.3.(iii)].

In this chapter, we give a combinatorial formula for the volume polynomial VP∇M
of the Chow ring A•∇(M) of a loopless matroid M, and show that, as in the geometric
cases, the volume polynomial VP∇M when regarded as a function A1

∇(M) → R is both
positive and log-concave on a subcone K ∇

M of the ample cone KM generated by the
simplicial generators. While the results of [AHK18] imply that the volume polynomial
of a matroid satisfies such properties, we give here an independent and more direct
proof by establishing that VP∇M is a Lorentzian polynomial as defined in [BH19]. In the
next Chapter 6, we build upon the results of this chapter to conclude that VP∇M is both
positive and log-concave on the entire ample cone KM.

5.1 Volume polynomials and Lorentzian polynomials
Here we review the notion of volume polynomials and how they generalize to Lorent-

zian polynomials.

One can encode a graded Poincaré duality algebra into a single polynomial called
the volume polynomial as follows.
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Definition 5.1.1. Let (A•,
∫
) be a graded Poincaré duality algebra of dimension d that

is generated in degree 1, with a chosen presentation A• = k[x1, . . . , xs]/I and a degree
map

∫
: Ad → k. Then its volume polynomial VPA is a multivariate polynomial in

k[t1, . . . , ts] defined by

VPA(t1, . . . , ts) :=
∫
(t1x1 + · · ·+ tsxs)

d

where we extend the degree map
∫

to A[t1, . . . , ts]→ k[t1, . . . , ts].

If (A•,
∫
) is a Poincaré duality algebra with a presentation A• = k[x1, . . . , xs]/I,

then the defining ideal I can be recovered from the volume polynomial VPA as follows
[CLS11, Lemma 13.4.7]

I = { f (x1, . . . , xs) ∈ k[x1, . . . , xs] | f ( ∂
∂t1

, . . . , ∂
∂ts
) ·VPA(t1, . . . , ts) = 0}.

In [BH19], the authors define Lorentzian polynomials as a generalization of volume
polynomials in algebraic geometry and stable polynomials in optimization. Here we
briefly summarize the relevant results.

Definition 5.1.2. A homogeneous polynomial f ∈ R[x1, . . . , xn] of degree d is strictly
Lorentzian if its support consists of all monomials in x of degree d, all of its coeffi-
cients are positive, and any of its (d− 2)-th order partial differentiation ∂i1 · · · ∂id−2 f has
Hessian matrix with Lorentzian signature (+,−,−, . . . ,−). Lorentzian polynomials are
polynomials that can be obtained as a limit of strictly Lorentzian polynomials.

To characterize Lorentzian polynomials, we need a combinatorial notion that mirrors
the exchange axiom for matroids: a collection of points J ⊂ Zn

≥0 is M-convex if for any
α, β ∈ J and i ∈ [n] with αi > βi there exists j ∈ [n] such that αj < β j and α− ei + ej ∈ J.
When the elements of J all have the same coordinate sum, this is equivalent to stating
that the convex hull of J is a generalized permutohedra [Mur03, Theorem 1.9].

The following characterization can be seen as a linear algebraic abstraction of the
proof of Teissier-Khovanskii inequalities via the Hodge index theorem for algebraic sur-
faces.

Theorem 5.1.3. [BH19, Theorem 5.1] A homogeneous polynomial f ∈ R[x1, . . . , xn] of
degree d with nonnegative coefficients is Lorentzian if and only if the following two
conditions are satisfied:

(1) The support of f is M-convex, and

(2) The Hessian matrix of ∂i1 · · · ∂id−2 f has at most one positive eigenvalue for any
choice of (d− 2)th order partial differentiation.

Proposition 5.1.4. We note some operations that preserve the Lorentzian property of
polynomials.
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(1) [BH19, Corollary 5.5] Products of Lorentzian polynomials are Lorentzian.

(2) [BH19, Theorem 2.10] If a polynomial f ∈ R[x1, . . . , xn] is Lorentzian, then so is
f (Ax) ∈ R[x1, . . . , xm] for any n×m matrix A with non-negative entries.

Implications to log-concavity phenomena in combinatorics arise from the following
properties of Lorentzian polynomials.

Theorem 5.1.5. Let f ∈ R[x1, . . . , xn] be a homogeneous polynomial with nonnegative
coefficients. The Lorentzian property of f can be characterized via log-concavity prop-
erties as follows.

(1) [BH19, Theorem 5.3] A homogeneous polynomial f is Lorentzian if and only if f
is strongly log-concave, in the sense that if g is any partial derivative of f of any
order, then either g is identically zero or log g is concave on the positive orthant
Rn

>0.

(2) [BH19, Example 5.2] If n = 2, so that f = ∑d
k=0 akxk

1xd−k
2 , then f is Lorentzian if

and only if (a0, a1, . . . , ad) has no internal zeroes and is ultra log-concave, that is,

ak1 ak3 6= 0 =⇒ ak2 6= 0 for all 0 ≤ k1 < k2 < k3 ≤ d, and

a2
k

(d
k)

2 ≥
ak−1ak+1

( d
k−1)(

d
k+1)

for all 0 < k < d.

We remark that (strictly) Lorentzian polynomials arise in classical algebraic geometry
whenever one has a set of nef (ample) divisors on a smooth projective variety.

Remark 5.1.6. Let {D1, . . . , Ds} be nef (ample) divisors on a smooth projective k-variety
X of dimension d, and A(X) its Chow ring. Let

∫
X : Ad(X) → R be the degree map

obtained as the pushforward map along the structure map X → Speck. Then

volX
( s

∑
i=1

tiDi
)

:= lim
q→∞

dimk H0(q ∑i tiDi)

qd/d!
=
∫

X

(
∑

i
tiDi

)d

is a (strictly) Lorentzian polynomial [Laz04, Corollary 1.6.3.(iii)] or [BH19, Theorem 10.1].

5.2 The Dragon Hall-Rado formula
We prepare our formula for the volume polynomial of A•∇(M) by describing the

combinatorial notions in [Pos09] that we generalize to arbitrary matroids.

We first recall Hall’s marriage theorem and Rado’s generalization; for proofs we point
to [Oxl11, §11.2]. Let E = [n] = {0, 1, . . . , n}. A transversal of a collection {A0, . . . , Am}
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(repetitions allowed) of subsets of E is a subset I ⊆ E such that there exists a bijection
φ : {A0, . . . , Am} → I satisfying φ(Ai) ∈ Ai for all 0 ≤ i ≤ m. Hall considered the
following problem:

Given A0, . . . , An ⊆ E, when does {A0, . . . , An} have a transversal?

The well-known Hall’s marriage theorem [Hal35] answers this problem: a transversal
exists for {A0, . . . , An} if and only if

∣∣∣⋃j∈J Ai

∣∣∣ ≥ |J| for all J ⊆ [n]. The following theorem
of Rado gives a matroid generalization of the condition given in Hall’s theorem.

Theorem 5.2.1 (Rado’s theorem [Rad42]). Let M be a matroid on E. A family of subsets
{A0, . . . , Am} of E has a transversal I ⊆ E that is independent in M if and only if

rkM

⋃
j∈J

Aj

 ≥ |J|, ∀J ⊆ [m].

Hall’s condition can be recovered from Rado’s by setting M = U|E|,E and m = n.
See [Oxl11, Theorem 11.2.2] for more information and a proof of Rado’s theorem. The
following variant of Hall’s marriage theorem was investigated by Postnikov as a com-
binatorial interpretation of a formula for volumes of generalized permutohedra [Pos09,
§5, §9].

Proposition 5.2.2 (Dragon marriage condition). Let {A1, . . . , An} be a collection of sub-
sets of E = {0, 1, . . . , n}. There is a transversal I ⊆ E \ {e} of {A1, . . . , An} for every
e ∈ E if and only if ∣∣∣∣∣∣⋃j∈J

Aj

∣∣∣∣∣∣ ≥ |J|+ 1, ∀∅ ( J ⊆ {1, 2, . . . , n}.

The dragon marriage theorem above follows easily from the original Hall’s marriage
theorem, and conversely, one can obtain Hall’s marriage theorem from the dragon mar-
riage theorem as follows: given A0, . . . , An ⊆ E as in Hall’s theorem, set E′ = E t {∗}
and A′i := A0 t {∗} for each 0 ≤ i ≤ n and apply Postnikov’s theorem to {A′0, . . . , A′n}.

We now consider a variant of Rado’s theorem in the same spirit.

Proposition 5.2.3 (Dragon Hall-Rado condition). Let M be a matroid on E, and let
{A1, . . . , Am} be a collection of subsets of E. Then there is a transversal I ⊆ E \ {e}
of {A1, . . . , Am} for every e ∈ E if and only if

rkM

⋃
j∈J

Aj

 ≥ |J|+ 1, ∀∅ ( J ⊆ {1, . . . , m}

and when this condition is satisfied, we say that {A1, . . . , Am} satisfy the dragon Hall-
Rado condition of M, or DHR(M) for short.
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Proof. This follows from Theorem 5.2.1 and the observation that independent transver-
sals I ⊆ E \ {e} of {A1, . . . , Am} are the same as independent transversals of {A1 \
{e}, . . . , Am \ {e}}.

We can obtain Rado’s theorem from the dragon Hall-Rado theorem by an argument
analogous to how Hall’s marriage theorem is obtained from dragon marriage theorem.
In summary, the combinatorics introduced in this subsection thus far can be schemati-
cally laid out as follows with the indicated logical implications:

Hall’s marriage theorem Rado’s theorem

Dragon marriage theorem Dragon Hall-Rado theorem

We are now ready to compute the intersection numbers of the variables hF in the
A•∇(M) presentation of the Chow ring of a matroid M.

