RIGIDITY AND d-DIMENSIONAL Algebraic connectivity of graphs

Alan Lew Carnegie Mellon University

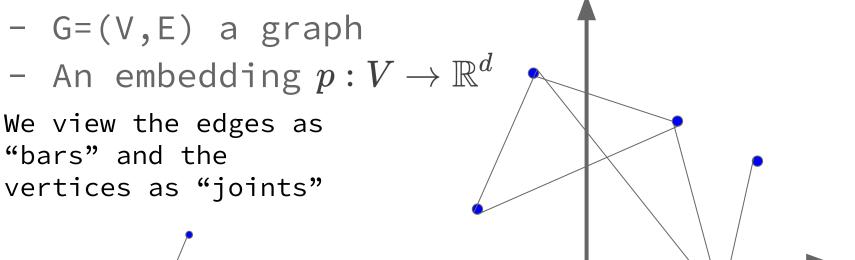
(based on joint work with Eran Nevo, Yuval Peled, Orit Raz, Michael Krivelevich, Peleg Michaeli)

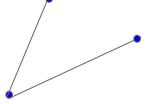
- A d-dimensional **framework** is a pair (G,p):
- G=(V,E) a graph

- G=(V,E) a graph
- An embedding $p:V
 ightarrow \mathbb{R}^d$

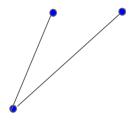
- G=(V,E) a graph - An embedding $p:V o \mathbb{R}^d$

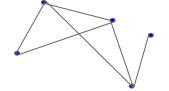
- G=(V,E) a graph - An embedding $p: V \to \mathbb{R}^d$ We view the edges as "bars" and the vertices as "joints"

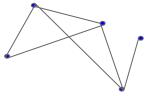


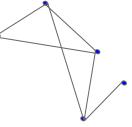


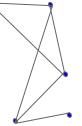
- G=(V,E) a graph - An embedding $p: V \to \mathbb{R}^d$ We view the edges as "bars" and the vertices as "joints"



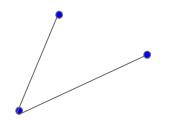


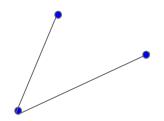




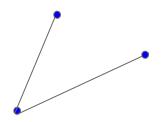


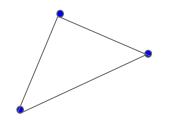
Or: Is there a continuous motion of the vertices that preserves the lengths of all edges, except **translations** and **rotations**?



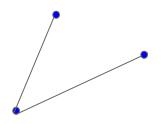


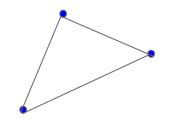
Flexible





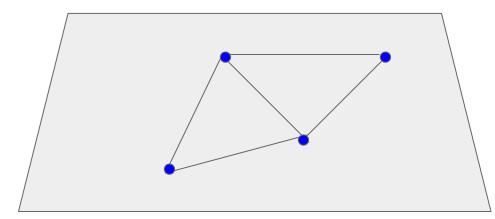
Flexible

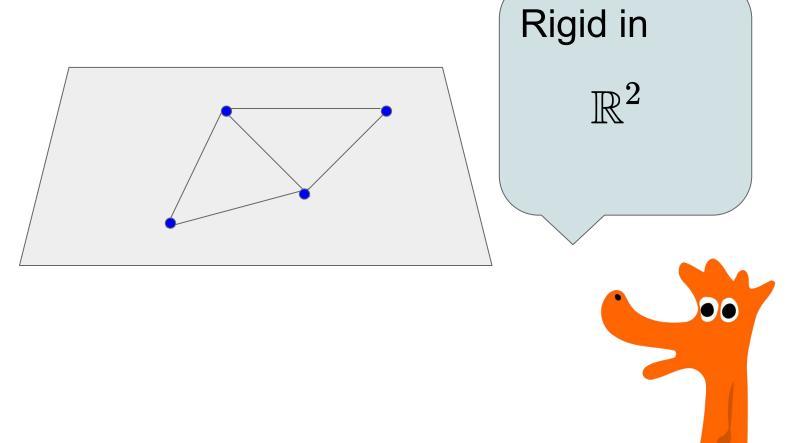


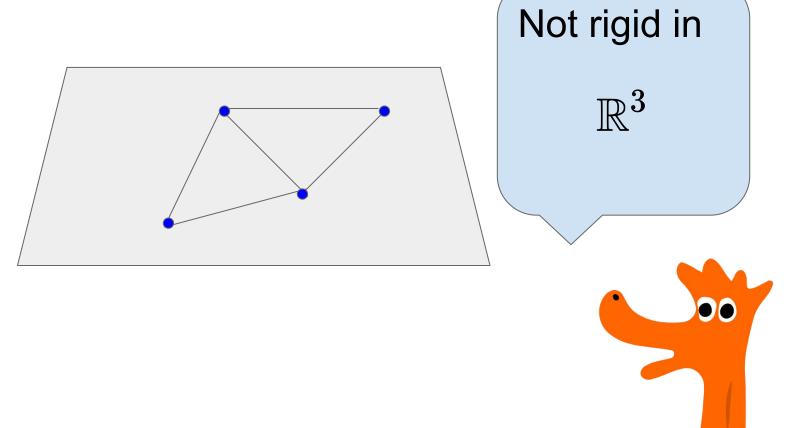


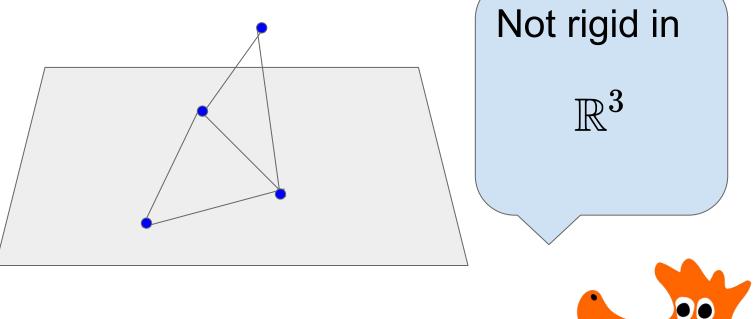
Flexible

Rigid





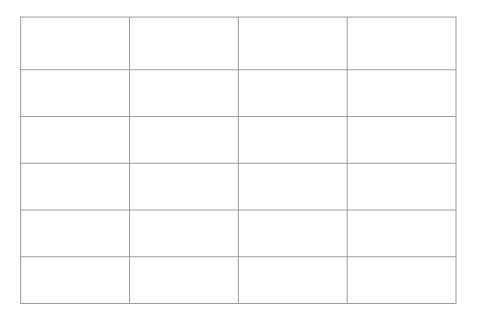




The Rigidity Matrix R(G,p)

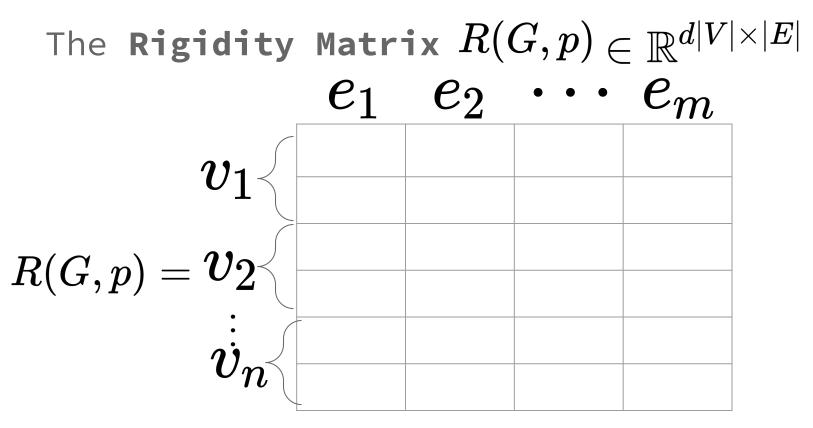
The Rigidity Matrix $R(G,p) \in \mathbb{R}^{d|V| imes |E|}$

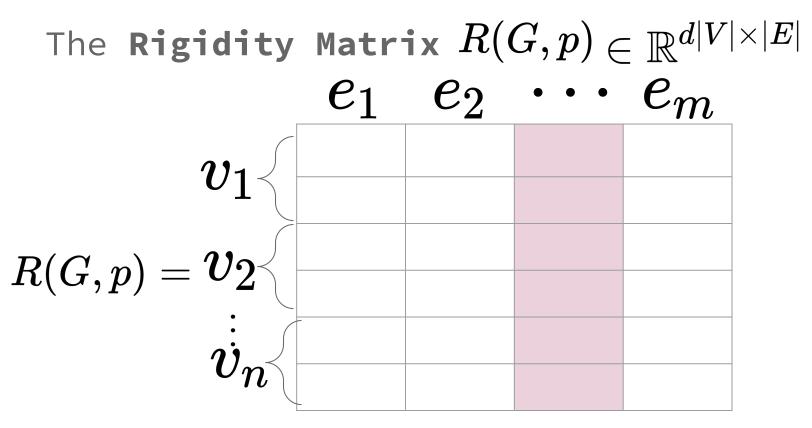
The Rigidity Matrix $R(G,p) \in \mathbb{R}^{d|V| imes |E|}$



R(G,p) =

The Rigidity Matrix $R(G,p) \in \mathbb{R}^{d|V| imes |E|}$ $e_2 \cdot \cdot \cdot e_m$ e_1 R(G,p) =

