Vertex Colourings
We assume in this chapter that GG is simple.

A k — colouring of (the vertices of) GG is a mapping

c: V—-A{1,2... k}.
c(v) is the colour of vertex v.

K; ={v eV : c(v) = i} is the set of vertices with
colour .
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c Is proper if K1, Ko,..., K, are independent sets
l.e. adjacent vertices v, w have c(v) #= c(w).



G 1S k — colourable if it has a proper k- colouring.
A graph is k-colourable iff it is k-partite.
The Chromatic Number

x(G) = min{k : G is k-colourable}.

Lemmal

X(G) = max{cl(G),v/a(G)}

where cl(G) is the size of the largest clique n G.

Proof If C'is a clique of G then every vertex of C
must have a different colour in a proper colouring of
G.

If K1, Ko, ..., K; defines a proper k-colouring then

k
v= ) I|K;j| <ka(G).
i=1



Greedy Colouring Algorithm

Let V = {’U]_,”UQ,-H ,Un} and ‘/z — {’U]_,’UQ,... ,’Ui}
fore =1,2,... ,n.

begin
fort =1tondo
begin
c(v;) ;= min{j : Aw € Ng(v;) NV;_1 with
c(w) = j}
end

end




Theorem 1

xX(G) < A(G) + 1.

The Greedy Colouring algorithm produces a proper
k-colouring for some k£ < A + 1 where

k<14 max|[Ng(vy) NVi_1l. (1)
2

(a) The colouring is proper: Suppose v,vs € E and
r < s. c¢(vr) # c(vg) since c(vs) is the lowest num-
bered colour that is not used by a neighbour of vg In
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(b) At most A + 1 colours are used: |Ng(v;)| < A
and so the minimum above is never more than A+ 1.
O

If G is a complete graph or an odd cycle then x(G) =
A+ 1.



Colouring Number

Let

§*(G) = max 6(G[S])

(the maximum over the vertex induced subgraphs of
their minimum degrees.)

5(G) = 2and 6*(G) = 3.



Theorem 2

x(G) <6°(G) + 1.

Proof Let V = {vq1,vo,...,vn} Where

v; IS a minimum degree vertex of G[V;].
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Run the greedy colouring algorithm with this vertex

order.

[Ng(vi) NVi—1| = 6(G[Vi]) <67

The theorem follows from (1). O



Brook’'s Theorem

Theorem 3 If GG is a connected graph which is not a
complete graph or an odd cycle then x(G) < A(G).

Proof We shall prove this by induction on the num-
ber of vertices in G.

Assume that G is connected but not a complete graph
or an odd cycle.

If G has a cutpoint v let G — v have components
C1,Cop,...,CpandletW; = C;+vfori =1,2,... ,p.
Let k;, = x(G[W;]) and properly k;-colour the ver-
tices of each W; so that v has colour 1 in each.



This induces a proper k-colouring of G where k£ =
max{kl, ko, ... ,k'p}.
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We argue that £ < A. If say k1 = A + 1 then (by
induction) either W7 is an odd cycle or a complete
graph on k4 vertices..



If W4 is an odd cycle then k1 = 3 and A = 2 but
now dg(v) > 3 — contradiction.

If W7 Is a complete graph on kq vertices then A >
d(v) > ki — contradiction.

Suppose next that G contains a vertex v with d(v) <
A—1 lLletH =G —w.

If H is an odd cycle then A(G) = 3. We can 3-colour
H and then colour v with a colour not used by one of
its < 2 neighbours. Thus x(G) = 3 as required.
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If H is a k-clique then A(G) = k. We k-colour H
and extend the colouring to v as v has less than k&

neighbours in H.
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If H is is neither a cligue or an odd cycle then we
can A-colour it. We can extend this colouring to v by
using one of the colours not used so far in Ng(v).

We can therefore assume that GG is A-regular and 2-
connected with A > 3.
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We now consider 2-vertex cutsets. Suppse first that
(G contains vertices u,v such thatuv € E and u is a
cut pointof H = G — v.

LetCq,Cs, ..., C} bethe components of H—wv. Each
C; contains at least one neighbour x; of v, else v is a
cutpoint of G.

Take a A-colouring of H. Assume first that all neigh-
bours of u have different colours. Interchange colours
c1,co of x1, x> within C5 only.
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Because u does not have colour ¢q or ¢ and C'1 has
no neighbours other than v we see that this yields a
new proper colouring of H, but now x1 and z» have
the same colour c;.

Thus we can assume that we have a A-colouring of
H in which 2 neighbours of v have the same colour.
This colouring can be extended to v since fewer than
A\ colours are being used by neighbours of v.
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Suppose then that there are no two neighbours which
form a 2-vertex cut set. We prove the existence of
vertices a, b, ¢ such that

ab,ac € F and bc ¢ E and G — {b, c} is connected.