Theorem 5.2.4. Let A1, . . . , Ad be a collection of subsets of E, and M a loopless matroid
on E of rank d + 1. Let HA1 , . . . , HAd be matroids as defined in Proposition 3.2.4. Then

M ∧ HA1 ∧ · · · ∧ HAd = U1,E ⇐⇒ {A1, . . . , Ad} satisfy DHR(M).

Thus, we have

∫
M

hA1(M) · · · hAd(M) =

{
1 if {A1, . . . , Ad} satisfy DHR(M)

0 otherwise.

Proof. For the first assertion, we begin by making two easy observations.

1. M ∧ HS has a loop if and only if rkM(S) = 1, and

2. [Oxl11, Exercise 7.3.10] for the elementary quotient f : M � M ∧ HS we have by
Proposition 3.1.5 that

{T ⊆ E | n f (T) = 1} = {T ⊆ E | clM(T) ⊇ S}.

For the necessity of the condition, note that if rkM(
⋃

j∈J Aj) ≤ k for some J =

{j1, . . . , jk} ⊆ {1, . . . , d} (k > 0), then for M̃ := M ∧ HAj1
∧ · · · ∧ HAjk−1

we have
rkM̃(

⋃
j∈J Aj) ≤ k− (k− 1) = 1, so that M

∧
j∈J HAj already has a loop.

For sufficiency, we induct on d. The base case d = 1 is trivially satisfied. Now, we
claim that if {A1, . . . , Ad} satisfy the dragon Hall-Rado condition for M, then so does
{A1, . . . , Ad−1} for M̃ := M∧NAd . For the sake of contradiction, suppose rkM̃(A1 ∪ · · · ∪
Ak) ≤ k, then we must have had rkM(A1 ∪ · · · ∪ Ak) = k + 1 with clM(A1 ∪ · · · ∪ Ak) ⊇
Ad. But then rkM(A1 ∪ · · · ∪ Ak ∪ Ad) = k + 1, violating DHR(M).
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For the second assertion, we note that
∫

M hA1(M) · · · hAd(M) =
∫

ΣAn
hA1 · · · hAd ∩∆M,

and the (unique) loopless matroid U1,E of rank 1 on E defines the Bergman class ∆U1,E by
∆U1,E(0) = 1, where 0 is the zero-dimensional cone of ΣAn , so that

∫
ΣAn

(∆U1,E) = 1.

We obtain as an immediate corollary the promised generalization of [Pos09, Corollary
9.4]. Recall that L ≥2

M denotes the flats of M of rank at least two.

Corollary 5.2.5. Let M be a loopless matroid on E of rank d + 1. The volume polynomial
VP∇M(t) ∈ Q[tF | F ∈ L ≥2

M ] of A•∇(M) is

VP∇M(t) = ∑
(F1,...,Fd)

tF1 · · · tFd

where the sum is over ordered collections of nonempty flats F1, . . . , Fd of M satisfying
DHR(M). Alternatively, we have

VP∇M(t) = ∑
{Fd1

1 ,...,F
dk
k }

(
d

d1, . . . , dk

)
td1
F1
· · · tdk

Fk

where the sum is over size d multisets {Fd1
1 , . . . , Fdk

k } of flats of M satisfying DHR(M).

One recovers the following central result of [Pos09] by setting M = U|E|,E.

Theorem 5.2.6. [Pos09, Corollary 9.4] The volume polynomial VP∇Un+1,n+1
(t) of A•∇(XAn)

is
VP∇Un+1,n+1

(t) = ∑
(S1,...,Sn)

tS1 · · · tSn

where the sum is over ordered collections of nonempty subsets S1, S2, . . . , Sn such that
|⋃j∈J Sj| ≥ |J|+ 1 for any ∅ ( J ⊆ {1, . . . , n}.

The volume polynomial VPM of the more classical presentation A•(M) of the Chow
ring of a matroid M by generators {xF | F ∈ LM \ {∅, E}} was computed in [Eur20].
While the two polynomials VPM and VP∇M are related by a linear change of coordinates,
it is not clear at the time of writing how one formula can be derived directly from the
other.

5.3 Volume polynomial of a matroid is Lorentzian
Motivated by Remark 5.1.6 and the fact that the simplicial generators of A•∇(M) are

combinatorially nef divisors, we prove here that the volume polynomial VP∇M of the
simplicial presentation A•∇(M) is Lorentzian.



CHAPTER 5. LOG-CONCAVITY OF THE VOLUME POLYNOMIAL 39

Theorem 5.3.1. The volume polynomial VP∇M ∈ R[tF | F ∈ L ≥2
M ] of a loopless matroid

M is Lorentzian.

As an immediate corollary, by applying Theorem 5.1.5 to Theorem 5.3.1 we obtain:

Corollary 5.3.2. The volume polynomial VP∇M, as a polynomial in R[tF | F ∈ L ≥2
M ],

is strongly log-concave in the positive orthant R
L ≥2

M
>0 . In other words, as a function

A1(M)→ R, the polynomial VP∇M is strongly log-concave in the interior of the cone K ∇
M

generated by the simplicial generators.

We will show that the volume polynomial VP∇M of a loopless matroid M satisfies the
two conditions listed in Theorem 5.1.3. First, we see that the dragon Hall-Rado condition
description for the support of VP∇M implies that VP∇M has M-convex support.

Proposition 5.3.3. Let {F1, . . . , Fd} and {G1, . . . , Gd} be two multisets of flats of M such
that both tF1 · · · tFd and tG1 · · · tGd are in the support of VP∇M. If (without loss of gener-
ality) Gd is a flat which appears more times in {G1, . . . , Gd} than it does in {F1, . . . , Fd},
then there exists another flat Fm which appears more times in {F1, . . . , Fd} than it does
in {G1, . . . , Gd} such that tF1 · · · tFd tGd /tFm is in the support of VP∇M.

Proof. We borrow standard language from (poly)matroid theory. Let us call a multiset
of flats {A1, . . . Ak} dependent if rkM(

⋃k
j=1 Aj) ≤ k. We claim that the multiset of flats

{F1, . . . , Fd, Gd} contains a unique minimally dependent multiset of flats X, which we
call a circuit. The theorem will follow from this claim because the cirucuit X is not fully
contained in {G1, . . . , Gd}, hence we can let Fm be any flat in X which appears more
times in {F1, . . . , Fd} than it does in {G1, . . . , Gd}.

To prove the claim, suppose to the contrary that {R1, . . . , Ra}, {S1, . . . , Sb} are two
distinct circuits which are subsets of {F1, . . . Fd, Gd}. Let {T1, . . . , Tc} = {R1, . . . , Ra} ∩
{S1, . . . , Sb}. We claim that {T1, . . . , Tc} is dependent. Suppose to the contrary that
rkM(

⋃c
j=1 Tj) ≥ c + 1. By assumption rkM(

⋃a
j=1 Rj) = a and rkM(

⋃b
j=1 Sj) = b. Let

R and S be the joins of the elements in {R1, . . . , Ra} and {S1, . . . , Sb}, respectively.
Submodularity gives that rkM(R ∪ S) ≤ rkM(R) + rkM(S) − rkM(R ∩ S) = a + b −
rkM(R ∩ S) ≤ a + b − rkM(

⋃c
j=1 Tj) ≤ a + b − c − 1. Without loss of generality, as-

sume that Gd = Ra = Sb = Tc. We have that R =
∨a−1

j=1 Rj =
∨a

j=1 Rj and S =∨b−1
j=1 Sj =

∨b
j=1 Sj. Otherwise {R1, . . . , Ra−1} and {S1, . . . , Sb−1} would both be depen-

dent in {F1, . . . , Fd}. Therefore the join of the elements in {R1, . . . , Ra−1, S1, . . . , Sb−1} \
{T1, . . . Tc−1} is R ∪ S and |{R1, . . . , Ra−1, S1, . . . , Sb−1} \ {T1, . . . Tc−1}| = (a− 1) + (b−
1)− (c− 1) = a+ b− c− 1. But, as calculated above rkM(R∪ S) ≤ a+ b− c− 1, therefore
the set {R1, . . . , Ra−1, S1, . . . , Sb−1} \ {T1, . . . Tc−1} is dependent in {F1, . . . , Fd}, a contra-
diction.
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Remark 5.3.4. Suppose M has a realization R(M). By Remark 2.3.2.(2), the wonderful
compactification YR(M) is embedded in the product of projective spaces

∏
F∈LM\{∅}

P(V∗/LF).

Our simplicial generators are pullbacks of the hyperplane classes of the projective spaces
P(V∗/LF) (see Remark 3.2.7). Thus, in this case, that the support of VP∇M is M-convex
follows from the result of [CLZ16] that the multidegree of an irreducible variety in a
product of projective spaces is has M-convex support.

Proof of Theorem 5.3.1. Let M be a loopless matroid of rank r = d + 1. There is nothing
to prove if d = 1, so we assume d ≥ 2. The support of VP∇M is M-convex by the previous
proposition. Observe that for a flat G of rank at least 2, we have

∂

∂tG
VP∇M(t) = d

∫
M

hG ·
(

∑
F∈L ≥2

M

tFhF

)d−1
= d

∫
TG(M)

(
∑

F∈L ≥2
M

tFhclTG(M)(F)

)d−1
.