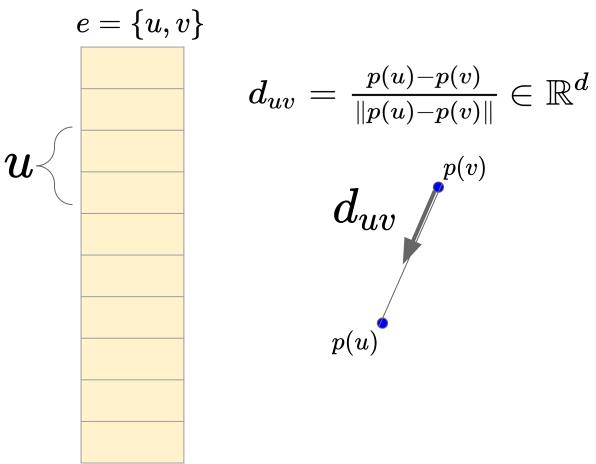




$$e = \{u, v\}$$

$$e = \{u, v\}$$
 $d_{uv} = rac{p(u) - p(v)}{\|p(u) - p(v)\|} \in \mathbb{R}^d$

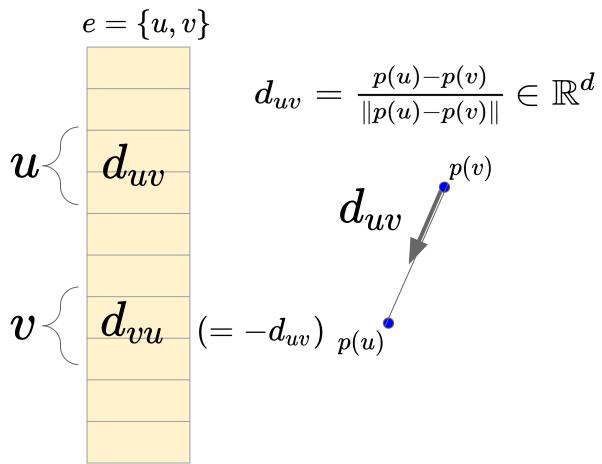
$$e = \{u, v\}$$
 $d_{uv} = rac{p(u) - p(v)}{\|p(u) - p(v)\|} \in \mathbb{R}^d$
 d_{uv}
 $p(u)$

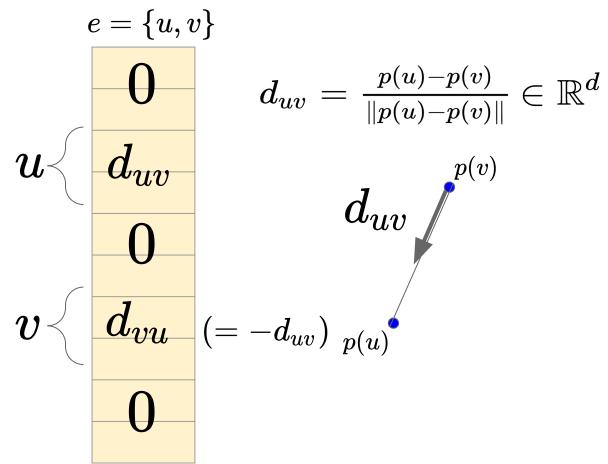


$$e = \{u, v\}$$
 $d_{uv} = rac{p(u) - p(v)}{\|p(u) - p(v)\|} \in \mathbb{R}^d$
 d_{uv}
 $p(v)$
 d_{uv}
 $p(u)$

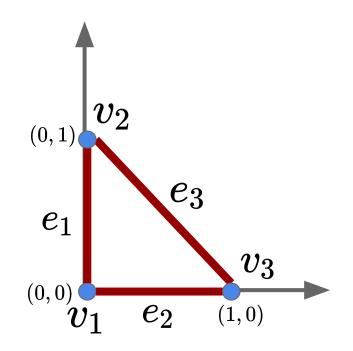
$$e = \{u, v\}$$
 $d_{uv} = rac{p(u) - p(v)}{\|p(u) - p(v)\|} \in \mathbb{R}^d$
 $v \langle \begin{array}{c} d_{uv} & d_{uv} \\ p(u) \end{array}$

$$e = \{u, v\}$$
 $d_{uv} = rac{p(u) - p(v)}{\|p(u) - p(v)\|} \in \mathbb{R}^d$
 $v \langle \begin{array}{c} d_{uv} & d_{uv} \\ d_{uv} & p(v) \\ \end{array}$

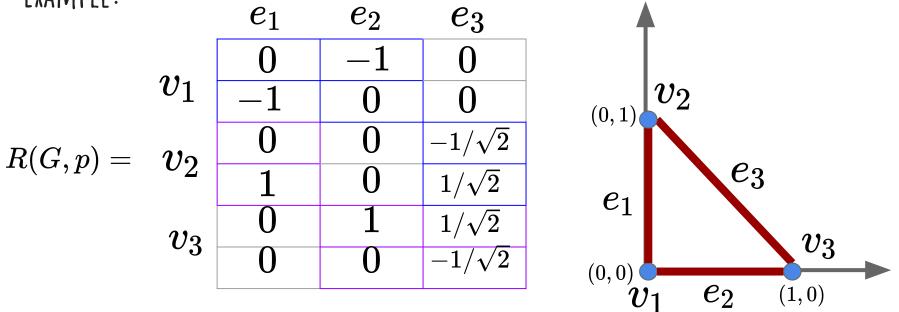




EXAMPLE:



EXAMPLE:



Facts:

INFINITESIMAL RIGIDITY Facts:

– rank
$$(R(G,p)) \leq dn - {d+1 \choose 2}$$

INFINITESIMAL RIGIDITY Facts:

$$-\operatorname{rank}(R(G,p)) \leq dn - {d+1 \choose 2}$$

- If $\operatorname{rank}(R(G,p)) = dn - \binom{d+1}{2}$ then (G,p) is rigid.

A framework (G,p) in \mathbb{R}^d is infinitesimally rigid if $\operatorname{rank}(R(G,p)) = dn - \binom{d+1}{2}$.

A framework (G,p) in \mathbb{R}^d is **infinitesimally** rigid if $rank(R(G,p)) = dn - \binom{d+1}{2}$.

Theorem (Gluck '75, Asimow-Roth '79):

(G,p) is infinitesimally rigid \implies (G,p) is rigid

A framework (G,p) in \mathbb{R}^d is infinitesimally rigid if $\operatorname{rank}(R(G,p)) = dn - \binom{d+1}{2}$.

Theorem (Gluck '75, Asimow-Roth '79):

(G,p) is infinitesimally rigid \implies (G,p) is rigid

If p is **generic** (dn coordinates are algebraically independent over the rationals) then:

A framework (G,p) in \mathbb{R}^d is infinitesimally rigid if $\operatorname{rank}(R(G,p)) = dn - \binom{d+1}{2}$.

Theorem (Gluck '75, Asimow-Roth '79):

(G,p) is infinitesimally rigid

If p is **generic** (dn coordinates are algebraically independent over the rationals) then:

(G,p) is infinitesimally rigid

$$\iff$$
 (G

(G,p) is rigid

RIGIDITY OF GRAPHS

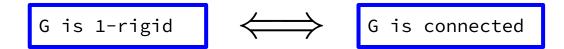
A graph G is called **d-rigid** if there exists $p: V \to \mathbb{R}^d$ such that (G,p) is infinitesimally rigid.

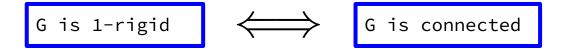
RIGIDITY OF GRAPHS

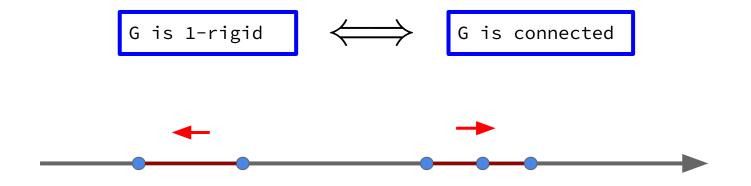
A graph G is called **d-rigid** if there exists $p: V \to \mathbb{R}^d$ such that (G,p) is infinitesimally rigid.

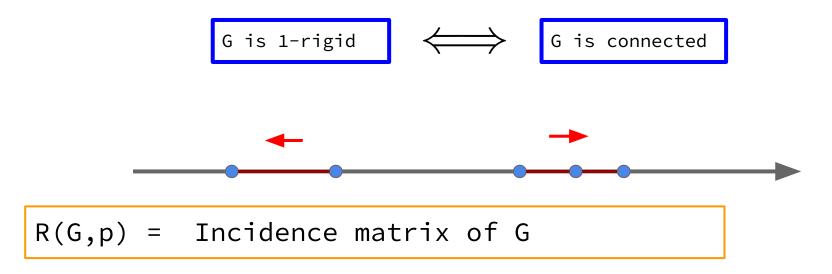
Theorem (Asimow-Roth '79):

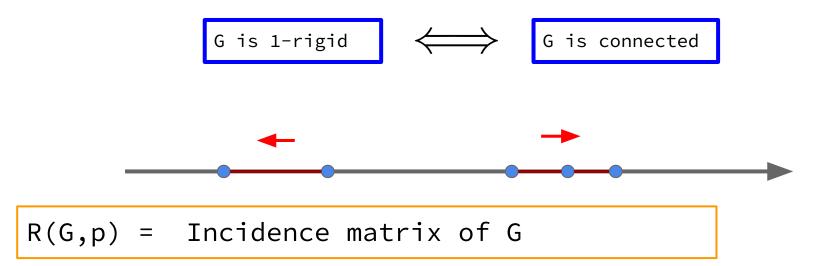
G is d-rigid \longleftrightarrow (G,p) is rigid for all **generic** p





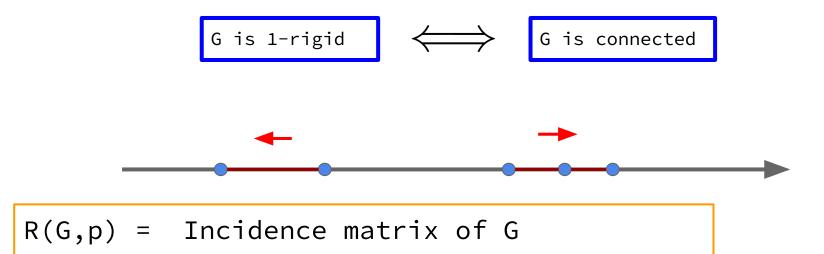






Example:





Example:

1

$$\begin{array}{c} \bullet \\ 2 & 3 \end{array} \qquad \qquad R(G,p) = N(G) = \begin{pmatrix} -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{pmatrix}$$

The Laplacian matrix: $L(G) = N(G)N(G)^T$

The Laplacian matrix: $L(G)=N(G)N(G)^T$

L(G)is PSD (positive semi-definite), smallest eigenvalue $\lambda_1(L(G))=0$

The Laplacian matrix: $L(G)=N(G)N(G)^T$

L(G)is PSD (positive semi-definite), smallest eigenvalue $\lambda_1(L(G))=0$

Algebraic connectivity of G:
$$a(G) = \lambda_2(L(G))$$

The Laplacian matrix: $L(G)=N(G)N(G)^T$

L(G)is PSD (positive semi-definite), smallest eigenvalue $\lambda_1(L(G))=0$

Algebraic connectivity of G:
$$a(G)=\lambda_2(L(G))$$

a(G)>0 \iff G is connected

The Laplacian matrix: $L(G)=N(G)N(G)^T$

L(G)is PSD (positive semi-definite), smallest eigenvalue $\lambda_1(L(G))=0$

Algebraic connectivity of G:
$$a(G)=\lambda_2(L(G))$$

$$a(G)>0 \Longleftrightarrow$$
 G is connected

Large algebraic connectivity implies that G is "strongly connected".