(2)
Choose y € V and let = be at distance 2 from z. y
cannot be a neighbour of every other vertex else GG is

(A + 1)-cligue. Let = be the middle vertex of a path
from x to y of length 2. Then zy,zz € F and yz ¢ E.

If G — {yz} is connected then let a,b,c = =z, y, .
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Otherwise let G—{yz} have components C1,C>, ... , C}.
y has a neighbour a = x in ' else x is of degree 2

or is a neighbour of z which is a cutpoint of G — z.
Similarly, y has a neighbour 8 %= = in C>.

C1 C2

%

We claim that H = G — {«, B} is connected and so
we can take a,b,c = y, a, (.
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Suppose C> — 3 has components D1, D»,.... Then
z Is adjacentto Dq else (3 is a cutpoint of G — y. Sim-
llarly, z is adjacent to all components of 'y — « and
C> — 3. Now H contains the path z,y, z and every
other component C'3, ... , C}. is connected to y, z and
S0 H is connected.
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Suppose that (2) holds. We run the Greedy colouring
algorithm with
v1 =b,vo =c,v3,... ,Up_1,Un = a

The sequence v3, ... ,v,_1,vn IS Obtained by doing
BFS froma in G — {b, c}.

The important thing isthatfor3 <:<n —1

35 > 7 such that v; is a neighbour of v;. (3)
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Greedy uses at most A colours.

v1 and v, both get colour 1.

For 3 < i <n—1, (3) implies that at most A — 1 of
v;'S neighbours have already been coloured when we
come to colour v — 1.

Finally, v, = a has at least 2 neighbours, b, ¢ using

the same colour and so at most A — 1 colours have
been used so far in a’s neighbourhood. O
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Chromatic Polynomial

1. (G) is the number of distinct proper k-colourings of
G.

T, =k(k-1)(k-2)

jy/i>x\ . = k(1) 7

Theorem 4 Let e = wv be an edge of G. Then

Wk(G) — Wk(G— 6) —Wk(G' 8).

Proof 71.(G) = the number of k-colourings of
G — e in which u, v have different colours.
7 (G - e) = the number of k-colourings of G — e in

which u, v have the same colour. O
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Theorem 5 7, (G) is a polynomial of degree v in k
with integer coefficients, leading term k¥ and constant
term zero. The coefficients alternate in sign.

Proof By inductionon |E|. If E = @ then 71.(G) =
kY.

Assume true for all graphs with < m edges and let GG
be a graph with m edges. Then by induction

v—1
m.(G—e) = k" + Z (—1)" "a;k"
i=1
v—2 _ .
m(Ge) = K 4 Y (-1 Tk
i=1
whereaq,... ,a,_1,b1,...,b,_o are non-negative in-

tegers. Then

v—2 ' .
m(G) = kY —(a,_1+1)E" 14+ Y (—1)Y " "(a;+by) k"
i=1
O
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Triangle free graphs with high chromatic number

Theorem 6 For any positive integer k, there exists a
triangle-free graph with chromatic number k.

Proof For k = 1,2 we use K1, K> respectively.

For larger k we use induction on k. Suppose we have
atriangle-free graph G, = (V}, E},) of chromatic num-

ber k. Let Vi, = {vq,vp,...,vn}. Form G, as fol-
lows:

Add vertices {v} UU = {uq1,un,... ,un} to Gi. Join
u; to v and the neighbours of v; In G, for 1 <7 < n.
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(@) Gg4-1 has no triangles.
U i1s an independent set and so any triangle will have
at most one vertex from U. Thus there are no trian-
gles involving v. Finally, if u;,v;, vy Is a triangle then
v;, V4, VR 1S a triangle of G

(b) Gi41 does not have a proper k-colouring.
Suppose there was one c*. We can assume that c¢*(v)
k and then U is coloured from {1,2,... ,k — 1}. But
now we can define a proper (k — 1)-colouring c of G,
by
c*(v;) if c*(v; k

c(vi) = { c*gu?) If C*Evg i k
This is a proper colouring of G, since if v;v; Is an
edge of G with c(v;) = c(v;) then exactly one of
c(v;) # c*(v;) or c(vj) # c*(v;) holds. Assume
the former. Then ¢*(v;) = k and c(v;) = c*(u;) #*
c*(vj) = c(v;j). Thus G4 1 is k-colourable implies
(G1. is (k — 1)-colourable, which it isn't.
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(¢) G471 has a proper (k + 1)-colouring.

Let ¢ be a proper k-colouring of G;.. Extend this to
U by putting c(u;) = ¢(v;) and then let c(v) = k +
1. Note that u; and v; have the same colour and the
same neighbours in V;, and so the colouring remains
proper.
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