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Question: Is the structure rigid or 
flexible?

Or: Is there a continuous motion of the 
vertices that preserves the lengths of all 
edges, except translations and rotations?
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Rigidity of Graphs
A graph G is called d-rigid if there 
exists           such that (G,p) is 
infinitesimally rigid.

Theorem (Asimow-Roth ‘79):

G is d-rigid (G,p) is rigid for all generic p 
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Laplacian matrix
The Laplacian matrix:

L(G)is PSD (positive semi-definite), smallest eigenvalue   

Algebraic connectivity of G:

G is connected

Large algebraic connectivity implies that G is “strongly 
connected”.
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Stiffness Matrix and Algebraic connectivity
Let (G,p) be a d-dimensional framework.

L(G,p) is PSD, and 

Therefore: 

Spectral gap:

d-dimensional algebraic connectivity of G (Jordán-Tanigawa ‘22):

For d=1:

L(G,p) is the 
Laplacian matrix of G.

the algebraic 
connectivity (a.k.a 
Laplacian spectral 
gap) of G.
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Jordán-Tanigawa (‘22): 

-If            , then G remains d-rigid after removing any k 
vertices.

-If         is large enough, then G remains d-rigid (with 
positive probability) even after removing some of the edges of 
G uniformly at random. 

Motivation
-We can think of this as a quantitative measure of rigidity

G is d-rigid
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Conjecture (L-Nevo-Peled-Raz ‘22+):
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The simplex graph
Upper bound:

For general d, argue by induction using eigenvalue interlacing 

d=3 case:

For              ,   
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Theorem (L-Nevo-Peled-Raz ‘22+): Let       . 
If T is a minimally d-rigid graph (and          ), then
  

Equality is obtained for “generalized star graphs”. 

A graph G is minimally d-rigid if:
- G is d-rigid, and
- Removing any edge from G results in a non d-rigid 

graph.

d=2
d=3
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Conjecture (L-Nevo-Peled-Raz ‘22+): “Generalized paths” 
have minimal d-dimensional algebraic connectivity 
(among all n-vertex d-rigid graphs).

d=2

L-Nevo-Peled-Raz ‘22+: 
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is a family of d-rigidity expander graphs if there is

such that               for all i.

For d=1, we know there exist families of 3-regular expander 
graphs (and there are no 2-regular expanders).

What happens for d>1?
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Rigidity Expanders
Theorem (L-Nevo-Peled-Raz ‘22+):

For any       , there exist families of (2d+1)-regular 
d-rigidity expander graphs. 

Conjecture (Jordán-Tanigawa ‘22, L-Nevo-Peled-Raz ‘22+):

For any       , there do not exist families of 2d-regular 
d-rigidity expander graphs. 
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A lower bound on d-dimensional algebraic connectivity
Let G=(V,E) be a graph, and                    a partition of its 
vertex set. 

Theorem (L-Nevo-Peled-Raz ‘22+):

In particular, if G admits a strong d-rigid partition, it 
is d-rigid.

If        is connected for all           and           is connected 
for all             , we call this a strong d-rigid partition of G.    
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By the theorem:
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Construction of Rigidity Expanders
Need to choose 
the subgraphs 
so that the 
(total) degree 
of each vertex 
is 2d+1
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Jackson, Servatius, Servatius ‘06: If

then G(n,p) is 2-rigid with high probability (whp).

If                       then G(n,p) is whp not 2-rigid.

 
is the threshold for minimum 
degree at least k.

Theran, Király ‘13, Jordán-Tanigawa ‘22: If

then G(n,p) is d-rigid whp. 
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Corollary: If                           then G(n,p) is whp 
d-rigid.

If                          then G(n,p) is whp not d-rigid.  

Theorem (L-Nevo-Peled-Raz ‘23):

With high probability, the random graph process becomes 
d-rigid exactly at the time its minimum degree becomes d. 
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Theorem (Krivelevich-L-Michaeli ‘23+):

With high probability, the random graph process admits a 
strong d-rigid partition exactly at the time its minimum 
degree becomes d. 

Additional results (Krivelevich-L-Michaeli ‘23+):

- For                 , whp G(n,p) has a d-rigid subgraph

    with at least          vertices.

- A random          -regular graph is d-rigid whp.  

Conjecture: A 
random 2d-regular 
graph is d-rigid 

whp
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Proof idea:

Strong d-rigid partitions in random graphs

Step 1: A graph with 
large enough minimum 
degree, and not too 
large maximum degree, 
admits a partition into 

d parts, such that 
every vertex is 

adjacent to “many” 
vertices from each 

part.  

Step 2: Use properties 
of the random graph to 

show that this 
partition is in fact a 

strong d-rigid 
partition

-Induced subgraphs on small 
vertex sets are not very 
dense
- Any two large enough 
disjoint sets have an edge 
between them
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More precisely:

Strong d-rigid partitions in random graphs

Proposition (Krivelevich-L-Michaeli ‘23+):
For every      there exists C>1 such that if:

●            and           ,
● G is           -sparse for some x, 
● G is a (2x/3)-connector, 

then G admits a strong d-rigid partition.

G is (x,y)-sparse if every 
set of vertices of size a≤x 
spans at most ay edges.

G is a K-connector if every two 
disjoint vertex sets, each of 
size at least K, are connected by 
an edge
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Thank you for listening!


