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8.2 The knapsack problem

In this section we consider a mathematical programming problem with a
structure leading to a natural introduction to the branch-and-bound ap-
proach referred to in the introduction. The general form of the knapsack
problem involving a choice of n items is given below:

(KP) Maximize: wviz: + V9T + - -+ UnZn
Subject to : wizy +weze+ - F Wy < W
z;€{0,1},7=1,2,...,n

The motivation for the name of the problem is planning for a hiking
trip in which there is a limit to the weight that can be carried as well as a
desire to take the most useful set of items. The v;’s are the values of the
corresponding items, and the w;’s are their weights or costs. In the suggested
setting of packing a knapsack, the value of an item is its estimated utility,
and the cost is its weight, hence the use of the w;’s in the problem. The
W in the right-hand side of the constraint represents the total weight that
can be carried, or the total budget for a problem involving finances. The
restriction of the value of z; to zero or one indicates the use of z; to reflect
a decision: z; = 1 means that item j is put into the knapsack; z; = 0 means
that it is not included.

The number of solutions to a knapsack problem increases rapidly with the
number of items. Since a solution is determined by the subset of the n items
that is included in the knapsack, the number of solutions—not necessarily
all feasible—is 2™, the number of subsets of an n-element set.

Hence, a problem with five items has 25 = 32 possible solutions, while
a problem with ten items has 210 — 1,024 possible solutions. An effective
algorithm for the knapsack problem should obtain the optimal solution by
examining only a small fraction of these solutions.

To introduce what we mean by a branch-and-bound algorlthm consider
the graph in Figure 8.2.1.

In the tree associated with the solution of a problem by a branch—and—
bound process, each node will correspond to a feasible solution, or partial
solution, to the problem. A node in a tree is called a terminal node if only
one edge is incident on the node. The edges indicate a relationship in which
a choice between two alternatives has been made leading to two nodes closer
to a complete solution. The process will begin at the node labeled R, for
the root of the tree. We then devise a way to choose between alternatives,
and a way to calculate a bound for the maximum (or minimum) value of
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all solutions further out on the tree. The process will end when a solution
has been reached at a terminal node and the bounds indicate that all other
solutions are less desirable.

Figure 8.2.1

We will develop the solution process in the context of an example involv-
ing real estate.

Example 8.2.1. A real estate development firm is considering five projects
for which it can raise an estimated $100 million in capital. For each project,
the firm’s analysts have produced an estimate of the return of the project
over the next 20 years. The estimated returns and project costs in millions
of dollars are shown in Table 8.2.1.

Table 8.2.1
Project { Cost | Return
1 45 90
28 60
32 56
18 42
24 60

Before describing the algorithm to be used for the knapsack problem, we
first consider what is necessary to define such an algorithm. Four things are
needed in the description of a branch-and-bound algorithm:

e The order in which to consider the branches,
e The rule that terminates the search for the solution,

e The decision which forms the basis for a branch, and
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e The formula for the calculation of the bound at each node of the search
tree.

In our algorithm for the knapsack problem:

¢ The items will be considered in decreasing order by their desirability,
i-e., the ratio of their value to their cost,

¢ The algorithm will terminate when all items have either been selected
or eliminated to form a complete solution, and any other selection has
been shown to have a value that is not greater,

e A branch will be determined by the decision to include or not include
an item, and

¢ The bound will be the sum of the values of the items selected plus a
high estimate of the value of those items that might still be selected.

Branch-and-bound algorithm for the knapsack problem
We first restate the problem and establish the notation for the algorithm:

(KP) Maximize : V1Z1 + 32 + - 4 vpz,
Subject to: wiz; + WaZy + - wpz, < W
z;€{0,1}, j=1,2,....n.

In the statement of the algorithm, we will let S denote the set of all n
items, B; be the bound at node i, I; be the set of items included at node
i, B Dbe the set of items excluded at node %, and n be the current number
of nodes. The empty set is denoted by 0.

We want the bound at a node corresponding to an infeasible solution to
be an arbitrarily large negative number to be certain that any other bound
is greater. For this purpose we use a convention called the “Big M.” Here
M denotes a positive number with the property that M — g is positive
no matter how large a may be. In this instance, since we want to express
a large negative number, we will set the bound equal to —M. This same
convention will be used in later branch-and-bound algorithms.

1. Check feasibility:

(a) Check that j exists such that wj < W. If not, there is no feasible
solution and the algorithm terminates.
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(b) If f:wj < W, then all items can be loaded, and the problem is
trij;ilally solved by putting I; = S and E; = 0.
(c) If the algorithm did not terminate at (a) or (b), sort the items
into decreasing order of desirability &
. wz n
(d) Create initial node: Set n=1,B, = Zvj, and I, = E, = 0.
j=1

2. Select the node _for the next branch:

(a) Select the terminal node k with By, the largest existing bound for
the next branching decision.

(b) If Iy U By, = S, then an optimal solution is given by the.items
in Iy, so stop. Otherwise, form the next branch on the remaining
item with index 4’ having the largest desirability

- max{i’i:jgfkuEk}.
Wy

Wyt
3. Form the next two nodes:
(a) Set n =n+1, and index the new left node by n, and set I, = Iy,
and E, = E; U {i'} to exclude item 7’.
(b) Set n = n + 1, and index the new right node by 7, and set
I, = I U {i'} and E, = Ej to include item .