Let (G,p) be a d-dimensional framework.

$$L(G,p) = R(G,p)R(G,p)^T \in \mathbb{R}^{dn imes dn}$$

Let (G,p) be a d-dimensional framework.

$$L(G,p) = R(G,p)R(G,p)^T \in \mathbb{R}^{dn imes dn}$$

L(G,p) is PSD, and $\mathrm{rank}(L(G,p)) = \mathrm{rank}(R(G,p)) \leq dn - \binom{d+1}{2}$

Let (G,p) be a d-dimensional framework.

$$L(G,p) = R(G,p)R(G,p)^T \in \mathbb{R}^{dn imes dn}$$

L(G,p) is PSD, and
$$\mathrm{rank}(L(G,p))=\mathrm{rank}(R(G,p))\leq dn-{d+1\choose 2}$$

Therefore:
$$\lambda_1(L(G,p))=\dots=\lambda_{\binom{d+1}{2}}(L(G,p))=0$$

Let (G,p) be a d-dimensional framework.

$$L(G,p) = R(G,p)R(G,p)^T \in \mathbb{R}^{dn imes dn}$$

L(G,p) is PSD, and
$$\mathrm{rank}(L(G,p))=\mathrm{rank}(R(G,p))\leq dn-{d+1\choose 2}$$

Therefore:
$$\lambda_1(L(G,p))=\dots=\lambda_{\binom{d+1}{2}}(L(G,p))=0$$

Spectral gap:
$$\lambda_{{d+1 \choose 2}+1}(L(G,p))$$

Let (G,p) be a d-dimensional framework.

$$L(G,p) = R(G,p)R(G,p)^T \in \mathbb{R}^{dn imes dn}$$

L(G,p) is PSD, and
$$\mathrm{rank}(L(G,p))=\mathrm{rank}(R(G,p))\leq dn-{d+1\choose 2}$$

Therefore:
$$\lambda_1(L(G,p))=\dots=\lambda_{\binom{d+1}{2}}(L(G,p))=0$$

Spectral gap:
$$\lambda_{{d+1 \choose 2}+1}(L(G,p))$$

d-dimensional algebraic connectivity of G (Jordán-Tanigawa '22): $a_d(G) = \sup\left\{\lambda_{\binom{d+1}{2}+1}(L(G,p)) \middle| \, p:V o \mathbb{R}^d
ight\}$

STIFFNESS MATRIX AND ALGEBRAIC CONNECTIVITY
Let (G,p) be a d-dimensional framework.

$$L(G,p) = R(G,p)R(G,p)^T \in \mathbb{R}^{dn \times dn}$$
L(G,p) is PSD, and rank($L(G,p)$) = rank($R(G,p)$) $\leq dn - \binom{d+1}{2}$
Therefore: $\lambda_1(L(G,p)) = \cdots = \lambda_{\binom{d+1}{2}}(L(G,p)) = 0$
Spectral gap: $\lambda_{\binom{d+1}{2}+1}(L(G,p))$

For d=1:

L(G,p) is the Laplacian matrix of G.

d-dimensional algebraic connectivity of G (Jordán-Tanigawa '22): $a_d(G) = \sup\left\{\lambda_{\binom{d+1}{2}+1}(L(G,p)) \middle| \, p:V o \mathbb{R}^d
ight\}$

Let (G,p) be a d-dimensional framework.

$$L(G,p) = R(G,p)R(G,p)^T \in \mathbb{R}^{dn imes dn}$$

L(G,p) is PSD, and
$$\mathrm{rank}(L(G,p))=\mathrm{rank}(R(G,p))\leq dn-{d+1\choose 2}$$

Therefore:
$$\lambda_1(L(G,p))=\dots=\lambda_{\binom{d+1}{2}}(L(G,p))=0$$

Spectral gap: $\lambda_{\binom{d+1}{2}+1}(L(G,p))$

For d=1:

L(G,p) is the Laplacian matrix of G.

$$a_1(G) = a(G)$$

the algebraic connectivity (a.k.a Laplacian spectral gap) of G.

d-dimensional algebraic connectivity of G (Jordán-Tanigawa '22):
$$a_d(G) = \sup\left\{\lambda_{\binom{d+1}{2}+1}(L(G,p)) \middle| \, p:V o \mathbb{R}^d
ight\}$$

$$a_d(G)>0$$
 \iff G is d-rigid

-We can think of this as a quantitative measure of rigidity

$$a_d(G)>0$$
 \iff G is d-rigid

-We can think of this as a quantitative measure of rigidity

$$a_d(G)>0$$
 \iff G is d-rigid

Jordán-Tanigawa ('22):

-If $a_d(G) > k$, then G remains d-rigid after removing any k vertices.

-We can think of this as a quantitative measure of rigidity

$$a_d(G)>0$$
 \iff G is d-rigid

Jordán-Tanigawa ('22):

-If $a_d(G) > k$, then G remains d-rigid after removing any k vertices.

-If $a_d(G)$ is large enough, then G remains d-rigid (with positive probability) even after removing some of the edges of G uniformly at random.

D-DIMENSIONAL ALGEBRAIC CONNECTIVITY OF COMPLETE GRAPHS

-What is $a_d(K_n)$?

-What is $a_d(K_n)$?

$$a_1(K_n)=n$$

-What is $a_d(K_n)$?

Jordán-Tanigawa ('22), Zhu ('13):

$$a_1(K_n)=n$$

$$a_2(K_n)=n/2$$

-What is $a_d(K_n)$?

Jordán-Tanigawa ('22), Zhu ('13):

L-Nevo-Peled-Raz ('23): For $d\geq 3,$

(13):
$$a_1(K_n) = n$$

 $a_2(K_n) = n/2$
 $d \ge 3, \quad rac{1}{2} \lfloor rac{n}{d}
floor \le a_d(K_n) \le rac{2n}{3(d-1)} + rac{1}{3}$

-What is $a_d(K_n)$?

Jordán-Tanigawa ('22), Zhu ('13): $a_1(K_n) = n$ L-Nevo-Peled-Raz ('23): For $d \geq 3$, $rac{1}{2}\lfloorrac{n}{d}
floor \leq a_d(K_n) \leq rac{2n}{3(d-1)} + rac{1}{3}$ $a_d(K_{d+1}) = 1$

-What is $a_d(K_n)$?

Jordán-Tanigawa ('22), Zhu ('13):
$$a_1(K_n)=n$$

L-Nevo-Peled-Raz ('23): For $d\geq 3,$ $rac{1}{2}\lfloorrac{n}{d}
floor\leq a_d(K_n)\leq rac{2n}{3(d-1)}+rac{1}{3}$ $a_d(K_{d+1})=1$

Conjecture (L-Nevo-Peled-Raz '22+): $a_d(K_n) = \begin{cases} 1 & ext{if} \quad d+1 \leq n \leq 2d, \\ rac{n}{2d} & ext{if} \quad 2d \leq n. \end{cases}$

Lower bound:

If p maps the vertices of K_{d+1} into the vertices of a regular simplex in \mathbb{R}^d , then the spectrum of $L(K_{d+1}, p)$ is: $\left\{0^{\left[\binom{d+1}{2}\right]}, 1^{\left[\frac{(d+1)(d-2)}{2}\right]}, \frac{d+1}{2}^{\left[d\right]}, d+1^{\left[1\right]}\right\}$

Lower bound:

If p maps the vertices of K_{d+1} into the vertices of a regular simplex in \mathbb{R}^d , then the spectrum of $L(K_{d+1}, p)$ is: $\left\{0^{\left[\binom{d+1}{2}\right]}, 1^{\left[\frac{(d+1)(d-2)}{2}\right]}, \frac{d+1}{2}^{\left[d\right]}, d+1^{\left[1\right]}\right\}$

The lower stiffness matrix: $L^-(G,p) = R(G,p)^T R(G,p)$

Lower bound:

If p maps the vertices of K_{d+1} into the vertices of a regular simplex in \mathbb{R}^d , then the spectrum of $L(K_{d+1}, p)$ is: $\left\{0^{\left[\binom{d+1}{2}\right]}, 1^{\left[\frac{(d+1)(d-2)}{2}\right]}, \frac{d+1}{2}^{\left[d\right]}, d+1^{\left[1\right]}\right\}$

The lower stiffness matrix: $L^-(G,p)=R(G,p)^TR(G,p)\in \mathbb{R}^{E imes E^{ imes}}$

Lower bound:

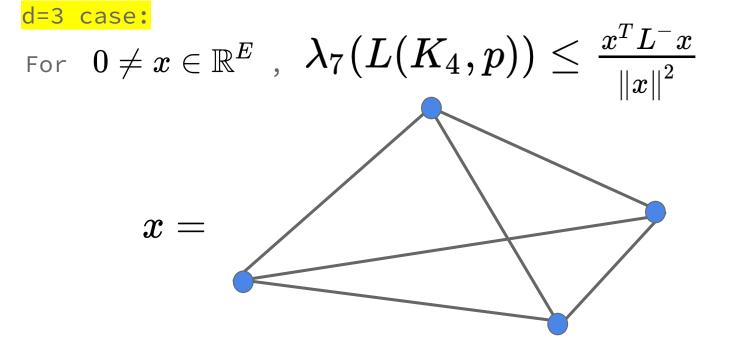
If p maps the vertices of K_{d+1} into the vertices of a regular simplex in \mathbb{R}^d , then the spectrum of $L(K_{d+1}, p)$ is: $\left\{0^{\left[\binom{d+1}{2}\right]}, 1^{\left[\frac{(d+1)(d-2)}{2}\right]}, \frac{d+1}{2}^{\left[d\right]}, d+1^{\left[1\right]}\right\}$

