Independent sets and cliques

S C V is independent if no edge of GG has both of its
endpoints in S.
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a(G)=maximum size of an independent set of G.
Lemma 1l S isindependentiff V' \ S is a cover.

Corollary 1
a(G) + B(G) =v.



L C FE'Is an edge covering if every v € V is contained
In an edge of L.

B'(G)=minimum size of an edge cover
o/ (G)=maximum size of a matching.

Theorem 1 If there are no isolated vertices then

o+ 3 =v.



Proof

@a + 5 <.

Let M be a maximum matching of G.
Let U be the set of vertices unsaturated by M.

Cover U with edges X, | X| = |U|.

M U X IS a cover.

g < M| +1X]
= o + (v—2d)
v — o




(b) o' + 8" > v.

Let L be a minimum edge cover of G.
(G[L] is a collection of disjoint stars S, So, ..., Sk.

NN

X
IFGlL] condned N7 then Ly isasmaller cover]

Choose matching M, one edge from each 5.

8 =|L|

v —k
v — |M]

/
> V-«



Ramsey’s Theorem

Suppose we 2-colour the edges K¢ of Red and Blue.
There must be either a Red triangle or a Blue triangle.

This is not true for K.



R
R 3
1 <
: — R 4
5
6

There are 3 edges of the same colour incident with
vertex 1, say (1,2), (1,3), (1,4) are Red. Either (2,3,4)
IS a blue triangle or one of the edges of (2,3,4) is Red,
say (2,3). But the latter implies (1,2,3) is a Red trian-

gle.



Ramsey’s Theorem

For all positive integers k, ¢ there exists R(k, ¢) such
thatif N > R(k, ¢) and the edges of K, are coloured
Red or Blue then then either there is a “Red k-clique”
or there is a “Blue ¢-clique.

A clique is a complete subgraph and it is Red if all of
its edges are coloured red etc.

|

R(1,k)
R(2,k)

R(k,1)
R(k,2)

|
>



Theorem 2

R(k,6) < R(k, ¢ — 1)+ R(k — 1,¢).

Proof Let N = R(k,4— 1)+ R(k—1,%).

V
Red R
edges
Blue
edges
V

Ve ={(z: (1,z) is coloured Red} and Vg = {(z :
(1, x) is coloured Blue}.



Since

N-1
R(k,{—1)+ R(k—1,¢) — 1.

VRl + VB

Suppose for example that |Vg| > R(k — 1,¢). Then
either Vi contains a Blue ¢-clique — done, or it con-
tains a Red k — 1-clique K. Butthen K U {1} is a
Red k-clique.

Similarly, if |Vg| > R(k,£—1) then either V5 contains
a Red k-clique — done, or it contains a Blue ¢ — 1-
cligue L and then L U {1} is a Blue ¢-clique. O



Theorem 3
k+/¢—2
R(k,0) < ( o )
Proof Induction on k + £. True for &k 4+ ¢ < 5 say.
Then

R(k,0) < R(k,—1)+ R(k—1,¢)
kE+/¢—3 EK+¢—3
< (Cpo )0 250)
kEK+¢—2
— ( E—1 )
O
So, for example,
R(k.k) < (2kk_—12)

VA
N
>
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Theorem 4

R(k, k) > 2k/2

Proof We must prove that if n < 2%/2 then there
exists a Red-Blue colouring of the edges of K, which
contains no Red k-cligue and no Blue k-clique. We
can assume k > 4 since we know R(3,3) = 6.

We show that this is true with positive probability in a
random Red-Blue colouring. So let €2 be the set of all
Red-Blue edge colourings of K, with uniform distribu-
tion. Equivalently we independently colour each edge
Red with probability 1/2 and Blue with probability 1/2.

Let
Er be the event: {There is a Red k-clique } and
Ep be the event: {There is a Blue k-clique}.

We show
Pr(EpUé&R) < 1.

11



Let C'1,Co,... ,CN, N =

N k-cliques of K,.

(Z) be the vertices of the

Let £r ; be the event: {C; is Red}.

Pr(Er U ER)

<

IA

Pr(€r) + Pr(&p)
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More than two colours

n > R(kq,ko,...,kmn) implies that if the edges of
Ky, are coloured with {1,2,... ,m} then 3 : K
contains a k;-clique all of whose edges have colour <.
These numbers exist and satisfy

Theorem 5 (a)

R(k1,ko, ...  km) <
R(k1—1,ko, ...  km)+
R(ky,k2 —1,...  km)+
+---+R(k1, ko, ... km—1)—(m—2).
(b)

(k14 ko + - + ko — m)?

Rk, ks hm) < (k1 — D)1(ko — DV (km — 1)V

O
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Schur’s Theorem

Theorem 6 For any k£ > 1 there exists an integer f;
such that for any partition S1,So,...,Sof {1,2,..., fi.}
there existsan ¢ and a,b,c € S; suchthata 4+ b = c.

Proof Let f = f. = R(3,3,...,3). Edge colour
zy gets colour i iff |x — y| € S;.

There exists ¢ such that a triangle is coloured s.

X<y<Z
V4
a = y—x €S9,
b = z—y €Sl
c = z—x €S

a-+0b

|
@)
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Turan’s Theorem

A graph is K, — free if it contains no clique of size
m (or more).

How many edges can a there be in a K, — free
graph?

m = 3 —triangle free.

K|, 2|,1v/21 has no triangles and no triangle free graph
with v vertices has more edges.

15



t-partite graphs

G is t-partite if V = V3 U Vo U --- U V4 IS a partition
where V1, V5, ..., V; are independent sets.

3-partite

A t-partite graph is K, ;-free — pigeon hole princi-
ple.

Kmq,mo,....my IS @ complete ¢-partite graph.