4. Calculate the upper bounds of the new nodes:

(a) If 3{wj; : j € Iy} > W, then the node corresponds to an infea-
sible solution, so set By = —M.

It W~3{wj:jel} <w; foral j¢IUE}, then set
By =3"{v; : j € I}

Otherwise, let By be Y {v; : j € I} plus the sum of the values
v; of all items in S\(Ix U Ex), taking them in order of decreasing
desirability until the next item to be added would make the total
of the weights greater than W. Add to By, the proportional part of
the next item considered if a fractional part of it can be included.

(b) When (a) has been applied for both new nodes, go to Step 2.

EEEEEEEENENa
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We now solve Example 8.2.1. Since there is at least one project that can
be done within the budget, the problem has a feasible solution. Since the
total of all the costs is more than the budget, there is no trivial solution.

We therefore sort the projects in decreasing order by desirability:

Table 8.2.2

Project | Cost | Return | Desirability
5 24 60 2.50
4 18 42 2.33
2 28 60 2.14
1 45 90 2.00
3 32 56 1.75

Because project 5 has the greatest desirability, we select it for the first
branch. In the new left node, Node 2, we exclude project 5. We can include
in the bound the costs of projects 4, 2, and 1 since the total of their costs
is 91. When a fractional part of the return on project 3 is included to bring
the total cost to 100, the bound is

Bz=42+60+90+§9—2—‘56=207.75.

In the new right node, Node 3, we include project 5. Since the total of the
costs of projects 5, 4, and 2 is 70, we can include the total of their returns
in the bound plus a proportional part of the return for project 1:

3
B3=§_+42+60+Z§-90:222.

In the calculation of Bs we have underlined 60 to indicate that it is the
value of an included item. This notational convention can help to identify
when it is necessary to include a fractional part of the cost of an item.

Note in the initial tree, shown in Figure 8.2.2, that we use an * to indicate
an excluded project.

By =207.75

Figure 8.2.2
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Since Node 3 is the terminal node with the highest bound, we branch
from it to form the new nodes. We branch on the decision to include project
4 since it has the highest desirability of the nodes remaining to consider.

For the'left node, Node 4, we exclude project 4. The sum of the costs of
projects 5, 2, and 1 is 97, so the bound is:

B4=@+60+90+33—2~56=215.25.

The new right node includes project 4, and since the costs of projects 5, 4,
and 2 sum to 70, the bound for Node 5 is:

B5=®+Q+60+%-90=22z.

Now branching from Node 5 with the decision based on project 2, we calcu-
late the bounds as follows:

Bs = 60442+ 90+ —;:g - 56 = 214.75

B; = 60+ 42+ 60 = 162.
Note that the calculation of B; omits the fractional part of the next return
because the total cost of the projects included is 70 and no other project
could be included since the budget is only 100 and the smallest remaining

project has a cost of 32.
The resulting tree is shown in Figure 8.2.3.

Bs = 222

By =162

Figure 8.2.3
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The largest bound on a terminal node is By = 215.25. Since not all
projects are included or excluded at Node 4, we have not reached a solution,
but must continue branching from that node. We branch on the decision to
include or exclude project 2, and continue with the calculations summarized
below to achieve the final search tree:

Iy = {5}, Eg = {2, 4}, Bg =160+ 90+ 5L - 56 = 204.25

Iy = {2, 5}, Ey=1{4},  By=60+60+90+ 3 -56 = 215.25
.[10 = {2, 5}, Em = {1,4}, BlO = ®+_6__Q+ 56 = 176

ILi = {1,2,5}, E;=1{4}, B =60+60-+90=210

112 = {4,5}, E12 == {1,2}, BlZ = @."'Q‘l‘ 56 = 158

s = {1,4,5}, FEi3={2}, Biz=90+42+60=192

Iy = {1,2,5}, Eiy=1{3,4}, By =60+60+90=210
Iis {1,2,3,5}, Eis={4}, Biy=-M

Il

Note that for Node 15, projects 1, 2, 3, and 5 are included with a total
cost of 129, more than the maximum of 100. Thus, it represents an infeasible
solution, so Bis = —M.

The final graph for the problem is given in Figure 8.2.4 and shows that
the optimal solution is found at Node 14. Thus, the firm’s best strategy is
to carry out projects 1, 2, and 5 at a cost of $97 million with an expected
return of $210 million.

Note from the numbering of the nodes that a bound not the highest on
a terminal node at one stage may become the highest on a terminal node at
a later stage of the search. m

The inclusion of the fractional part of an item in the calculation of the
bounds is necessary. An example in the exercises shows that omitting the
fractional part can cause the algorithm to fail to detect the branch of the
tree containing the solution because the bound is too low.




402 Chapter 8. Integer Programming

Big = 158
1*;2*:4a5 112*7415 B3 =192
Bg = 215.25
Bio =176 (1%,2,4%,5 1,2,4*,5 ) By =210

Bja = 210 (1,2,3%,4*,5 1,2,3,4*,5) Bis = — M

Figure 8.2.4

Exercises
1. Solve the knapsack problem if the maximum possible total weight is 40:

Table 8.2.3

Weight | Value
1 15 20
2 12 24
3 9 15
4 8 14

2. If a budget is $20 and the possible purchases are tabled below, determine
which to purchase: '
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