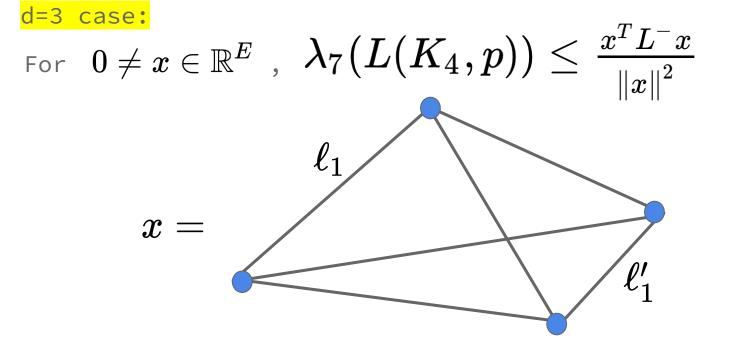
The lower stiffness matrix: $L^-(G,p)=R(G,p)^TR(G,p)\in \mathbb{R}^{E imes E^{ imes}}$

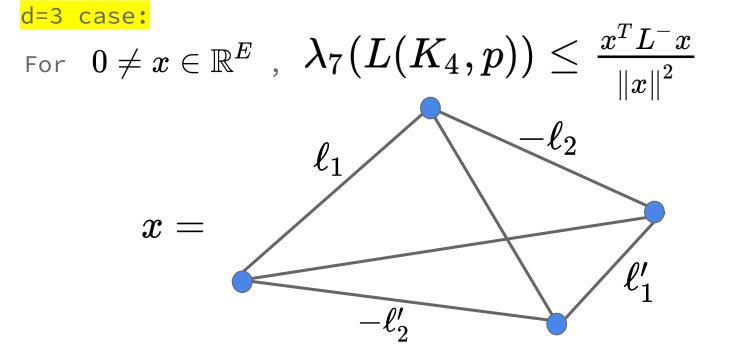
$$L^-_{e,e'} = egin{cases} 2 & e = e', \ \cos(heta) & |e \cap e'| = 1, \ 0 & ext{otherwise} \end{cases} egin{array}{c} e \ heta \ heta \ e' \end{pmatrix}$$

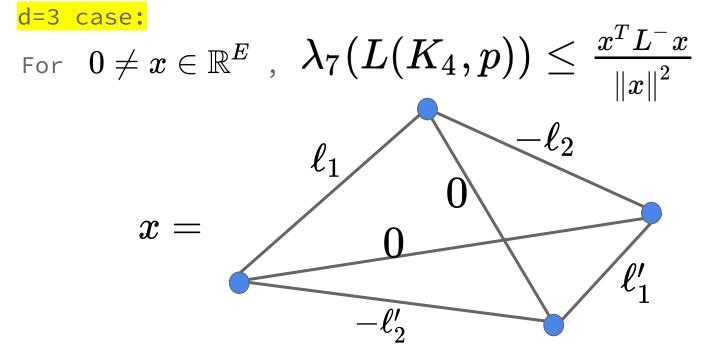
d=3 case:

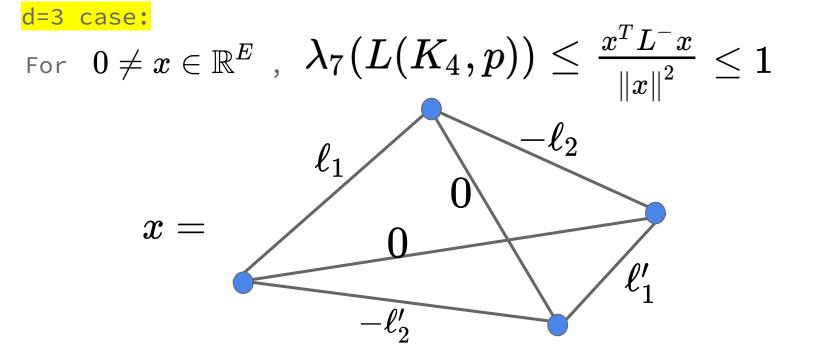
d=3 case: For $0
eq x\in \mathbb{R}^E$, $\lambda_7(L(K_4,p))\leq rac{x^TL^-x}{\|x\|^2}$

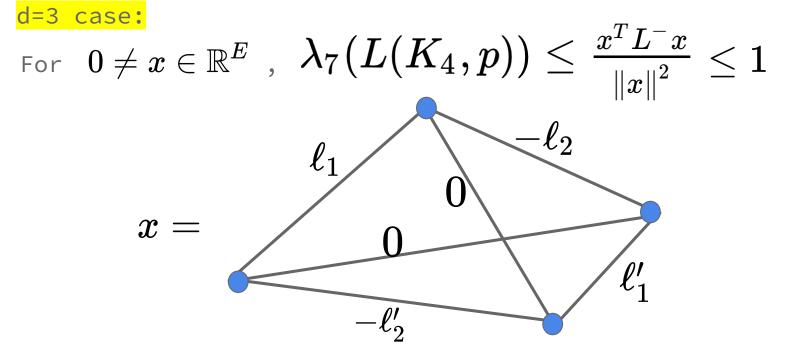












For general d, argue by induction using eigenvalue interlacing

A graph G is **minimally d-rigid** if:

- G is d-rigid, and
- Removing any edge from G results in a non d-rigid graph.

A graph G is **minimally d-rigid** if:

- G is d-rigid, and
- Removing any edge from G results in a non d-rigid graph.

Theorem (L-Nevo-Peled-Raz '22+): Let $d\geq 1$. If T is a minimally d-rigid graph (and $T eq K_2,K_3$), then $a_d(T)\leq 1.$

A graph G is **minimally d-rigid** if:

- G is d-rigid, and
- Removing any edge from G results in a non d-rigid graph.

Theorem (L-Nevo-Peled-Raz '22+): Let $d \geq 1$. If T is a minimally d-rigid graph (and $T eq K_2, K_3$), then $a_d(T) \leq 1.$

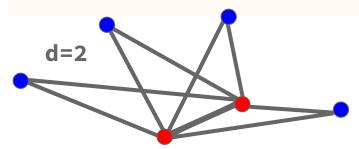
Equality is obtained for "generalized star graphs".

A graph G is **minimally d-rigid** if:

- G is d-rigid, and
- Removing any edge from G results in a non d-rigid graph.

Theorem (L-Nevo-Peled-Raz '22+): Let $d \geq 1$. If T is a minimally d-rigid graph (and $T eq K_2, K_3$), then $a_d(T) \leq 1.$

Equality is obtained for "generalized star graphs".

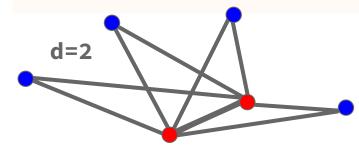


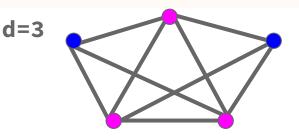
A graph G is **minimally d-rigid** if:

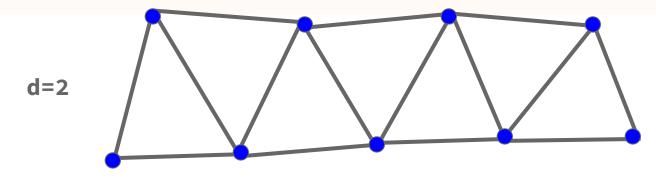
- G is d-rigid, and
- Removing any edge from G results in a non d-rigid graph.

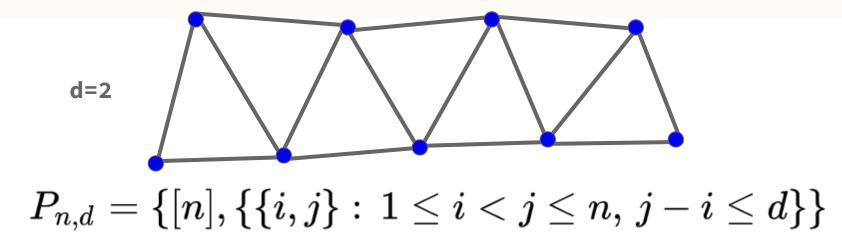
Theorem (L-Nevo-Peled-Raz '22+): Let $d \geq 1$. If T is a minimally d-rigid graph (and $T eq K_2, K_3$), then $a_d(T) \leq 1.$

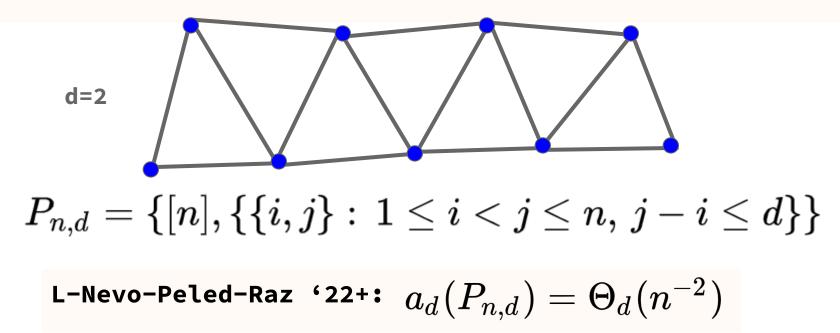
Equality is obtained for "generalized star graphs".











A family of graphs
$$\{G_i = (V_i, E_i)\}_{i=1}^{\infty}$$
 with $\lim_{i \to \infty} |V_i| = \infty$
is a family of d-rigidity expander graphs if there is $\epsilon > 0$
such that $a_d(G_i) \ge \epsilon$ for all i.