Now, suppose {F1, . . . , Fd−2} is a multiset of size d− 2 consisting of flats of M with rank
at least 2. If {F1, . . . , Fd−2} does not satisfy DHR(M), then ∂tF1

· · · ∂tFd−2
VP∇M ≡ 0, so we

may assume that {F1, . . . , Fd−2} satisfies DHR(M). One computes that

∂tF1
· · · ∂tFd−2

VP∇M(t) =
d!
2!

∫
M′

(
∑

F∈L ≥2
M

tFhclM′ (F)

)2

where M′ = M ∧ HF1 ∧ · · · ∧ HFd−2 is a loopless matroid of rank 3. By Proposition 5.1.4,
it suffices to check that VP∇M′ is Lorentzian. For any loopless matroid M′ of rank 3, the
degree 1 part A1

∇(M) of its Chow ring has the simplicial basis {hE}∪ {hF : rkM′(F) = 2}.
Noting that

∫
M′ hE · hE = 1,

∫
M′ hE · hF = 1, and

∫
M′ hF · hF′ = 1 if F 6= F′ and 0, otherwise

the Hessian matrix of the quadratic form VP∇M′ is two times the matrix
1 1 1 · · · 1
1 0 1 · · · 1

1 1 . . . . . . ...
...

... . . . . . . 1
1 1 · · · 1 0

 , which reduces to


1
−1

. . .
−1


by symmetric Gaussian elimination.
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Chapter 6

The Hodge theory of matroids in
degrees at most one

The reduced characteristic polynomial of M is defined as

χ̄M(t) :=
1

t− 1 ∑
F∈LM

µ(∅, F)trk(M)−rk(F) =
d

∑
k=0

(−1)kµk(M)td−k

where µ(−,−) is the Möbius function of the lattice LM and µi(M) is the absolute value
of the ith coefficient of χ̄M(t). The Heron-Rota-Welsh conjecture stated that

µk−1(M)µk+1(M) ≤ µk(M)2 for 0 < k < d.

In [AHK18] the authors show that the Chow ring of matroids satisfy the Kähler package,
a property enjoyed by the cohomology ring of a smooth projective complex variety.
A particular portion of the Kähler package, the Hodge-Riemann relation in degree 1,
implies the Heron-Rota-Welsh conjecture [AHK18, §9]. This observation was among the
main motivations for the development of the Hodge theory of matroids in [AHK18].

To prove that the Chow ring of a matroid satisfies the Hodge-Riemann relations, the
authors of [AHK18] adapt a line of argument that originally appeared in McMullen’s
work on simple polytopes [McM93]. Their method employs a double induction on the
rank of the matroid and on order filters in the matroid’s lattice of flats: the outer induc-
tion on rank shows that the Hodge-Riemann relations hold for all ample classes if they
hold for a single ample class, and the inner induction on order filters is then used to
construct an ample class for which the Hodge-Riemann relations can be verified.

In this chapter, we independently establish the Hodge-Riemann relations in degree
one using a similar argument. As we have established in the previous chapter that the
volume polynomial VP∇M of a matroid M is strongly log-concave in the subcone K ∇

M
of the ample cone KM, we are able to avoid working with generalized Bergman fans
induced by order filters and the flipping operation which interpolates between them.
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Thus our proof involves only classical Bergman fans associated to matroids and takes
the form of a single induction on rank alone.

6.1 The Kähler package in degree one and log-concavity
We begin by discussing here the statements of the Kähler package, and how in degree

one they relate to log-concavity. We then provide some generalities on the inductive
paradigm for proving Kähler package for Chow cohomology rings of fans, which was
given in [AHK18] adapted from the earlier work [McM93].

Definition 6.1.1. Let (A•,
∫
) be a Poincaré duality k-algebra of dimension d with degree

map
∫

. For ` ∈ A1 and 0 ≤ i ≤ b d
2c, we define Lk

` to be the Lefschetz operator

Li
` : Ai → Ad−i, a 7→ `d−2ia,

and define Qi
` to be Hodge-Riemann symmetric bilinear form

Qi
` : Ai × Ai → k, (x, y) 7→

∫
xy`d−2i.

We define the set of degree i primitive classes of ` to be Pi
` := {x ∈ Ak : x`d−2i+1 = 0}.

Definition 6.1.2. Let (A•,
∫
) be a Poincaré duality R-algebra of dimension d, and let

` ∈ A1. For 0 ≤ i ≤ b d
2c, we say that (A•,

∫
) satisfies

• HLi
` if Li

` induces an isomorphism between Ai and Ad−i, and

• HRi
` if the symmetric form (−1)iQi

` is positive-definite when restricted to Pi
`.

Moreover, for K a convex cone in A1, we say that (A•,
∫

, K ) satisfies the hard Lefschetz
property (HLi

K ), resp. the Hodge-Riemann relation (HRi
K ), in degree i if A• satisfies

HLi
`, resp. HRi

`, for all ` ∈ K .

The Poincaré duality property (PD) of (A•,
∫
) implies that the form Qi

` is non-
degenerate if and only if HLi

` holds. The properties (PD), (HL), and (HR) together
are called the Kähler package for a graded ring A•. We will write HL≤i to mean hard
Lefschetz property in degrees at most i, and likewise for HR. The relation between log-
concavity and the Kähler package in degree ≤ 1 was realized in various contexts; for
a survey we point to [Huh18a]. We will only need the following, adapted from [BH19,
Proposition 5.6]. It also appeared in [AOV18, §2.3], and is a consequence of the Cauchy
interlacing theorem.

Proposition 6.1.3. Let A• be a Poincaré duality R-algebra of dimension d with degree
map

∫
, and K a convex cone in A1. Suppose (A•,

∫
, K ) satisfy HL0

K and HR0
K . Then

the following are equivalent:
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(1) The volume function vol : A1 → R, ` 7→
∫
`d is log-concave on K , and

(2) for any ` ∈ K , the symmetric form Q1
` has exactly one positive eigenvalue.

In particular, if the volume polynomial VPA of A• = R[x1, . . . , xs]/I is Lorentzian, then
(A•,

∫
, K ) satisfies HR≤1

K where K is the interior of Cone(x1, . . . , xs), provided that A•

satisfies HL≤1
K .

We now turn to an inductive paradigm for establishing (HL) and (HR). We assume
all Poincaré duality algebras to be over R. We begin by noting an easy linear algebraic
observation also made in [AHK18, Proposition 7.16].

Proposition 6.1.4. Let (A•,
∫

, K ) be a Poincaré duality algebra which satisfies HLi
K for

K in a convex cone in A1. Suppose that (A•,
∫
) satisfies HRi

` for some ` ∈ K . Then A•

satisfies HRi
K .

Proof. Let `′ ∈ K , and let l(t) = t`+ (1− t)`′ for t ∈ [0, 1] be a line segment connecting
` and `′. By convexity of K , we know that every point on l is in K . If the signature
of the bilinear pairing Qi

l(t) changes along l(t) starting at `, then it must degenerate at

some point l(t0) for t0 ∈ [0, 1], but this violates HLi
K .

We now note how properties (HL) and (HR) behave under tensor products and trans-
ports. While these are adapted from [AHK18, §7] where they are phrased in terms of
Chow cohomology rings of fans, because we restrict ourselves Kähler package up to de-
gree 1, we can provide here easier and more direct proofs for general Poincaré duality
algebras.

Proposition 6.1.5. Let (A•,
∫

A) and (B•,
∫

B) be two Poincaré duality algebras of dimen-
sion dA ≥ 1 and dB ≥ 1. Suppose that A• and B• satisfy HR≤1

`A
and HR≤1

`B
, respectively,

then ((A⊗ B)•,
∫

A⊗B) satisfies HR≤1
`A⊗1+1⊗`B

.

Before giving the proof, we remark that if dA = 0 then (A ⊗ B)• ' B• (likewise
if dB = 0) so that the statement in the proposition is trivially satisfied after suitable
modifications.

Proof. Set ` := `A ⊗ 1 + 1⊗ `B. First, note that HR0
` follows easily from the description

of the Poincaré duality algebra (A ⊗ B)• in Proposition 4.1.4.(1). Now, we verify that
(A⊗ B)• satisfies HR1

` . Let v1, . . . vm and w1, . . . wn be orthonormal bases for P1
`A

and P1
`B

,
respectively. Then

A1 ∼=
m⊕

i=1

〈vi〉 ⊕ 〈`A〉 and B1 ∼=
n⊕

i=1

〈wi〉 ⊕ 〈`B〉.
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Noting that (A ⊗ B)• is a Poincaré duality algebra of dimension d = dA + dB, we
expand

`d−2 = ((`A ⊗ 1) + (1⊗ `B))
d−2 =

d−2

∑
i=0

(
d− 2

i

)
(`i

A ⊗ `d−i−2
B ).

The symmetric matrix for Q1
` with respect to the above basis is given by

Q1
`(a, b) =



−(d−2
dA

) a = b = (vi ⊗ 1)
−(d−2

dB
) a = b = (1⊗ wj)

λ( d−2
dA−2) a = b = (`A ⊗ 1)

λ(d−2
dA

) a = b = (1⊗ `B)

λ( d−2
dA−1) a = (`A ⊗ 1) and b = (1⊗ `B)

λ( d−2
dB−1) a = (1⊗ `B) and b = (`A ⊗ 1)

0 a = (vi ⊗ 1) and b = (1⊗ wj) or (1⊗ `B)

0 a = (vi ⊗ 1) or (`A ⊗ 1) and b = (1⊗ wj)

where λ := (
∫

A `dA
A )(

∫
B `

dB
B ).

