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Introduction

• Fn
q = n-dimensional vector space over the field of q elements.

•
(n
k

)
q
= number of k-dimensional subspaces of Fn

q

=
∏n

i=n−k+1(q
i−1)∏k

i=1(q
i−1)

.

• Sn,q = set of all non-trivial subspaces of Fn
q.

• ∆n,q = a Sn,q × Sn,q matrix defined by:

(∆n,q)U,V =



n − 2 if U = V ,

−
( n−dim(U)
dim(V )−dim(U)

)−1

q
if U ⊊ V ,

−
(dim(U)
dim(V )

)−1

q
if V ⊊ U,

0 otherwise.

for all U,V ∈ Sn,q.
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Introduction

• We can think of ∆n,q as a weighted Laplacian matrix
associated to the graph

Gn,q = (Sn,q, {{U,V } : U ⊊ V or V ⊊ U}) .

• Our goal: estimate the eigenvalues of ∆n,q

(for fixed n ≥ 3 and large q).
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Motivation

• High dimensional Laplacians on simplicial complexes

• Complexes of flags (i.e. spherical buildings)

• A conjecture of Papikian.
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Simplicial complexes

Let V be a finite set.
A family of subsets X ⊂ 2V is called a simplicial complex if it
satisfies:

A ∈ X and B ⊂ A =⇒ B ∈ X .

• An element A ∈ X is called a simplex (or face) of X .
• The dimension of a simplex A is |A| − 1.
• The dimension of X = maxA∈X dim(A).
We may think of a simplicial complex as a geometric object:

X ={∅, {1}, {2}, {3}, {4},
{1, 2}, {1, 3}, {2, 3},
{2, 4}, {3, 4}, {1, 2, 3}}
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High dimensional Laplacians

• Let k ≥ −1. Define

X (k) = {σ ∈ X : dim(σ) = k}.

Space of k-cochains:

C k(X ) = {ϕ : X (k) → R} = RX (k).

• Inner product on C k(X ). For w : X → R>0,

⟨ϕ, ψ⟩ =
∑

σ∈X (k)

w(σ)ϕ(σ)ψ(σ).
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High dimensional Laplacians

• Coboundary operator dk : C k(X ) → C k+1(X ):
For ϕ ∈ C k(X ),

dkϕ([v0, . . . , vk+1]) =
k+1∑
i=0

(−1)iϕ([v0, . . . , vi−1, vi+1, . . . , vk+1]).

• d∗
k : C k+1(X ) → C k(X ):

⟨dkϕ, ψ⟩ = ⟨ϕ, d∗
kψ⟩

• ∆+
k (X ) : C k(X ) → C k(X ) = k-dimensional Laplacian.

∆+
k (X ) = d∗

kdk .
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High dimensional Laplacians – Matrix form
∆+

k (X ) is an X (k)× X (k) matrix, with elements

∆+
k (X )σ,τ =



∑
v∈NX (σ)

w(σ ∪ {v})
w(σ)

if σ = τ,

±w(σ ∪ τ)
w(σ)

if σ ∼ τ,

0 otherwise.

In the special case k = 0:

∆+
0 (X )u,v =



∑
u′∈NX (u)

w({u, u′})
w({u})

if u = v ,

−w({u, v})
w({u})

if {u, v} ∈ X ,

0 otherwise.
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Complexes of flags

• Recall: Sn,q = set of all non-trivial subspaces of Fn
q.

• A flag is a family of subspaces {V1, . . . ,Vk} such that

V1 ⊊ V2 ⊊ · · · ⊊ Vk .

• Fln,q = simplicial complex on vertex set Sn,q whose simplices
are the flags in Fn

q.
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Complexes of flags- Example

The complex Fl3,2:

(Source: Wikipedia)
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A weight function on the complex of flags

• A complete flag is a flag of the form V1 ⊂ V2 ⊂ · · · ⊂ Vn−1,
where dim(Vi ) = i for all i .

• Fln,q is a pure (n − 2)-dimensional complex. (all maximal
faces are of dimension n − 2: the complete flags).

• For σ = {V1, . . . ,Vk} ∈ Fln,q, we define

w(σ) = number of maximal faces of Fln,q containing σ

= number of complete flags extending σ.
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Eigenvalues of ∆+
k (Fln,q)

• The multiplicity of 0 as an eigenvalue of ∆+
k (Fln,q) is determined

by the homology groups of Fln,q, and is well understood.

Theorem (Garland ’73)

Let n ≥ 3, 0 ≤ k ≤ n − 3. Let ϵ > 0.
Then, there exists q0 = q0(n, ϵ) such that for q ≥ q0, every
non-zero eigenvalue λ of ∆+

k (Fln,q) satisfies

λ ≥ n − k − 2− ϵ.
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Papikian’s conjecture

Conjecture (Papikian ’16)

• The number of distinct eigenvalues of ∆+
k (Fln,q) does not

depend on q.

• Let ϵ > 0. Then, there exists q0 = q0(n, ϵ) such that for
q ≥ q0, every non-zero eigenvalue of ∆+

k (Fln,q) is ϵ-close to
one of the integers n − k − 2, n − k − 1, . . . , n − 1.
For k = 0: All non-zero eigenvalues of ∆+

0 (Fln,q) tend to
n − 2 or n − 1.
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Main result

Recall:

• Sn,q = set of all non-trivial subspaces of Fn
q.