A family of graphs
$$\{G_i = (V_i, E_i)\}_{i=1}^{\infty}$$
 with $\lim_{i \to \infty} |V_i| = \infty$
is a family of **d-rigidity expander graphs** if there is $\epsilon > 0$
such that $a_d(G_i) \ge \epsilon$ for all i.

For d=1, we know there exist families of 3-regular expander graphs

A family of graphs
$$\{G_i = (V_i, E_i)\}_{i=1}^{\infty}$$
 with $\lim_{i \to \infty} |V_i| = \infty$
is a family of **d-rigidity expander graphs** if there is $\epsilon > 0$
such that $a_d(G_i) \ge \epsilon$ for all i.

For d=1, we know there exist families of 3-regular expander graphs (and there are no 2-regular expanders).

A family of graphs
$$\{G_i = (V_i, E_i)\}_{i=1}^{\infty}$$
 with $\lim_{i \to \infty} |V_i| = \infty$
is a family of **d-rigidity expander graphs** if there is $\epsilon > 0$
such that $a_d(G_i) \ge \epsilon$ for all i.

For d=1, we know there exist families of 3-regular expander graphs (and there are no 2-regular expanders).

What happens for d>1?

Theorem (L-Nevo-Peled-Raz '22+):

For any $d \geq 1$, there exist families of (2d+1)-regular d-rigidity expander graphs.

Theorem (L-Nevo-Peled-Raz '22+):

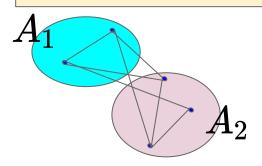
For any $d \geq 1$, there exist families of (2d+1)-regular d-rigidity expander graphs.

Conjecture (Jordán-Tanigawa '22, L-Nevo-Peled-Raz '22+):

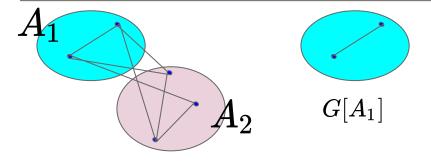
For any $d \geq 1$, there **do not exist** families of **2d-regular** d-rigidity expander graphs.

$$G[A_i]=(A_i,\{e\in E:\,e\subset A_i\})$$

$$G[A_i]=(A_i,\{e\in E:\,e\subset A_i\})$$

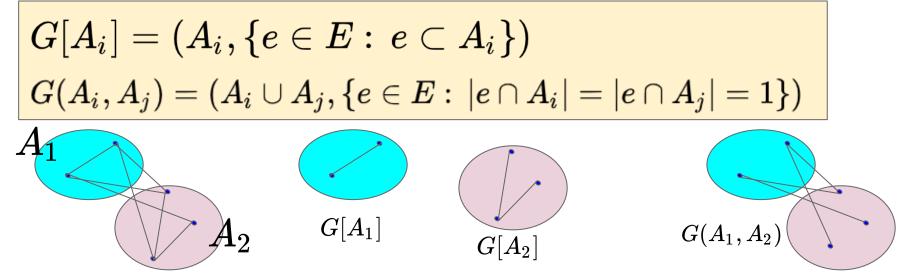


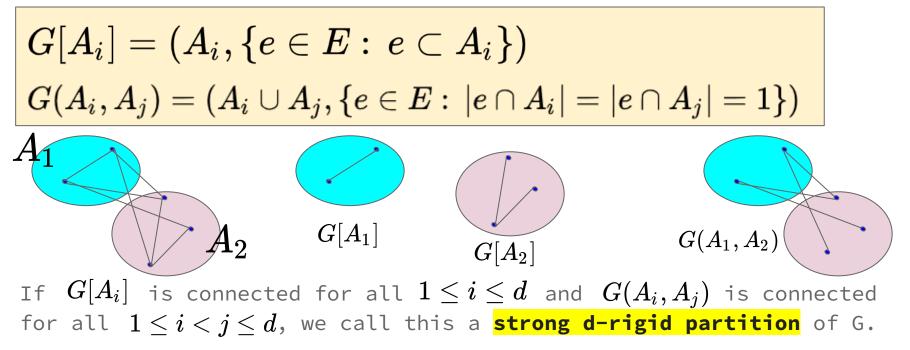
$$G[A_i]=(A_i,\{e\in E:\,e\subset A_i\})$$



$$G[A_i]=(A_i,\{e\in E:\,e\subset A_i\})$$
 A_1
 $G[A_1]$
 $G[A_1]$
 $G[A_2]$

$$egin{aligned} G[A_i] &= (A_i, \{e \in E: \, e \subset A_i\}) \ G(A_i, A_j) &= (A_i \cup A_j, \{e \in E: \, |e \cap A_i| = |e \cap A_j| = 1\}) \ \hline A_1 & for aligned \ A_2 & G[A_1] & for aligned \ G[A_2] \end{aligned}$$





Let G=(V,E) be a graph, and $V = A_1 \cup \cdots \cup A_d$ a partition of its vertex set.

If $G[A_i]$ is connected for all $1 \le i \le d$ and $G(A_i, A_j)$ is connected for all $1 \le i < j \le d$, we call this a **strong d-rigid partition** of G.

Let G=(V,E) be a graph, and $V = A_1 \cup \cdots \cup A_d$ a partition of its vertex set.

If $G[A_i]$ is connected for all $1 \le i \le d$ and $G(A_i, A_j)$ is connected for all $1 \le i < j \le d$, we call this a **strong d-rigid partition** of G.

Theorem (L-Nevo-Peled-Raz '22+):

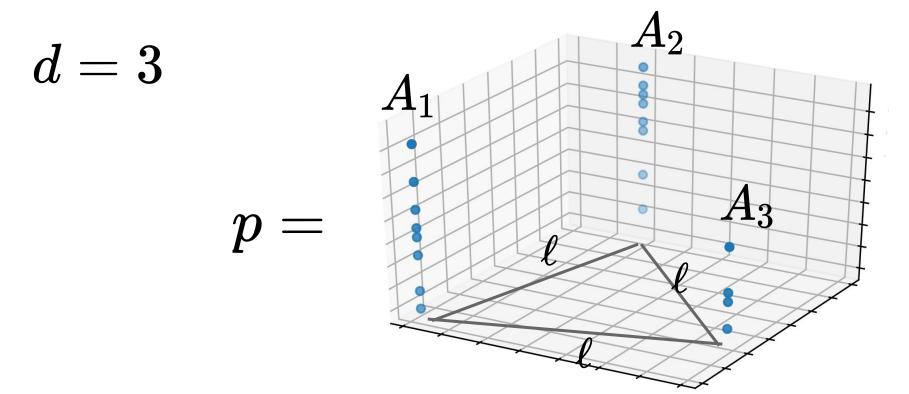
$$a_d(G) \geq \min\left(\{a(G[A_i])\}_{i=1}^d \cup \left\{ rac{1}{2}a(G(A_i,A_j))
ight\}_{i < j}
ight).$$

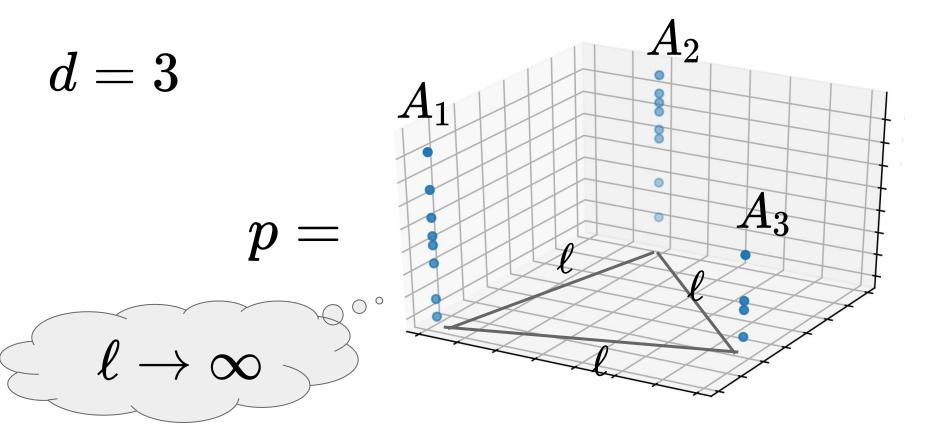
Let G=(V,E) be a graph, and $V = A_1 \cup \cdots \cup A_d$ a partition of its vertex set.

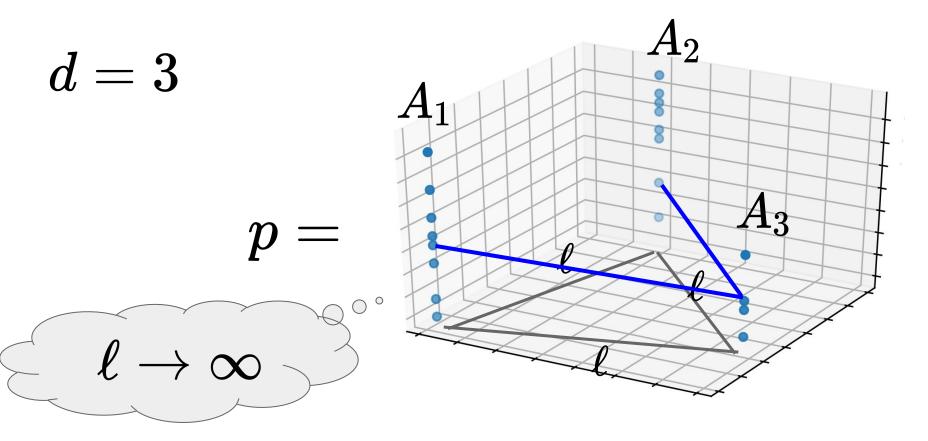
If $G[A_i]$ is connected for all $1 \le i \le d$ and $G(A_i, A_j)$ is connected for all $1 \le i < j \le d$, we call this a **strong d-rigid partition** of G.