So the matrix Q1
`(a, b) is a block matrix comprised of 3 blocks. By HR1

`A
and HR1

`B
,

the first two blocks are negative identity matrices induced by {(vi ⊗ 1)} × {(vi ⊗ 1)}
and {(1⊗ wj)} × {(1⊗ wj)}. The third and only nontrivial block is induced by {(`A ⊗
1), (1⊗ `B)} × {(`A ⊗ 1), (1⊗ `B)}, which gives the 2× 2 matrix

M = λ

[
( d−2

dA−2) ( d−2
dA−1)

( d−2
dA−1) (d−2

dA
)

]
.

One computes that det(M) < 0, and hence M has signature (+,−). We conclude that
Q1

`(a, b) is nondegenerate and has exactly one positive eigenvalue completing the proof.

Proposition 6.1.6. Let (A• = R[x1, . . . , xs]/I,
∫
) be a Poincaré duality algebra of dimen-

sion d, and let ` ∈ A1 be an effective divisor—that is, a non-negative linear combination
of {x1, . . . , xs}. Denote by `k the image of ` in A•/ ann(xk). For 0 ≤ i ≤ b d−1

2 c, if
(A•/ ann(xk),

∫
xk
) satisfies HRi

`k
for every k = 1, . . . , s, then (A•,

∫
) satisfies HLi

`.

Proof. Let ` = ∑s
k=1 ckxk with ck ∈ R≥0, and suppose `d−2i f = 0 for some f ∈ Ai. We

will show that f = 0 necessarily. Let fi the image of f in A•/ ann(xi). As 0 = `d−2i f , we
have 0 = `d−2i

k fk, and because A•/ ann(xk) is a Poincaré duality algebra of dimension
d− 1, we conclude that fk belongs to the primitive space Pi

`k
. Now, we note that

0 =
∫
`d−2i f 2 =

∫
(∑k ckxk)`

d−2i−1 f 2 = ∑k(
∫

xk
ck`

d−2i−1
k f 2

k ) and
∫

xk
ck`

d−2i−1
k f 2

k ≤ 0 ∀k,
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where the last inequalities follow from HRi
`k

. Moreover, as Q1
`k

is negative-definite on
Pi
`k

, we conclude each fk to be 0, that is, xk f = 0 for all k = 1, . . . , s. Since {x1, . . . , xs}
generate A•, the Poincaré duality property of A• implies that if f 6= 0 then there exists
a polynomial g(x) of degree d− i such that

∫
g(x) f 6= 0, and hence we conclude that

f = 0.

6.2 Kähler package in degree at most one for matroids
We now specialize our discussion to the setting of matroids, and establish Kähler

package in degree at most one for Chow rings of matroids. As a consequence, we
recover the proof of Heron-Rota-Welsh conjecture as in [AHK18].

Theorem 6.2.1. The Chow ring of a matroid (A•(M),
∫

M, KM) satisfies HL≤1
KM

and HR≤1
KM

.

We will prove the theorem by induction on the rank of the matroid. The key combi-
natorial observation that allows one to reduce the rank is the following, adapted from
[AHK18, Proposition 3.5]. It underlies the well-known Hopf algebraic structure for the
lattice of flats of a matroid; see [KRS99; AA17] for a detailed discussion of Hopf algebraic
structures in combinatorics.

Lemma 6.2.2. Let M be a loopless matroid, and F a nonempty proper flat of M. Let ρF
be the ray corresponding to F in the Bergman fan ΣM of M. We have

(1) star(ΣM, ρF) ' ΣM|F × ΣM/F, and consequently,

(2) an isomorphism of Poincaré duality algebras

A•(M)/ ann(xF) ' (A(M|F)⊗ A(M/F))•

such that if ` ∈ KM then its image in A•(M)/ ann(xF) is in (KM|F ⊗ 1) ⊕ (1⊗
KM/F).

Proof. A face of ΣM is in star(ΣM, F) if an only if it corresponds to a flag of flats which
contains F. Any such flag naturally factors as the concatenation of two flags, one with
maximal element strictly contained in F, and the other with minimal element F. This
geometrically corresponds to the factorization of fans in the statement (1). For the second
statement (2), first note that M|F and M/F are loopless since F is a flat. Then, combine
Proposition 4.1.4 and Proposition 4.1.3 with the easily verifiable fact that A•(Σ× Σ′) '
(A(Σ)⊗ A(Σ′))• for rational fans Σ, Σ′. Lastly, (3) follows from the fact that restriction
of submodular functions on lattices remain submodular under restriction to intervals in
the lattice.

The remaining key part of the induction in the proof of Theorem 6.2.1, in light of
Proposition 6.1.4, is to establish HR1

` for some divisor ` ∈ KM. In [AHK18] the authors
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employ the method of order filters and flips for this purpose; in our case, the Lorentzian
property of the volume polynomial provides the desired key step.

Lemma 6.2.3. Let M be a loopless matroid of rank r = d + 1 ≥ 2, and recall that K ∇
M is

the interior of the cone generated by the simplicial generators of A•∇(M). It is a subcone
of KM. For any ` ∈ K ∇

M , we have
∫

M `d > 0, and when r = d + 1 ≥ 3, the form Q1
` has

exactly one positive eigenvalue.

Proof. The statement
∫

M `d > 0 follows from our dragon Hall-Rado formula (Corollary
5.2.5). The second statement follows from combining Theorem 5.3.1 and Proposition
6.1.3.

Proof of Theorem 6.2.1. We proceed by induction on the rank of the matroid M. The base
case consists of rank 1 matroids, for which the stated properties are trivially satisfied.
Let M now be a loopless matroid of rank r = d + 1 on a ground set E.

Observe that both properties HL0
KM

and HR0
KM

hold together if and only if
∫

M `d > 0
for all ` ∈ KM, and that given HL1

` , the property HR1
` holds if and only if Q1

` has exactly
one positive eigenvalue. Combined with Lemma 6.2.3 and Proposition 6.1.4, these facts
imply that proving HL≤1

KM
is sufficient to establish HR≤1

KM
. By Remark 2.2.8, any element

` ∈ KM can be written as a non-negative linear combination of {xF | F ∈ LM \ {∅, E}};
therefore, by Proposition 6.1.6, to establish HL≤1

KM
, it suffices in turn to prove HR≤1

for A•(M)/ ann(xF) for every nonempty proper flat F. Finally, A•(M)/ ann(xF) '
(A(M|F) ⊗ A(M/F))• by Lemma 6.2.2(2), so by the induction hypothesis and Propo-
sition 6.1.5, the proof is complete.

We conclude by recounting the argument in [AHK18, §9] that the Kähler package in
degree one implies the Heron-Rota-Welsh conjecture.

Lemma 6.2.4. [AHK18, Lemma 9.6] Let `1, `2 ∈ A1(M). If `2 is nef, then(∫
M
`2

1`
d−2
2

)(∫
M
`2

2`
d−2
2

)
≤
(∫

M
`1`2`

d−2
2

)2

.

Proof. Suppose first that `2 is ample. By Theorem 6.2.1, A•(M) satisfies HL≤1
`2

, so we
obtain a decomposition A1(M) ∼= 〈`2〉⊕ P1

`2
that is orthogonal with respect to the Hodge-

Riemann form Q1
`2

. By HR≤1
`2

, Q1
`2

is positive definite on P1
`2

and negative definite on 〈`2〉;
therefore, the restriction of Q1

`2
to the subspace 〈`1, `2〉 ⊂ A1(M) is neither positive nor

negative definite, so (∫
M
`2

1`
d−2
2

)(∫
M
`2

2`
d−2
2

)
<

(∫
M
`1`2`

d−2
2

)
.
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If `2 is merely nef rather than ample, then for any ample element `, the class `2(t) :=
`2 + t` is ample for all t > 0. An ample ` exists by Lemma 6.2.3. Now, taking a limit as
t→ 0 in the inequality(∫

M
`2

1`2(t)d−2
)(∫

M
`2(t)2`2(t)d−2

)
<

(∫
M
`1`2(t)`2(t)d−2

)
.

yields the desired inequality.

Corollary 6.2.5. For each 0 < k < d,

µk−1(M)µk+1(M) ≤ µk(M)2.

Proof. This proof is reproduced from [AHK18, Proposition 9.8]. We proceed by induction
on rk(M). When k < d− 1, the induction hypothesis applied to the truncation TE(M)
implies the inequality because the absolute values of the lower coefficients of χ̄TE(M) are
the same as those of χ̄M. Now, consider k = d− 1. For any i ∈ E, denote α := ∑i∈F xF ∈
A1(M) and β := ∑i 6∈F xF. Both α and β are independent of the choice of i and are
nef. Proposition 9.5 of [AHK18] states that µk(M) =

∫
M αd−kβk; therefore, the desired

inequality is (∫
M

α2βd−2
)(∫

M
β2βd−2

)
≤
(∫

M
αββd−2

)2

.

Since α and β are nef, this inequality holds by Lemma 7.2.13.
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Chapter 7

Geometrically distinguished divisors on
matroids

In this chapter, we study the properties of some geometrically distinguished divi-
sors on a matroid M. Due to the nature of the material in this chapter, we freely use
toric geometry and materials from §2.3 on wonderful compactifications of hyperplane
arrangement complements.