• ∆n,q = a Sn,q × Sn,q matrix defined by:

(∆n,q)U,V =



n − 2 if U = V ,

−
( n−dim(U)
dim(V )−dim(U)

)−1

q
if U ⊊ V ,

−
(dim(U)
dim(V )

)−1

q
if V ⊊ U,

0 otherwise.

for all U,V ∈ Sn,q.

• ∆n,q is exactly the 0-dimensional Laplacian ∆+
0 (Fln,q).

14 / 26



Main result

Theorem (L’ 23+)

Let n ≥ 3, q ≥ q0(n) a prime power. Then, the eigenvalues of
∆n,q = ∆+

0 (Fln,q) are:

• 0 with multiplicity 1,

• n − 1 with multiplicity n − 2,

• For 1 ≤ k ≤ ⌊(n − 1)/2⌋ and every ζ in

Jk =

{
±2 cos

(
jπ

n − 2k + 2

)
: 1 ≤ j ≤

⌊
n − 2k + 1

2

⌋}
,

λ ≈ n − 2 + ζ · q−k/2

is an eigenvalue with multiplicity
(n
k

)
q
−
( n
k−1

)
q
.
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Main result- continued

If n is even, we have the additional eigenvalues:

• n − 2 with multiplicity
( n
n/2

)
q
−
( n
n/2−1

)
q
,

• For 1 ≤ k ≤ n/2− 1,

λ ≈ n − 2 +
2(n − 2k)

n − 2k + 2
· q−k

with multiplicity
(n
k

)
q
−
( n
k−1

)
q
.
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Example: n = 5
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Main result - consequences

As an consequence, we obtain:

Corollary (L’ 23+)

• There exists q0 = q0(n) such that for q ≥ q0, the number of

distinct eigenvalues of ∆n,q is exactly
⌊
n2

4

⌋
+ 2.

• Let ϵ > 0. Then, there exists q0 = q0(n, ϵ) such that for
q ≥ q0, every eigenvalue λ ̸= 0, n − 1 of ∆n,q satisfies
|λ− (n − 2)| < ϵ.

This solves the 0-dimensional case of Papikian’s conjecture (for
large q).
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Proof sketch

Two main ingredients for proof:

• Find a basis of C 0(Fln,q) in which ∆n,q has a “nicer” matrix
representation (block diagonal with “small” blocks).

• Estimate the eigenvalues by approximating the characteristic
polynomial of each block.
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Subspace inclusion matrices
• S(i) = i-dimensional subspaces of Fn

q.

• For 0 ≤ i , j ≤ n, Aij = S(i)× S(j) matrix

(Aij)U,V =

{
1 if U ⊂ V or V ⊂ U,

0 otherwise.

• We can write ∆n,q as an (n − 1)× (n − 1) block matrix:

∆n,q =

 L1,1 · · · L1,n−1
...

...
Ln−1,1 · · · Ln−1,n−1

 ,

where Lij is an S(i)× S(j) matrix:

Lij =


(n − 2)I if i = j ,

−
(n−i
j−i

)−1

q
Aij if i < j ,

−
(i
j

)−1

q
Aij if i > j .

20 / 26



Properties of Subspace inclusion matrices

Theorem (Kantor ’72)

• Aij is of full rank.

• Let k ≤ j ≤ i . Then AijAjk =
(i−k
j−k

)
q
Aik .

Lemma (L’ 23+)

Let k ≤ i ≤ j . Then,

AijAjk =
k∑

m=0

cijkmAimAmk ,

where cijkm =
∑m

r=0(−1)m−rq(
r+1
2 )+(

m
2)−rm

(m
r

)
q

(n−i−k+r
j−i−k+r

)
q
.
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A change of basis

Idea:
We will choose a basis B of C 0(Fln,q) consisting of vectors of the
form

Ajkv

for k ≤ j ≤ n − k, where v satisfies Aikv = 0 for all 0 ≤ i < k .
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A change of basis

Theorem (L’ 23+)

There is a basis B of C 0(Fln,q) such that the matrix representation
of ∆n,q with respect to the basis B is a block diagonal matrixL0

. . .

L⌊ n
2⌋


with blocks Lk = I(nk)q−(

n
k−1)q

⊗ L̃k .
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A change of basis

Theorem (L’ 23+, continued)

Where L̃0 is the (n − 1)× (n − 1) matrix:

(L̃0)ij =

{
n − 2 if i = j ,

−1 if i ̸= j

for 1 ≤ i , j ≤ n − 1,
and for 1 ≤ k ≤

⌊
n
2

⌋
, L̃k is the (n − 2k + 1)× (n − 2k + 1) matrix

(L̃k)ij =


n − 2 if i = j ,

−cijkk
(n−i
j−i

)−1

q
if i < j ,

−
(i−k
j−k

)
q

(i
j

)−1

q
if i > j

for k ≤ i , j ≤ n − k .
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Estimating the characteristic polynomials

We can write
L̃k = (n − 2)I +M,

where

Mij =


0 if i = j ,

−1 + O
(
q−1

)
if i < j ,

−q−k(i−j)
(
1 + O

(
q−1

))
if i > j .

Lemma (L’ 23+)

Let m = n − 2k + 1. Let p(t) be the characteristic polynomial of
M. Then,

p(s · q−
k
2 ) = q−

km
2 (Fm(s) + error term) ,

where Fm(s) =
∑⌊m

2 ⌋
j=0 (−1)j

(m−j
j

)
sm−2j . (The roots of Fm(s) were

computed by Donnelly, Dunkum, Huber and Knupp ’21.)
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