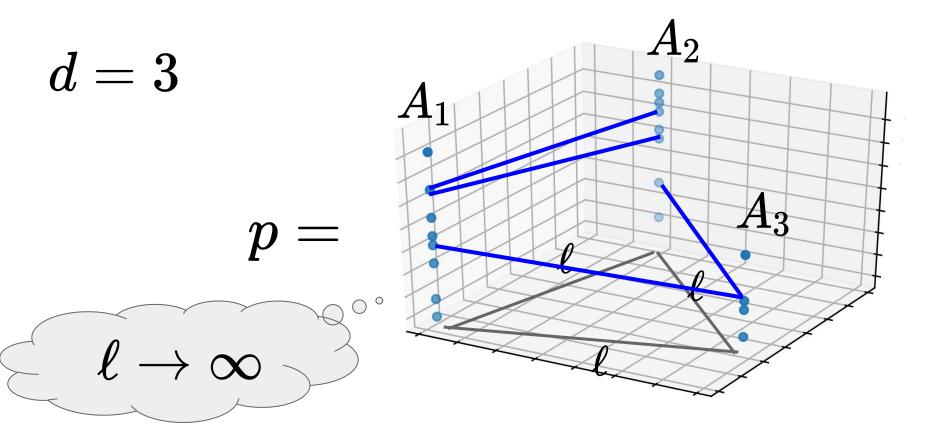
Theorem (L-Nevo-Peled-Raz '22+):
$$a_d(G) \ge \min\left(\{a(G[A_i])\}_{i=1}^d \cup \left\{\frac{1}{2}a(G(A_i,A_j))
ight\}_{i < j}
ight).$$

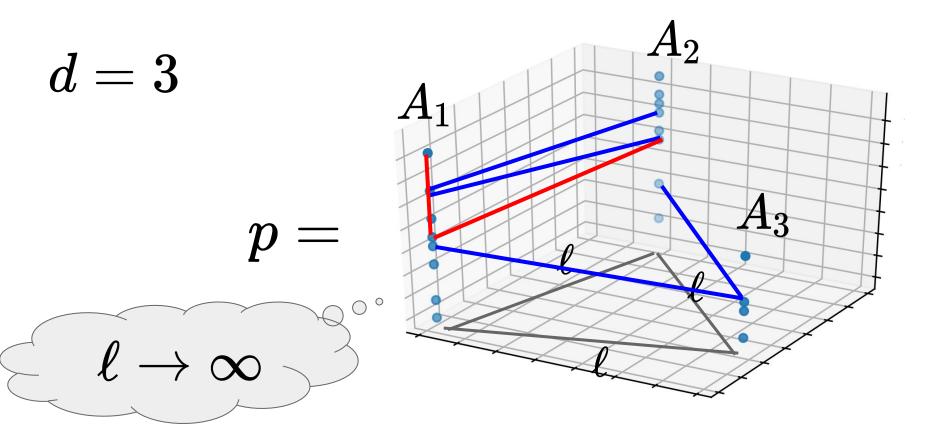
In particular, if G admits a strong d-rigid partition, it is d-rigid.











Partition vertex set into d sets of size $\left| \frac{n}{d} \right|$ or $\left| \frac{n}{d} \right|$ each.

Partition vertex set into d sets of size $\left| \frac{n}{d} \right|$ or $\left| \frac{n}{d} \right|$ each.

$$G[A_i]$$
 are complete graphs $a(G[A_i]) \geq \left\lfloor rac{n}{d}
ight
floor$

Partition vertex set into d sets of size $\left| \frac{n}{d} \right|$ or $\left| \frac{n}{d} \right|$ each.

$$G[A_i]$$
 are complete graphs $a(G[A_i]) \geq \left\lfloor rac{n}{d}
ight
floor$

 $G(A_i,A_j)$ are complete bipartite graphs $a(G(A_i,A_j)) \geq \left|rac{n}{d}
ight|$

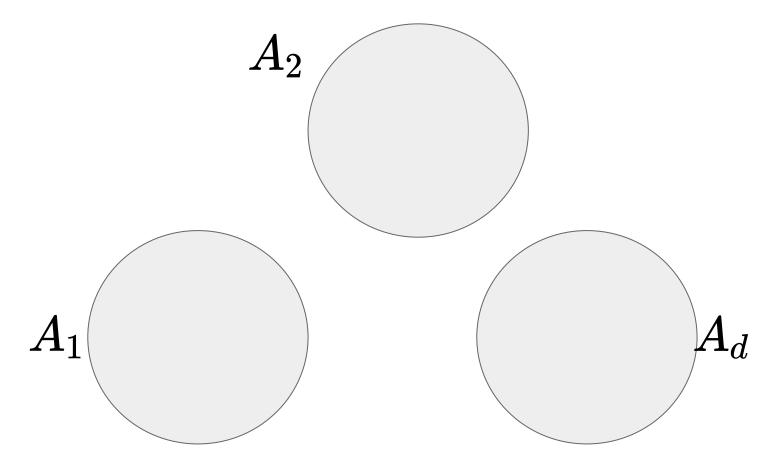
Partition vertex set into d sets of size $\left| \frac{n}{d} \right|$ or $\left| \frac{n}{d} \right|$ each.

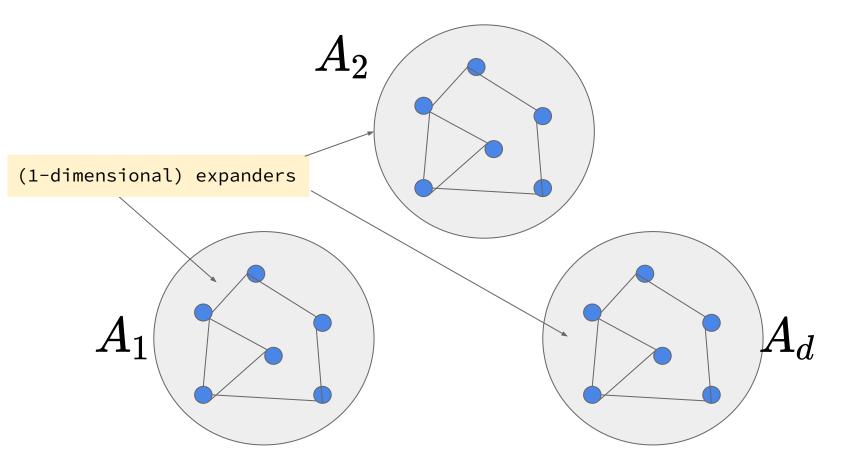
$$G[A_i]$$
 are complete graphs $a(G[A_i]) \geq \left\lfloor rac{n}{d}
ight
floor$

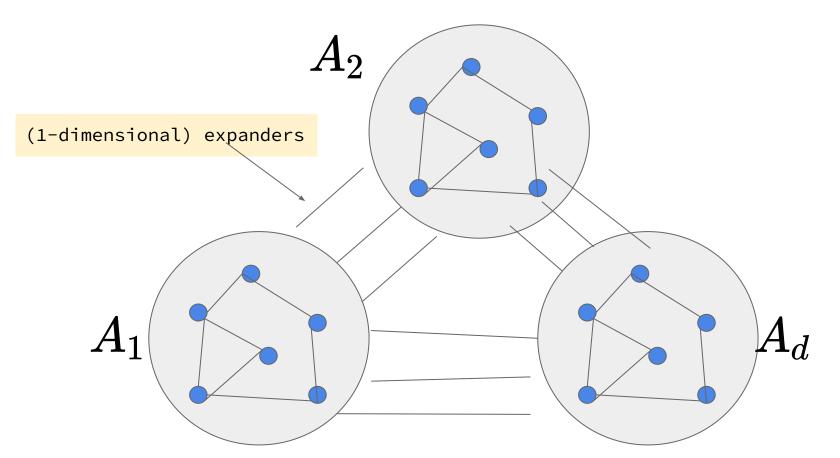
 $G(A_i,A_j)$ are complete bipartite graphs $a(G(A_i,A_j)) \geq \left|rac{n}{d}
ight|$

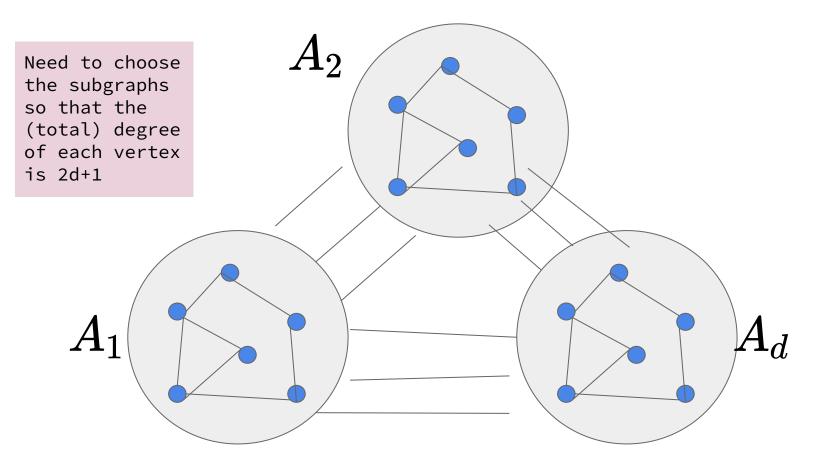
By the theorem:

$$a_d(K_n) \geq rac{1}{2} \left\lfloor rac{n}{d}
ight
floor$$







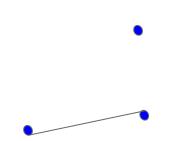


G(n,p) = random graph on n vertices, each edge appears independently with probability p.

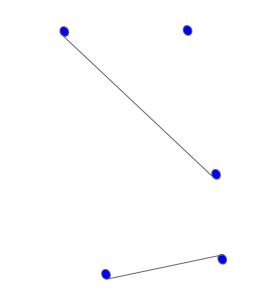
G(n,p) = random graph on n vertices, each edge appears independently with probability p.

G(n,p) = random graph on n vertices, each edge appears independently with probability p.

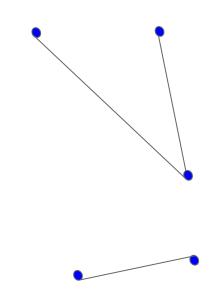
G(n,p) = random graph on n vertices, each edge appears independently with probability p.