Throughout, let us fix E = {0, 1, . . . , n} as before, and notate by (E
r) the set of r-subsets

of E for 0 ≤ r ≤ n + 1.

7.1 The permutohedral divisor of a matroid
In this section, we study a divisor class on a matroid that is obtained as the pullback

of a distinguished very ample divisor on the permutohedral variety. We show that the
degree of this divisor is connected to an operation in matroid theory known as Dilworth
truncation.

Recall that the permutohedral variety XAn is defined as the toric variety of the braid
fan ΣAn , and the braid fan ΣAn is the normal fan of the standard permutohedron (of
dimension n)

Πn := Conv(w(0, 1, . . . , n) | all permutations w of E) ⊂ RE.

Among the polytopes whose normal fans equal ΣAn , the standard permutohedron is a
distinguished one in the following sense. The braid fan ΣAn is the Coxeter complex of
type A, and it is well-known (see for example [Pos09, Proposition 2.3]) that the standard
permutohedron (up to translation) is the Minkowski sum of all positive roots of the type
A root system. That is, we have

Πn = ∑
0≤i<j≤n

Conv(ei, ej) ⊂ RE.
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The standard permutohedron Πn, by Theorem 2.1.2, defines an ample divisor class ζΠn

on ΣAn . Let us describe this divisor class ζΠn in terms of the simplicial generators. First,
we translate Πn by −(n + 1)eE, which yields

Πn − (n + 1)eE = −Πn = ∑
0≤i<j≤n

Conv(−ei,−ej) ⊂ RE.

Since the simplicial generator h{i,j} ∈ A1(ΣAn) corresponds to the standard simplex
Conv(−ei,−ej) where i 6= j ∈ E, we conclude that

ζΠn = ∑
T∈(E

2)

hT ∈ A1
∇(ΣAn).

Definition 7.1.1. We call the divisor class ζΠn the (standard) permutohedral divisor
class on XAn . For a loopless matroid M on E, denoting ιM : ΣM ↪→ ΣAn for the inclusion,
we define the pullback ζΠn(M) := ι∗MζΠn permutohedral divisor class on M.

Since the braid fan ΣAn is smooth, an ample divisor class is also very ample [CLS11,
Theorem 6.1.15]. In other words, ζΠn is a very ample divisor on XAn defining an em-
bedding |ζΠn | : XAn ↪→ P|Πn∩ZE|−1. If a loopless matroid M has a realization R(M) by
PV∗ ↪→ Pn

k
, then the permutohedral divisor class on M is a very ample divisor class

defining an embedding |ζΠn(M)| : YR(M) ↪→ XAn ↪→ P|Πn∩ZE|−1 of the wonderful com-
pactification YR(M). The degree of this embedding motivates the following definition for
general matroids.

Definition 7.1.2. For a loopless matroid M on E, the permutohedral volume of M,
denoted PVol(M), is defined to be the volume of the permutohedral divisor class, i.e.

PVol(M) :=
∫

M

(
ζΠn(M)

)d.

We will compute the permutohedral volume via the Dragon Hall-Rado formula (The-
orem 5.2.4). Before we do so, we need the following combinatorial notion in matroid
theory called Dilworth truncation.

Definition 7.1.3. Let M be a matroid of rank r = d + 1 on E, and write L =2
M for the set

of flats of M with rank 2. The Dilworth truncation of M, denoted DT(M), is a new
matroid whose ground set is L =2

M and is characterized by the following property: If
G ∈ LM with rkM(G) > 2, then {F ∈ L =2

M | F ⊆ G} is a flat of DT(M).

Proposition 7.1.4. [Bry86, Theorem 7.7.5] The bases description of the Dilworth trunca-
tion DT(M) of a matroid M of rank r = d + 1 is given by

B(DT(M)) = {{F1, . . . , Fd} ⊂ L =2
M | {F1, . . . , Fd} satisfies DHR(M)}.
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Example 7.1.5. The Dilworth truncation of the Boolean matroid U|E|,E is the cyclic ma-
troid of the complete graph on |E| vertices. More generally, the Dilworth truncation
DT(Ur,E) has bases consisting of forests with r− 1 edges on |E| vertices.

We refer to [Dil44; Bry85; Tum85] for more on Dilworth truncations.

In our case, we will need the following minor variant of the Dilworth truncation. For
a matroid M, let us denote by D̃T(M) the matroid that has ground set (E

2) and is obtained
from DT(M) by replacing each F ∈ L =2

M with the parallel class {T ∈ (E
2) | clM(T) = F}

and adding a loop for each T ∈ (E
2) with rkM(T) < 2.

Theorem 7.1.6. For a loopless matroid M of rank r = d + 1 on E, we have

PVol(M) = d! · |B(D̃T(M))|

where D̃T(M) is the minor modification of the Dilworth truncation as notated above.

Proof. We justify the computation

PVol(M) = |{ordered collections (A1, . . . , Ad) in (E
2) satisfying DHR(M)}|

= d! · |{size d subsets {A1, . . . , Ad} of (E
2) satisfying DHR(M)}|

= d! · |B(D̃T(M))|

as follows. The first equality follows from the Dragon Hall-Rado formula (Theorem 5.2.4).
The second follows from observing that DHR(M) cannot be satisfied if Ai = Aj for some
i 6= j, since the rank of a two-element subset in any matroid is at most 2. The last equal-
ity then follows from the construction of D̃T(M) and the description of the bases of
Dilworth truncation in Proposition 7.1.4.

Corollary 7.1.7. Among matroids on E with rank r = d + 1, the permutohedral volume
is uniquely maximized at the uniform matroid Ur,E, with the value being

PVol(Ur,E) = d! · #{forests with d edges on vertices E}.

Proof. For the first claim, we note that in order for {A1, . . . , Ad} to satisfy DHR(M), it
must first satisfy |⋃j∈J Aj| ≥ |J| + 1 for all ∅ ( J ⊆ {1, . . . , d}, since rkM(A) ≤ |A|
for any A ⊆ E. In other words, we have DHR(Ur,E) ⊇ DHR(M) for any matroid M
of rank r on E. If every collection {A1, . . . , Ad} ⊂ (E

2) that satisfies DHR(Ur,E) also
satisfies DHR(M), then M = Ur,E necessarily: In this case, every A = {a1, . . . , ar} ∈ (E

r)
is independent in M because the collection {A1 = {a1, a2}, A2 = {a2, a3}, . . . , Ad =

{ar−1, ar}} satisfies DHR(M) and hence rkM(
⋃d

j=1 Aj = A) ≥ d + 1 = r.

One recovers the classical result that the volume of a standard permutohedron equals
the number of spanning trees on a complete graph by setting r = |E|.
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An aside: Mason’s conjecture for Dilworth truncations

Mason stated the following conjectures for the log-concavity of the f -vector of inde-
pendent subsets of a matroid [Mas72].

Conjecture 7.1.8. Let M be a matroid of rank r on a ground set E, and let Ik(M) be the
set of independent subsets of M of cardinality k. Then for all 0 < k < r we have

(a) |Ik(M)|2 ≥ |Ik−1(M)||Ik+1(M)|,

(b) |Ik(M)|2 ≥ k+1
k |Ik−1(M)||Ik+1(M)|,

(c) |Ik(M)|2 ≥ |E|−k+1
|E|−k

k+1
k |Ik−1(M)||Ik+1(M)|.

The implications (c)⇒(b)⇒(a) are clear. The weakest form of the conjecture (state-
ment (a)) was proved in [AHK18, Theorem 9.9.(3)]. The strongest form (statement (c)) of
the conjecture was later proved independently in [Ana+18] and [BH18]. Here, as a side
note, we establish the second strongest form (statement (b)) for any restriction of a Dil-
worth truncation of a matroid by showing that an associated generating polynomial is a
specialization of our volume polynomial. One my consider the result here as a partial
progress towards [EH20, Conjecture 5.6].

Theorem 7.1.9. Conjecture 7.1.8 holds for any restriction of a Dilworth truncation of a
matroid.

Proof. Let M be a loopless matroid of rank r = d + 1 on E, and let N := DT(M)|S be the
restriction of the Dilworth truncation DT(M) to a subset S ⊆ L=2

M . By Theorem 5.2.4,
the evaluation of the volume polynomial VP∇M(tF) by setting tF = 0 for all F 6= E and
F /∈ S is ∫

M

(
tEhE + ∑

F∈S
tFhF

)d
=

d

∑
k=0

d!
(d− k)! ∑

I∈Ik(N)

td−k
E ∏

F∈I
tF.

Up to the coefficients d!
(d−k)! , it follows from Proposition 7.1.4 that the right hand side

above is the generating polynomial of the independent subsets of N, homogenized by
the variable tE. This polynomial is a nonnegative specialization of VP∇M, and is hence
Lorentzian by Proposition 5.1.4 since VP∇M is Lorentzian (Theorem 5.3.1). The desired
statement then follows from Theorem 5.1.5.

7.2 The rank divisor of a matroid
Let M a be matroid on E. Its base polytope Q(M) = Conv

(
∑i∈B ei | B ∈ B(M)

)
⊂

RE can be described alternatively as

Q(M) =
{

y ∈ RE | ∑
i∈E

yi = rkM(E) and ∑
i∈A

yi ≤ rkM(A) for all A ⊆ E
}
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(see [Edm70; Gel+87] for a proof). By Proposition 2.2.6 (in the form of Remark 2.2.7), the
submodular property of the rank function rkM : 2E → Z implies that Q(M) corresponds
to the nef divisor class

ζQ(M) = ∑
∅(S⊆E

rkM(S)zS ∈ A1
FY(ΣAn).

