Homework 1: due September 4Solutions

In all of these questions, the graph in question is G, .

1. Suppose that p = 105”. Let S = {v : degree(v) < 102%"}. Prove that w.h.p. S contains no edges.

Solution: Let X denote the number of pairs v,w € [n] such that (i) there is an edge {v,w} in G,
and degree(v), degree(w) <logn/20. Then X = 0 implies that S contains no edges.
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2. Suppose that p = £ where ¢ is a constant and that sy = n/(e?c?). Show that w.h.p. all sets of vertices
of size s < sg contain at most 2s edges.



Solution: Let X de note the number of sets S of size at most sy that contain 2|S| edges. Then
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Let uy, = (%) . If s < log*n then u; < n~'/? and so Zl;fz"us < 105’; = o(1). If s > log®n then

u, < (6/4)10g2n and so nggznus < n(e/4)log2n = 0(1)

. Suppose that p = = where c is a constant. Show that w.h.p. there are no two cycles of size at most 10
that share a vertex.

Solution: If S is the set of vertices of two cycles thaty share a vertex then S has at most s < 19
vertices and contains at least s + 1 edges. So

P(3 cycles) < i (Z) <S(J;r)1> (%)SH ~0 (%) — o(1).