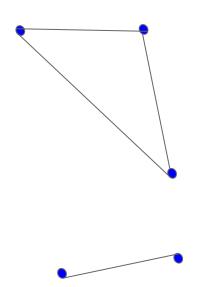
G(n,p) = random graph on n vertices, each edge appears independently with probability p.



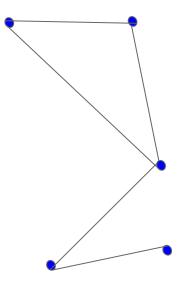
G(n,p) = random graph on n vertices, each edge appears independently with probability p.



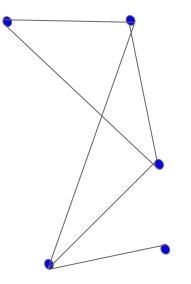
G(n,p) = random graph on n vertices, each edge appears independently with probability p.



G(n,p) = random graph on n vertices, each edge appears independently with probability p.



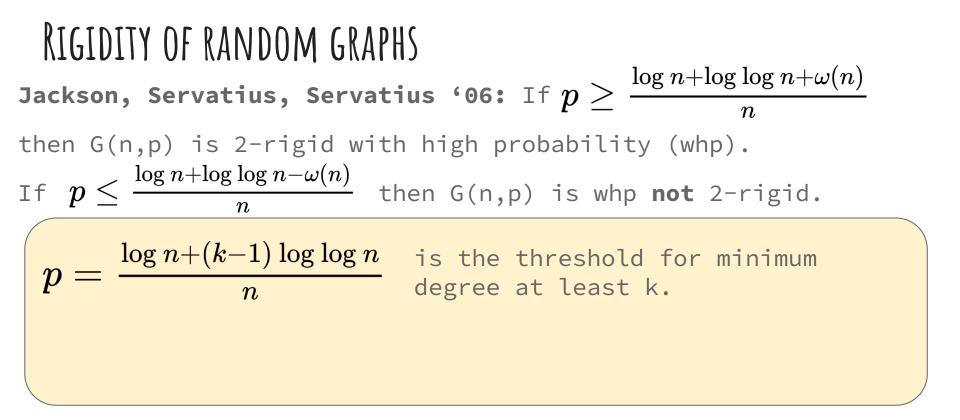
G(n,p) = random graph on n vertices, each edge appears independently with probability p.

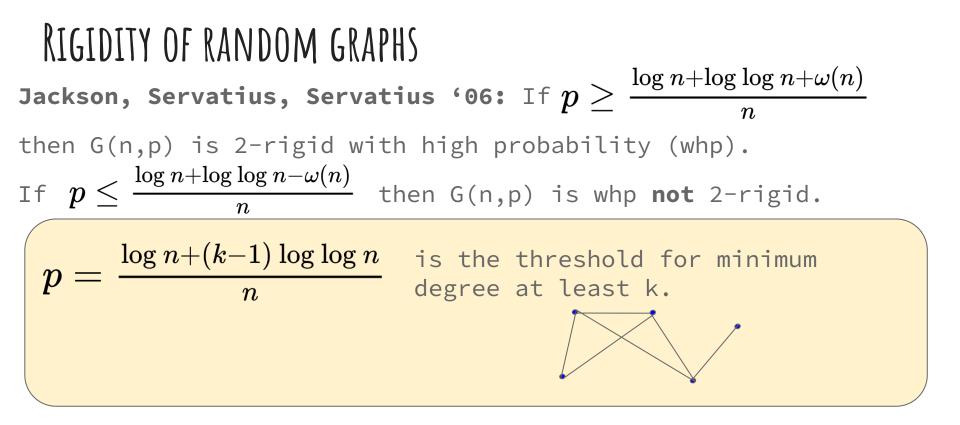


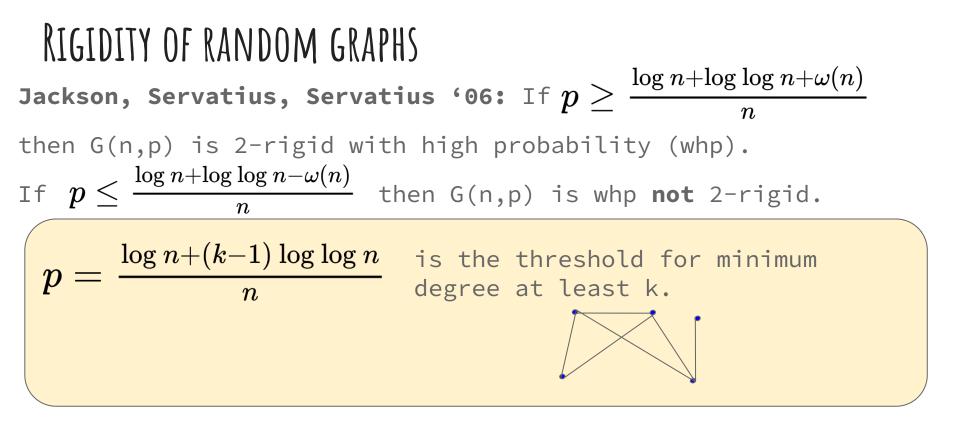
RIGIDITY OF RANDOM GRAPHS Jackson, Servatius, Servatius '06: If $p \geq rac{\log n + \log \log n + \omega(n)}{n}$

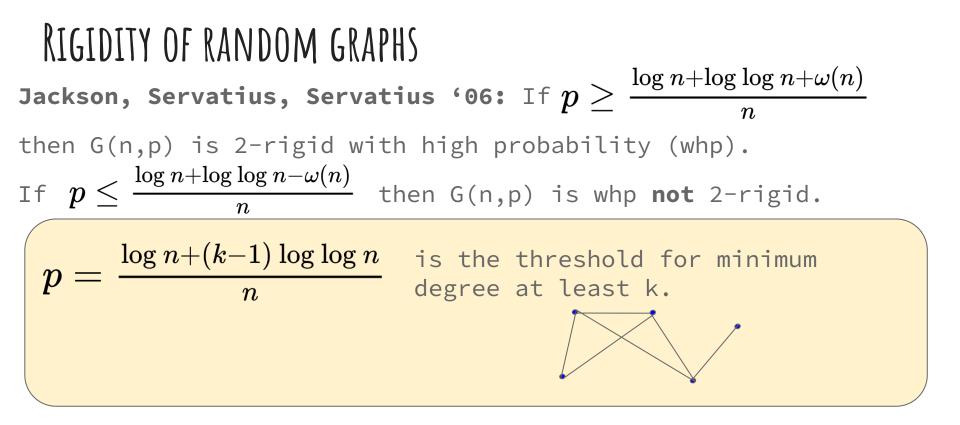
then G(n,p) is 2-rigid with high probability (whp).

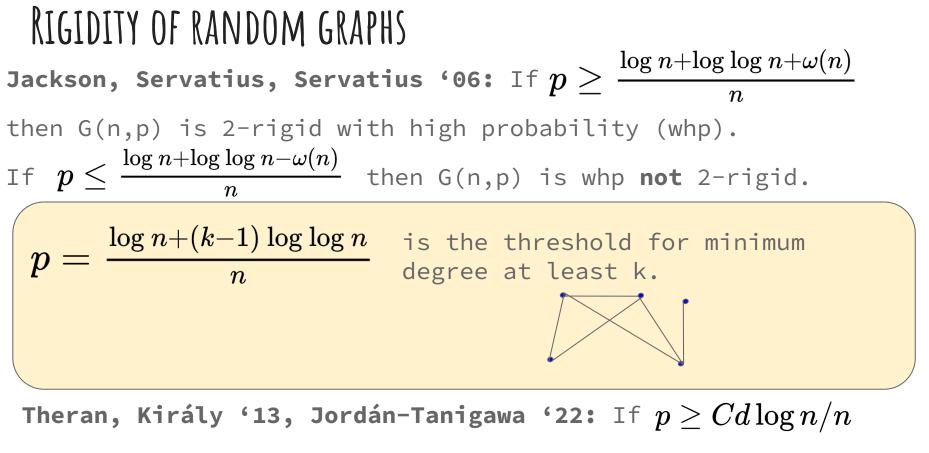
$\begin{array}{l} \mbox{RIGIDITY OF RANDOM GRAPHS} \\ \mbox{Jackson, Servatius, Servatius '06: If } p \geq \frac{\log n + \log \log n + \omega(n)}{n} \\ \mbox{then G(n,p) is 2-rigid with high probability (whp).} \\ \mbox{If } p \leq \frac{\log n + \log \log n - \omega(n)}{n} \\ \mbox{then G(n,p) is whp not 2-rigid.} \end{array}$











then G(n,p) is d-rigid whp.

RIGIDITY OF RANDOM GRAPHS

Theorem (L-Nevo-Peled-Raz '23):

With high probability, the random graph process becomes d-rigid exactly at the time its minimum degree becomes d.

RIGIDITY OF RANDOM GRAPHS

Theorem (L-Nevo-Peled-Raz '23):

With high probability, the random graph process becomes d-rigid exactly at the time its minimum degree becomes d.

$$\begin{array}{ll} \textbf{Corollary:} \ \text{If} \ p \geq \frac{\log n + (d-1)\log\log n + \omega(n)}{n} & \text{then } \mathsf{G}(n,p) \ \text{is whp} \\ \text{d-rigid.} \\ \text{If} \ p \leq \frac{\log n + (d-1)\log\log n - \omega(n)}{n} & \text{then } \mathsf{G}(n,p) \ \text{is whp} \ \textbf{not} \ \text{d-rigid.} \end{array}$$

Theorem (Krivelevich-L-Michaeli '23+):

With high probability, the random graph process **admits a strong d-rigid partition** exactly at the time its minimum degree becomes d.

Theorem (Krivelevich-L-Michaeli '23+):

With high probability, the random graph process **admits a strong d-rigid partition** exactly at the time its minimum degree becomes d.

Additional results (Krivelevich-L-Michaeli '23+):

Theorem (Krivelevich-L-Michaeli '23+):

With high probability, the random graph process **admits a strong d-rigid partition** exactly at the time its minimum degree becomes d.

Additional results (Krivelevich-L-Michaeli '23+):

- For $p \geq C_\epsilon d\log d/n$, whp G(n,p) has a d-rigid subgraph with at least $(1-\epsilon)n$ vertices.