Definition 7.2.1. For M a matroid of rank r = d + 1 on E, let ζQ(M) ∈ A1(ΣAn) be the
nef divisor class corresponding to the base polytope Q(M), which we call the divisor
class of Q(M) on ΣAn . If M is loopless, then the pullback ζQ(M)(M) of ζQ(M) to A1(M)
is called the rank divisor class of M. Explicitly, we have

ζQ(M) = ∑
∅(S⊆E

rkM(S)zS ∈ A1
FY(ΣAn), and

ζQ(M)(M) = ∑
F∈LM\{∅}

rkM(F)zF ∈ A1
FY(M).

(7.1)

We define the rank volume of M to be1

RVol(M) :=
∫

M

(
ζQ(M)(M)

)d
= ζd

Q(M) ∩ ∆M.

In this section, we study the rank divisor class of a matroid in three ways:

(a) We define the canonical divisor class and relate it to the rank divisor class.

(b) We give an expression for the rank divisor class in terms of the simplicial genera-
tors, yielding a formula for the rank volume.

(c) We investigate the extremal values of the rank volume as the matroid varies. For
the maxima, we answer positively a conjecture from [Eur20]; for the minima, we
state and make a partial progress towards a conjecture.

The canonical divisor class and the rank divisor class

Definition 7.2.2. For M a loopless matroid of rank r on E, we define the canonical
divisor class of M, denoted KM, to be

KM := rzE + ∑
∅(F(E

(
rkM(F)− 1

)
zF ∈ A•FY(M).

The following remark motivates our definition of the canonical divisor of a matroid.
1We caution that the rank volume of M is not the same as the volume of the base polytope Q(M).
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Remark 7.2.3. If π : BlY X → X is the blow-up of a smooth projective variety X along a
smooth subvariety Y ⊂ X, then we have the following formula for the canonical divisors
[Ful98, §15.4.3]:

KBlY X = π∗KX + (codimX Y− 1)EY. (7.2)

Now, let M be a loopless matroid of rank r on E, with a realization R(M) and PV∗ ↪→
Pn. Recall from §2.3 that the wonderful compactification YR(M) is constructed as a series
of blow-ups from PV∗. Moreover, divisor class −zE ∈ A•FY(M) ' A•FY(YR(M)) is the
hyperplane class pullback from PV∗. Hence, by the formula above in Equation (7.2), the
canonical divisor of the wonderful compactification is

KYR(M)
= rzE + ∑

∅(F(E

(
rkM(F)− 1

)
zF.

Let us now relate the rank divisor class of a matroid to canonical divisor classes.
Algebraically, the following proposition is almost a triviality; its geometric significance
is contained in the two remarks that follow.

Proposition 7.2.4. Let us write KAn for the canonical divisor class KU|E|,E of the Boolean
matroid U|E|,E. Then

KAn = ∑
∅(S(E

−xS ∈ A•(ΣAn) (recall A•(ΣAn) = A•(U|E|,E)).

Hence, for a loopless matroid M on E, denoting KAn(M) to be the image of KAn under
the pullback map A•(ΣAn)→ A•(M), we have

KM = ζQ(M)(M) + KAn(M).

Proof. For the Boolean matroid U|E|,E, we have

KU|E|,E = |E|zE + ∑
∅(S(E

(
|S| − 1

)
zS = ∑

∅(S⊆E
|S|zS + ∑

∅(S(E
−zS,

and
∑

∅(S⊆E
|S|zS = ∑

i∈E

(
∑
S3i

zS

)
= ∑

i∈E
0 = 0

by the linear relations defining A•(ΣAn), and hence,

KAn := KU|E|,E = ∑
∅(S(E

−xS ∈ A•(ΣAn), and KAn(M) = ∑
∅(F(E

−xF ∈ A•(M).

The second statement now follows from the definition of ζQ(M)(M) and KM.

The first of two geometric contents of Proposition 7.2.4 is the following remark.
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Remark 7.2.5. Suppose Σ is a rational fan. Then the canonical divisor class of the toric
variety XΣ is KXΣ = −∑ρ∈Σ(1) xρ ∈ A•(Σ) ' A•(XΣ) [CLS11, Theorem 8.2.3].

When the matroid M is the Boolean matroid U|E|,E, the wonderful compactification
of a realization of M is isomorphic to the permutohedral variety XAn . As XAn is the toric
variety of the braid fan ΣAn , its canonical divisor class is KXAn

= ∑∅(S(E−xS ∈ A•(ΣAn),
which agrees with our KU|E|,E by the first part of Proposition 7.2.4.

Now, suppose a loopless matroid M is not the Boolean matroid, and has a realization
R(M). Despite the Chow equivalence A•(YR(M)) ' A•(XΣM) between the wonderful
compactification YR(M) and the toric variety XΣM of the Bergman fan ΣM, their canonical
divisor classes are evidently different: The canonical divisor class of XΣM is KΣM =
∑∅(F(E−xF = KAn(M) ∈ A•(M), and hence the second part of Proposition 7.2.4 implies
that the difference between the canonical divisor class of YR(M) and XΣM is exactly the
rank divisor class ζQ(M)(M).

The following remark uses Proposition 7.2.4 to interpret the rank divisor class as the
first Chern class of a normal bundle.

Remark 7.2.6. Let M be a loopless matroid on E with a realization R(M). Consider the
conormal sequence of the embedding ιM : YR(M) ↪→ XAn

0→ N ∨ → ι∗MΩXAn
→ ΩYR(M)

→ 0,

from which we see that the first Chern class c1(N ) of the normal bundle N of YR(M) ⊂
XAn satisfies −c1(N ) + KM = KAn(M). Hence, Proposition 7.2.4 implies that

ζQ(M)(M) = c1(N ).

In fact, we can express the Chern roots of N in the following way. Suppose M has the
Higgs factorization

Mc Kc
� · · ·

K2
� M1 K1

� M0 = U|E|,E
where Ki’s are the modular cuts of the elementary quotients and Fi the corresponding

modular filters. (For an elementary quotient M′
K
� M, its modular filter is F := {S ⊆

E | rkM′(S) = rkM(S)− 1}, and we have K = F ∩LM and F = {S ⊆ E | clM′(S) ∈ K}.)
As before, let α ∈ A1(XAn) be the hyperplane class pullback, and let us denote αFi :=
∑S∈Fi

xS ∈ A1(XAn). Suppose all the elementary quotients in the Higgs factorization are
realizable, so that we have a filtration of the inclusion YR(M) ⊂ XAn as

YR(M) = YR(Mc) ⊂ · · · ⊂ YR(M1) ⊂ YR(M0) = XAn .

At each step, one can show that [YR(Mi)] = (α− αFi) · [YR(Mi−1)] in A•(XAn). Hence, the
images of {α− αFi}i=1,...,c under the pullback A•(XAn)→ A•(M) are the Chern roots of
the normal bundle of the embedding YR(M) ⊂ XAn . It is interesting to note that

ζQ(M) =
c

∑
i=1

(α− αFi) while ∆M =
c

∏
i=1

(α− αFi) as elements in A•(XAn).
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Rank divisor classes in terms of the simplicial generators

We now turn to expressing ζQ(M) and ζQ(M)(M) in terms of the simplicial generators.
Our computation here closely mirrors that of [ABD10]. Let us prepare by reviewing the
beta invariant of a matroid, studied in [Cra67].

Definition 7.2.7. The beta invariant of a matroid M of rank r on E is defined as

β(M) := (−1)r ∑
A⊆E

(−1)|A| rkM(A).

Some properties of the beta invariant follow. For proofs see [Cra67].

Theorem 7.2.8. Let M be a matroid of rank r on E.

(1) β(M) = (−1)r ∑
F∈LM

µ(∅, F) rkM(F) = (−1)r−1
(

d
dt

χM(t)
∣∣∣∣
t=1

)
= (−1)r−1χM(1).

(2) β(M) ≥ 0 and equals 0 if and only if M is disconnected or is a loop.

Let us define the signed beta invariant of a matroid M of rank r to be

β̃(M) = (−1)r−1β(M),

which is also equal to χM(1), the sum of coefficients of the reduced characteristic poly-
nomial of M, by Theorem 7.2.8.(1). We can express the rank divisor class by the signed
beta invariants in the following way.

Proposition 7.2.9. Let M be a loopless matroid of rank r on E. Then one has

ζQ(M) = ∑
∅(S⊆E

β̃(M|S)hS, and ζQ(M)(M) = ∑
F∈L ≥2

M

β̃(M|F)hF.

The second statement for ζQ(M)(M) is not immediate from the first, since hS(M) =

hclM(S)(M).

Proof. We first recall the definition hF := ∑G⊇F−zF. One computes that

if ∑
F∈LM\{∅}

aFhF = ∑
F∈LM\{∅}

bFzF, then

∑
∅(G⊆F

−aG = bF, equivalently by Möbius inversion, aF = ∑
∅(G⊆F

−µ(G, F)bG. (†)
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We now compute:

ζQ(M) = ∑
S

rkM(S)zS

= ∑
S

(
− ∑

∅⊆T⊆S
(−1)|S\T| rkM(T)

)
hS

= ∑
S

(
(−1)rk(M|S)+1β(M|S)

)
hS

= ∑
S

β̃(M|S)hS, and

ζQ(M)(M) = ∑
F

rkM(F)zF

= ∑
F

(
− ∑

∅⊆G⊆F
µ(F, G) rkM(G)

)
hF

= ∑
F

(
(−1)rk(M|F)+1β(M|F)

)
hF

= ∑
F

β̃(M|F)hF.

In both cases, the first equality is Equation (7.1); the second equality is our observation
(†), where ∅ is included in the summation because rkM(∅) = 0; and the third follows
from either the definition of β or Theorem 7.2.8.(1).

A formula for the rank volume immediately follows by applying Theorem 5.2.4 to
the above proposition, and is further simplified by applying Theorem 7.2.8.(2).

Corollary 7.2.10. Let M be a loopless matroid of rank r = d + 1 on E. Then

RVol(M) = ∑
(F1,...,Fd)

d

∏
i=1

β̃(M|Fi)

where the summation is over all ordered sequences of flats (F1, . . . , Fd) that satisfies
DHR(M) and M|Fi is a connected matroid for each 1 ≤ i ≤ d.

Extrema of rank volumes

We now consider the extremal values of the rank volume RVol(M) as M ranges
over all loopless matroids with fixed rank and ground set, and ask when those extrema
are achieved. Despite a formula for the rank volume (Corollary 7.2.10), the presence
of signs in the formula makes it difficult to be applied to the questions here. Some
of our arguments here are inherently geometric, and formulating their combinatorial
counterparts remains open.

We start with the maximum.

Theorem 7.2.11. Among all loopless matroids of rank r = d + 1 on E, the rank volume is
maximized at the uniform matroid Ur,E with the value RVol(Ur,E) = cd where c = |E| − r.

A similar statement appeared in [Eur20] for the "shifted rank volumes" of matroids.
The shifted rank volume of a loopless matroid M of rank r is

∫
M

(
ζQ(M)(M)+ rα(M)

)r−1.
The author of [Eur20] showed that shifted rank volumes are maximized at uniform
matroids among realizable matroids, and conjectured that the same statement holds
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without the realizability condition. The proof of Theorem 7.2.11 here carries over with
essentially no change to the shifted rank volumes, and hence resolves this conjecture
from [Eur20]. The conjecture was partially motivated by the search for analogues of
Newton-Okounkov bodies for matroids; see [Eur20, Remark 1.2].

We prepare for the proof of Theorem 7.2.11 with the following manipulation.

Lemma 7.2.12. Let M be a matroid of rank r on E, with corank c := |E| − r. Recall the
notation α = −zE ∈ A1(ΣAn) as the hyperplane class. Then

ζQ(M) = cα− E, where E = ∑
∅(S(E

(
|S| − rkM(S)

)
xS ∈ A1(ΣAn) is an effective divisor.

Proof. Let us start by noting that ∑S3i zS = 0 for any i ∈ E by the definition of A•(ΣAn),
and hence, we have ∑∅(S⊆E |S|zS = ∑i∈E

(
∑S3i zS

)
= ∑i∈E 0 = 0. We now compute

ζQ(M) = ∑
∅(S⊆E

rkM(S)zS

= ∑
S
(rkM(S)− |S|)zS + ∑

S
|S|zS

= cα− ∑
∅(S(E

(|S| − rkM(S))xS.

That |S| − rkM(S) ≥ 0 for all S ⊆ E is a defining property of rank functions of matroids.

We will use this lemma in conjunction with the following geometric observation.

Lemma 7.2.13. Let D1 and D2 be nef divisors on a smooth projective variety X of dimen-
sion d such that D1 − D2 is effective. Then we have

∫
X Dd

1 ≥
∫

X Dd
2 .

Proof. Since D1 is nef, we have∫
X

Dd
1 = lim

m→∞

h0(OX(mD1))

md/d!
,

and likewise for D2 [Laz04, Corollary 1.4.41]. The desired inequality thus follows from
the fact that D1 − D2 effective implies H0(OX(mD1)) ⊇ H0(OX(mD2)) for all m ≥ 0.

Proof of Theorem 7.2.11. From Lemma 7.2.12, we first note that ζQ(Ur,E)(Ur,E) = cα(Ur,E).
Recall that the hyperplane class α(Ur,E) = −zE(Ur,E) = hE(Ur,E) ∈ A1

∇(Ur,E), so that by
Theorem 5.2.4

RVol(Ur,E) = cd
∫

M
hE(Ur,E)

d = cd.
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Now, let M be a loopless matroid of rank r on E. Let us denote ζ := cα ∈ A1(XAn). Since
ζd ∩ ∆M =

∫
M(cα(M))d = cd ∫

M hE(M)d = cd, we are done once we show

ζd
Q(M) ∩ ∆M ≤ ζd ∩ ∆M.

To finish the proof by using Lemma 7.2.13, we first use [Huh14, Corollary 34], which
states that the Bergman class ∆M, considered an element of the Chow ring A•(XAn),
is effective. That is, letting δ : A•(XAn)

∼→ MWn−•(ΣAn) be the isomorphism from
Theorem 2.1.6, one can write

δ−1∆M = ∑
σ∈ΣAn (c)

aσ[V(σ)] ∈ Ac(XAn) with aσ ≥ 0 for all σ,

where V(σ) is the torus orbit closure in XAn corresponding to σ ∈ ΣAn(c). Thus, for any
divisor class ξ ∈ A1(XAn), we have

ξd ∩ ∆M =
∫

XAn
∑

σ∈ΣAn (c)
ξd · aσ[V(σ)] = ∑

σ∈ΣAn (c)
aσ

∫
V(σ)

(ξ|V(σ))
d

The theorem now follows from Lemma 7.2.13 since ζ and ζQ(M) are nef divisor classes
on XAn whose difference is effective by Lemma 7.2.12, and the same is true for their
pullbacks to any torus orbit closure V(σ).

We now consider the minimum. Since ζQ(M)(M) is combinatorially nef, the Hodge-
Riemman relations in degree 0 (Theorem 6.2.1) implies that RVol(M) ≥ 0. We have the
following conjecture for when 0 is attained.

Conjecture 7.2.14. For a loopless matroid M, one has RVol(M) = 0 if and only if M is
disconnected.

One direction follows from the fact that base polytopes of disconnected matroids
are not full dimensional. Recall that the dimension of the base polytope Q(M) of a
matroid M on E is |E| − comp(M), where comp(M) is the number of components of M
(see [FS05, Proposition 2.4] for a proof). In particular, the base polytope Q(M) is full
dimensional in the (affine translate of) the dual space N∨R of NR = RE/ReE if and only
if M is connected.

Proposition 7.2.15. If M is disconnected, then RVol(M) = 0.

Proof. Let ∆Q(M) ∈ MW1(ΣAn) be the Minkowski weight of codimension 1 correspond-
ing to the divisor ζQ(M). By Proposition 2.1.7, it is the 1-codimemsional skeleton of the
normal fan ΣQ(M) with all weights equal to 1, since the edges of Q(M) all have lattice
length 1. We have RVol(M) = ζd

Q(M) ∩∆M = ∆d
Q(M) ·∆M, where in the last expression the

multiplication is the stable intersection of Minkowski weights. If M is disconnected, then
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the base polytope Q(M) has dimension < n, and thus Lemma 2.2.3 implies that ∆Q(M)

and ∆M share a nontrivial lineality space, so that if the stable intersection ∆d
Q(M) · ∆M is

nonzero, then it must also have this positive dimensional lineality space. But ∆d
Q(M) ·∆M

has to be a zero-dimensional Minkowski weight.

We provide a proof for the converse when M is realizable.

Proposition 7.2.16. If M is realizable and connected, then RVol(M) > 0.

Proof. Let M be a connected realizable matroid of rank r = d + 1 on E with a realization
R(M) by PV∗ ↪→ Pn. Let Y̊R(M) be the hyperplane arrangement complement, which
is a subvariety of the torus TN = (k∗)n+1/k∗. Let XQ(M) be the toric variety of the
lattice polytope Q(M). Its torus is TN because M connected implies that Q(M) is full-
dimensional. (If M is disconnected, then Q(M) is not full-dimensional, so that the torus
of the toric variety XQ(M) is a nontrivial quotient of TN).

As the normal fan of Q(M) coarsens ΣAn , we have a map XAn → XQ(M), and the
distinguished very ample divisor DQ(M) on XQ(M) corresponding to the polytope Q(M)

pulls back to the divisor class ζQ(M) on XAn . Thus, the rank divisor class ζQ(M)(M) on
the wonderful compactification YR(M) is a base-point-free divisor class defining the map

ϕ : YR(M) ↪→ XAn → XQ(M) ↪→ P|Q(M)∩ZE|−1. Let Yϕ be the image of this map. The
variety Yϕ has dimension d because the map XAn → XQ(M) is identity on the torus TN

and so Yϕ contains Y̊R(M). Thus, the degree of Yϕ as a subvariety of P|Q(M)∩ZE|−1 is
given by

∫
YR(M)

ζQ(M)(M)d = RVol(M), and hence the rank volume is positive.
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Appendix A

A brief tour of matroids

We review the fundamentals of matroid theory in this appendix. For a detailed treat-
ment of matroids, along with proofs of statements here, we point to [Wel76], [Whi86], or
[Oxl11]. Geometrically oriented readers may also enjoy [Kat16], [Bak18], and [Huh18b].

Notation. As it is customary in matroid theory, for a subset S ⊆ E and i ∈ E we write
S ∪ i for S ∪ {i} and write S \ i for S \ {i}.