Theorem (Krivelevich-L-Michaeli '23+):

With high probability, the random graph process **admits a strong d-rigid partition** exactly at the time its minimum degree becomes d.

Additional results (Krivelevich-L-Michaeli '23+):

- For $p \geq C_\epsilon d\log d/n$, whp G(n,p) has a d-rigid subgraph with at least $(1-\epsilon)n$ vertices.
- A random $Cd\log d$ -regular graph is d-rigid whp.

STRONG D-RIGID PARTITIONS IN RAM

Theorem (Krivelevich-L-Michae

With high probability, the rand strong d-rigid partition exactly degree becomes d. **Conjecture:** A random 2d-regular graph is d-rigid whp

Additional results (Krivelevich-L-Michaeli '23+):

For $p \ge C_{\epsilon} d \log d/n$, whp G(n.p) has a d-rigid subgraph with at least $(1 - \epsilon)n$ vertices.
A random $Cd \log d$ -regular graph is d-rigid whp.

Proof idea:

Proof idea:

Step 1: A graph with large enough minimum degree, and not too large maximum degree, admits a partition into d parts, such that every vertex is adjacent to "many" vertices from each part.

Proof idea:

Step 1: A graph with large enough minimum degree, and not too large maximum degree, admits a partition into d parts, such that every vertex is adjacent to "many" vertices from each part.

Step 2: Use properties
of the random graph to
 show that this
partition is in fact a
 strong d-rigid
 partition

Proof idea:

Step 1: A graph with large enough minimum degree, and not too large maximum degree, admits a partition into d parts, such that every vertex is adjacent to "many" vertices from each part.

Step 2: Use properties
of the random graph to
 show that this
partition is in fact a
 strong d-rigid
 partition

-Induced subgraphs on small vertex sets are not very dense

Proof idea:

Step 1: A graph with large enough minimum degree, and not too large maximum degree, admits a partition into d parts, such that every vertex is adjacent to "many" vertices from each part.

Step 2: Use properties
of the random graph to
 show that this
partition is in fact a
 strong d-rigid
 partition

-Induced subgraphs on small vertex sets are not very dense

- Any two large enough disjoint sets have an edge between them

More precisely:

G is (x,y)-sparse if every set of vertices of size a≤x spans at most ay edges.

More precisely:

G is **(x,y)-sparse** if every set of vertices of size a≤x spans at most ay edges. G is a **K-connector** if every two disjoint vertex sets, each of size at least K, are connected by an edge

More precisely:

G is **(x,y)-sparse** if every set of vertices of size a≤x spans at most ay edges. G is a **K-connector** if every two disjoint vertex sets, each of size at least K, are connected by an edge

Proposition (Krivelevich-L-Michaeli '23+): For every $\Gamma > 1$ there exists C>1 such that if:

• $\delta(G) \geq Cd\log d$ and $\Delta(G) \leq \Gamma\delta(G)$,

More precisely:

G is **(x,y)-sparse** if every set of vertices of size a≤x spans at most ay edges. G is a **K-connector** if every two disjoint vertex sets, each of size at least K, are connected by an edge

Proposition (Krivelevich-L-Michaeli '23+): For every $\Gamma > 1$ there exists C>1 such that if:

- $\delta(G) \geq Cd\log d$ and $\Delta(G) \leq \Gamma\delta(G)$,
- G is $(x,\delta(G)/(7d))$ -sparse for some x,

More precisely:

G is **(x,y)-sparse** if every set of vertices of size a≤x spans at most ay edges. G is a **K-connector** if every two disjoint vertex sets, each of size at least K, are connected by an edge

Proposition (Krivelevich-L-Michaeli '23+): For every $\Gamma > 1$ there exists C>1 such that if:

- $\delta(G) \geq Cd\log d$ and $\Delta(G) \leq \Gamma \delta(G)$,
- G is $(x,\delta(G)/(7d))$ -sparse for some x,
- G is a (2x/3)-connector,

More precisely:

G is **(x,y)-sparse** if every set of vertices of size a≤x spans at most ay edges. G is a **K-connector** if every two disjoint vertex sets, each of size at least K, are connected by an edge

Proposition (Krivelevich-L-Michaeli '23+): For every $\Gamma > 1$ there exists C>1 such that if:

- $\delta(G) \geq Cd\log d$ and $\Delta(G) \leq \Gamma \delta(G)$,
- G is $(x,\delta(G)/(7d))$ -sparse for some x,
- G is a (2x/3)-connector,

then G admits a strong d-rigid partition.

GENERALIZED D-RIGID PARTITIONS A_1, \ldots, A_{d+1} = partition of V

 A_1,\ldots,A_{d+1} = partition of V $G_{ij}=ig(A_i\cup A_j,E_{ij}ig)$ Edge disjoint subgraphs of G $(ext{for }1\leq i< j\leq d+1)$

 A_1, \ldots, A_{d+1} = partition of V C = (A + A E) Edge disjoint

 $G_{ij} = (A_i \cup A_j, E_{ij})$ Edge disjoint subgraphs of G (for $1 \leq i < j \leq d+1$)

Every $A \subset A_i$ of size at least 2 has a cut such that all crossing edges belong to a unique $G_{ij}.$

$$A_1,\ldots,A_{d+1}$$
 = partition of V $G_{ij}=ig(A_i\cup A_j,E_{ij}ig)$ Edge disjoint subgraphs of G $(ext{for }1\leq i< j\leq d+1)$

Every $A \subset A_i$ of size at least 2 has a cut such that all crossing edges belong to a unique $G_{ij}.$

Theorem (Krivelevich-L-Michaeli '23+):

$$a_d(G) \geq \min\left\{rac{a(G_{ij})}{2}: \ 1 \leq i < j \leq d+1
ight\}$$

Applications:

Applications:

- Rigidity of random bipartite graphs

Applications:

- Rigidity of random bipartite graphs
- Rigidity of "highly connected graphs":

Applications:

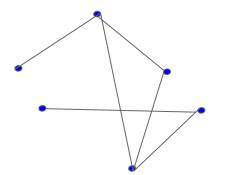
- Rigidity of random bipartite graphs
- Rigidity of "highly connected graphs":

Theorem (Krivelevich-L-Michaeli '23+):

If G has $\binom{d+1}{2}$ disjoint connected dominating sets, then it is d-rigid.

Applications:

- Rigidity of random bipartite graphs
- Rigidity of "highly connected graphs":

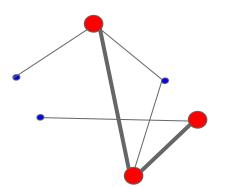


Theorem (Krivelevich-L-Michaeli '23+):

If G has $\binom{d+1}{2}$ disjoint connected dominating sets, then it is d-rigid.

Applications:

- Rigidity of random bipartite graphs
- Rigidity of "highly connected graphs":



Theorem (Krivelevich-L-Michaeli '23+):

If G has $\binom{d+1}{2}$ disjoint connected dominating sets, then it is d-rigid.

Prove that there are no

2d-regular d-rigidity

expanders

Prove that there are no

0

2d-regular d-rigidity

expanders

Is a random 2d-regular graph d-rigid whp?

Prove that there are no

2d-regular d-rigidity

expanders

Is a random 2d-regular graph d-rigid whp?

Is a random (2d+1)-regular graph a d-rigidity expander whp?

Prove that there are no 2d-regular d-rigidity

expanders

Is a random 2d-regular graph d-rigid whp?

Is a random (2d+1)-regular graph a d-rigidity expander whp? Understand the relation between $a_d(G)$ and $a_k(G)$ for k<d

Prove that there are no 2d-regular d-rigidity

expanders

Is a random 2d-regular graph d-rigid whp?

Is a random (2d+1)-regular graph a d-rigidity expander whp? Understand the relation between $a_d(G)$ and $a_k(G)$ for k<d

What is the d-dimensional algebraic connectivity of the complete graph?

Prove that there are no 2d-regular d-rigidity

expanders

Is a random 2d-regular graph d-rigid whp?

Is a random (2d+1)-regular graph a d-rigidity expander whp? Understand the relation between $a_d(G)$ and $a_k(G)$ for k<d

What is the d-dimensional algebraic connectivity of the complete graph? Complete bipartite graphs?

Prove that there are no 2d-regular d-rigidity

expanders

Is a random 2d-regular graph d-rigid whp?

Is a random (2d+1)-regular graph a d-rigidity expander whp? Understand the relation between $a_d(G)$ and $a_k(G)$ for k<d

What is the d-dimensional algebraic connectivity of the complete graph? Complete bipartite graphs? Generalized path graphs?

Prove that there are no 2d-regular d-rigidity

expanders

Is a random 2d-regular graph d-rigid whp?

Is a random (2d+1)-regular graph a d-rigidity expander whp? Understand the relation between $a_d(G)$ and $a_k(G)$ for k<d

What is the d-dimensional algebraic connectivity of the complete graph? Complete bipartite graphs? Generalized path graphs?

Prove that there are no 2d-regular d-rigidity

expanders

Is a random 2d-regular graph d-rigid whp?

Is a random (2d+1)-regular graph a d-rigidity expander whp? Understand the relation between $a_d(G)$ and $a_k(G)$ for k<d

What is the d-dimensional algebraic connectivity of the complete graph? Complete bipartite graphs? Generalized path graphs?

Prove that there are no 2d-regular d-rigidity

expanders

Is a random 2d-regular graph d-rigid whp?

Is a random (2d+1)-regular graph a d-rigidity expander whp? Understand the relation between $a_d(G)$ and $a_k(G)$ for k<d

What is the d-dimensional algebraic connectivity of the complete graph? Complete bipartite graphs? Generalized path graphs?

Do

. 0

Prove that there are no 2d-regular d-rigidity

expanders

Is a random 2d-regular graph d-rigid whp?

Is a random (2d+1)-regular graph a d-rigidity expander whp? Understand the relation between $a_d(G)$ and $a_k(G)$ for k<d

What is the d-dimensional algebraic connectivity of the complete graph? Complete bipartite graphs? Generalized path graphs?

. 0