A.1 Linear subspaces and matroids
Matroids admit several equivalent characterizations. Here we review characteriza-

tions of matroids by (i) bases, (ii) rank functions, (iii) flats, and (iv) base polytopes.

Definition A.1.1 (Bases). Let E be a finite set and 0 ≤ r ≤ |E|. A matroid M of rank r
on the ground set E is the data of M = (E,B(M)), where B(M) ⊆ (E

r) is a collection of
r-subsets of E satisfying

(B1) B(M) 6= ∅, and

(B2) for any B, B′ ∈ B(M) and x ∈ B \ B′, there exists y ∈ B′ \ B such that B− x ∪ y ∈
B(M).

The collection B(M) is called the set of bases of M.

Example A.1.2 (Realizable matroids). Let E = {v0, . . . , vn} be a set of n + 1 vectors
spanning a k-vector space V of rank r. The subsets of E that are bases of V form a basis
of a matroid of rank r on ground set E.

In other words, given a surjection v : kE � V where ei 7→ vi for i ∈ E, or equivalently
an r-dimensional linear subspace V∗ ⊆ k

E, we denote M(V∗) to be the matroid whose
ground set is identified with the image of the standard basis under kE � V. In this
way, matroids of rank r on a ground set E are combinatorial models of r-dimensional
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linear subspaces in k
E. Matroids that arise in this way are called realizable matroids.

A realization of a matroid M is the data of kE � V (equivalently V∗ ↪→ k
E) such that

M(V∗) = M.

Example A.1.3. Let G = (V(G), E(G)) is a finite connected graph with the incidence
matrix IG. The columns of IG define a matroid of rank |V(G)| − 1 on the ground set
E(G). The bases of this matroid are the spanning trees of G. Matroids that arise in this
way are called graphical matroids.

The graphical example motivates the following terminologies. For a matroid M on a
ground set E, an element e ∈ E is a loop if it not contained in any basis of M, and e is a
coloop if it is contained in every basis of M.

Example A.1.4. For 0 ≤ r ≤ |E|, the uniform matroid of rank r is a matroid Ur,E whose
bases are all r-subsets of E. When r = |E|, the uniform matroid Ur,E is also called the
Boolean matroid on E.

The rank function rkM : 2E → Z of a matroid M on E is defined by

rkM(S) = max{|S ∩ B| : B ∈ B(M)} for all subsets S of the ground set.

It combinatorially models dimensions of linear subspaces, because if M has a realization
v : kE � V then rkM satisfies rkM(S) = dimk(span

k
{vi | i ∈ S}). Matroids can be

characterized in terms of rank functions in the following way.

Proposition A.1.5. A function rk : 2E → Z on a finite set E is a rank function of a matroid
on E if and only if

(R1) 0 ≤ rk(S) ≤ |S| for any S ⊆ E,

(R2) rk(S1) ≤ rk(S2) for any S1 ⊆ S2 ⊆ E, and

(R3) rk(S1 ∪ S2) + rk(S1 ∩ S2) ≤ rk(S1) + rk(S2) for any S1 ⊆ E, S2 ⊆ E.

A subset F ⊆ E is a flat of a matroid M if rkM(F ∪ x) > rkM(F) for all x ∈ E \ F. The
set of all flats of M is denoted LM. With respect to inclusion, the set LM is a poset that
is a geometric lattice. The atoms of this lattice, that is, flats F of M with rkM(F) = 1, are
called the atoms of M. The set of atoms of M is denoted A(M).

When M has a realization v : kE � V, the flats of M correspond to linear subspaces
of V obtained as spans of subsets the vectors {vi | i ∈ E} ⊂ V. Dually, a flat F of M with
rkM(F) = c corresponds to a c-codimensional linear subspace LF ⊆ V∗ by

LF = { f ∈ V∗ | f (vi) = 0 ∀i ∈ F}.
In particular, an atom a ∈ (M) corresponds to the hyperplanes La in V∗, and we thus
have a hyperplane arrangement {La}a∈A(M) on V∗. Often one projectivizes this, and
consideres the hyperplane arrangement {PLa}a∈A(M) on PV∗.

Matroids can be characterized in terms of flats in the following way.
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Proposition A.1.6. Let L be a collection of subsets of a finite set E. Then L is a set of
flats of a matroid if and only if

(F1) the ground set E is in L ,

(F2) if F1, F2 ∈ L then F1 ∩ F2 ∈ L , and

(F3) for each F ∈ L , let L mF be the set of flats that cover F, i.e.

L mF := {G ∈ L | G ) F, and G ) G′ ) F ⇒ G′ /∈ L }.

Then for every F ∈ L , the collection {G \ F | G ∈ L mF} partitions E \ F.

Example A.1.7. Let us consider the uniform matroid U3,4 of rank 3 on a ground set
{0, 1, 2, 3}. The matroid U3,4 can be realized as four general vectors in k

3. For instance,
it is realized as the columns of the matrix1 0 0 1

0 1 0 1
0 0 1 1

 .

The lattice of flats of M and the (projective) hyperplane arrangement (of a realization of
M) are drawn below.

3 2 1 0

23 12 13 02 01 03

0123

Figure A.1: The lattice of flats and the hyperplane arrangement in Example A.1.7

Example A.1.8. Let us consider the matroid on M on a ground set {0, 1, 2, 3, 4} of rank 4
with bases {0123, 0124, 0134}. The matroid M can be realized as five vectors in k

4 where
three vectors v2, v3, v4 are in a common plane and two other vectors v0, v1 are in general
position. For instance, it is realized as the columns of the matrix

1 0 0 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 1

 .
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The lattice of flats of M and the (projective) hyperplane arrangement (of a realization of
M) are drawn below.

4 3 2 1 0

234 12 14 13 04 03 02 01

1234 0234 012 014 013

01234

Figure A.2: The lattice of flats and the hyperplane arrangement in Example A.1.7

The study of Chow rings of matroids is motivated by certain compactifications of
hyperplane arrangement complements. Hence, it heavily utilizes the properties of the
flats of a matroid, as can be seen in [FY04], [AHK18], and this thesis. We now mention
another route through which matroid theory interacts with algebraic geometry.

The base polytope Q(M) of a matroid M on E is the polytope

Conv
(

∑
i∈B

ei : B ∈ B(M)
)
⊂ RE.

When M of rank r has a realization V∗ ↪→ k
E, let us consider V∗ as a point on the Grass-

mannian Gr(r, E) of r-dimensional planes in k
E. The standard action of the algebraic

torus T := (k∗)E on k
E induces an action of T on Gr(r, E). One can thus consider the

torus orbit closure of the point V∗, which is well-known to be isomorphic to the toric
variety of the base polytope Q(M) [Gel+87].

Matroids can be characterized in terms of base polytopes in the following way.

Proposition A.1.9. Let S be a collection of r-subsets of a finite set E, and define a
polytope

QS := Conv
(

∑
i∈S

ei : S ∈ S
)
⊂ RE.
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Then QS is a base polytope of a matroid if and only if every edge of QS is a parallel
translate of ei − ej for some i 6= j ∈ E.

We point to [GS87; Spe09; FS12] as some examples of studying the geometry of
matroids through their base polytopes.

A.2 Linear operations and matroid operations
We describe three central matroid operations here, which are (i) direct sums, (ii)

restrictions, and (iii) contractions.

Definition A.2.1. Let M and M′ be matroids on E and E′ (respectively). Then the direct
sum M⊕M′ is a matroid on E t E′ whose bases are {B t B′ : B ∈ B(M), B′ ∈ B(M′)}.

If kE � V and k
E′ � V′ are realizations of M and M′ (respectively), then k

E ⊕ kE′ �
V ⊕ V′ is a realization of M ⊕ M′. A matroid M is said to be connected if it is not a
nontrivial direct sum of two or more matroids.

Definition A.2.2. Let M be a matroid on E, and A a subset of E. Then the restriction of
M to A, denoted M|A, is a matroid on A whose rank function determined by

rkM|A(S) = rkM(S) for S ⊆ A.

The contraction of M by A, denoted M/A, is a matroid on E \ A whose rank function is
determined by

rkM/A(S) = rkM(S ∪ A)− rkM(A) for S ⊆ E \ A.

If v : kE � V is a realization of M, then the restriction v|
kA : kA → v(kA) of the

map v is a realization of the matroid M|A. The map k
E\A ' k

E/kA → V/VA where
VA = v(kA) is a realization of the matroid M/A.

Restriction and contraction by a flat of a matroid behave well with respect to the
lattice of flats. If F is a flat of a matroid M, then the lattice of flats of the restriction M|F
is isomorphic to the interval [0̂, F] ⊂ LM where 0̂ is the bottom element of LM. The
contraction M/F has lattice of flats isomorphic to the interval [F, E] ⊂ LM.

If M has a realization k
n+1 � V, so that we have a hyperplane arrangement AM

on PV∗ ⊂ Pn, then the restriction and contraction by flats can be described as follows.
For F a flat of M, let LF be the corresponding linear subspace { f ∈ V∗ : f (vi) = 0 ∀i ∈
F}. Then the intersections of PLF with the hyperplanes of AM not containing PLF
defines a hyperplane arrangement on PLF. This hyperplane arrangement on PLF is a
realization of the contraction M/F. Dually, consider the projection PV∗ 99K P(V∗/LF).
The hyperplane arrangement on P(V∗/LF), where the hyperplanes are the projections
of the hyperplanes of AM containing PLF, is a realization of the matroid M|F.
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