Vil =m; forl < <t.

Every vertex in V; is connected to every vertex in V;
by anedge, 1 <1<y <t.

16



Therefore

f—1 ¢
e(Kmimo,..my) = > > m;m;.
i=1 j=i+1

Which v vertex t-partite graph has most edges?

Suppose v = kt + £ where 0 < 7/ < t.

Ty = Ki k... k+1
(t—¢ k’'sand ¢ k+1'sinthe sequence k, k,... ,k+1.)

Lemma 2 If mqy +mo + --- 4+ my = v then

G(Kml,mg,... ,mt) < E(Tt,y)
unless Kmy mo,... m¢ = Tt v

Proof Suppose that m> > mq 4+ 2. Then

6(K"m,l—l—1,777,2—1,... ,mt) — E(Km17m27--- >mt) +
+mo —mq — 1
> E(Km17m27"‘ ,mt)°

So if the block sizes are not as even as possible, the
number of edges is not maximum. O
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G1 = (V, E1) degree majorises Go> = (V, E») if

dg,(v) > dg,(v) forallv € V.

We write G'1 > 4,, Go.

Theorem 7 If G is simple and K, 4 1 free then there
exists a complete m-partite graph H such that

(a) H de G.

(b) e(G) = e(H) implies that G = H.

Proof By induction on m.
True for m = 1 as K»-free means £ = 0.

Assume the result for m’ < m and let G be K, 1-
free.

18



Let dp(u) = A(G), Vi = N(u), |V1| = A and
Vo =V \ V7.

G1 = G[Vq] is K, -free.

There is a complete (m — 1)-partite graph H7 such
that H{ >4, G1 — induction.

19



Let

H =V NG

0
0
0
0

v, o H contains al
[ " .
: possible V:V,edges.
0
0

We claim that
H > dm G.

v € Vo implies dg(v)
v € V7 implies d¢(v)

Il IAIA IA

A =dg(v)
Vol + dg, (v)
Vol + dp, (v)
dp(v)
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(b) Now suppose that e(G) = €(H ). This implies that
da(v) =dg(v) forallv e V.

Let ¢ be the number of edges contained in V»>. We
claim that t = O.

AV 2t + Vo 1 V|
e(G) = t+[Vo:Vi[+e(Gy)
e(H) = A|Va|+ e(Hy).
S00 <t =¢€(G1) —e(Hy) <0. Thus e(G1) =
e(G») and V5 is an independent set in G. We can

now use induction to argue that G; = Hy and then
G = H. O
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Theorem 8 If GG Is simple and K,,, 4 1-free then

(@) e(G) < e(Tmw).

(b) e(G) = e(Tim,v) imlpies that G = Ty, v

Proof (a) follows from Lemma 2 and Theorem 7a.
For (b) we observe that the graph H of Theorem 7
satisfies

e(G) e(H) = e(Tm,v)
G = H

But then e(H) = e(Tm,») and Lemma 2 implies that
H 2 Ty O
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Geometry Problem
Theorem 9 Let X1, X», ..., X, be pointsinthe plane
suchthatforl <:<j3<n
[ Xi — X[ < 1.
Then

{(i,7) - i<jand |X; — X;| > 1/V2}| < [n?/3].

Proof Define graph G with V' = {1,2,... ,n}
and £ = {(4,7) : |X; — X;| > 1/v/2}. We claim
that G has no K4 and so

B| < e(Ts,) = [n2/3).
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x|

There exist 4, j, k such that /X1 X ; X}, > 7/2. Then

1> | X, X5 % > [XX50° + | XX

24



The circles are of radius r and the sides of the triangle
are 1 — 2r where 0 < r < (1 — 1/+v/2)/4. The
n points are split as evenly as possible within each
circle.
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Theorem 10 If d = 2¢/v = the average degree of
simple graph G then

v
a(G) > 1

Proof Let7(1),w(2),...,w(v) be an arbitrary per-
mutation of V. Let N (v) denote the set of neighbours
of vertex v and let

I(r) ={v: 7(w) >=n(v) forallw e N(v)}.

Claim 1 I is an independent set.
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Proof of Claim 1

Suppose w1, wo> € I(w) and wiwo € E. Suppose
m(wy) < m(ws). Then wy ¢ I(w) — contradiction.

Now let w be a random permutation.

Claim 2
1
LUDED Voot
Proof of Claim 2
Let
1l vel
o(v) = { 0O vel
Thus
| = > d(v)
veV
E(II]) = ) E(6(v))
veV

= Y Pr(5(v) =1).

veV

O
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Now §(v) = 1 if v comes before all of its neighbours

in the order . Thus
1

Pr(é =1) >
r(6() =1 2 g
and the claim follows. O
Thus there exists a = such that
1
[I(m)| >
& d) T 1
and so
1
a(G) > :
Zdw +1
We finish the proof of Theorem 10 by showing that
1 1%
)3 > 2
dlv)+1 " d+1

veV
This follows from the following claim by putting x, =
d(v) +1forv e V.

Claim 3 If x1,x5,...2; > 0 then

1 1 1 k2
> ) 1
x1+x2—|— +xk_$1+332+°"+5% (1)

28




Proof of Claim 3
Multiplying (1) by 1 4+ 22 + - - - + ;. and subtracting
k from both sides we see that (1) is equivalent to

S (‘” + “’?’) > k(k — 1). (2)

1<i<j<k \Tj i

Butforall z,y > O

and (2) follows. O
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Parallel searching for the maximum — Valiant

We have n processors and n numbers 1, x>, ... ,In.
In each round we choose n pairs ¢, 7 and compare the
values of z;, ;.

The set of pairs chosen in a round can depend on the
results of previous comparisons.

Aim: find <* such that z;+ = max; x;.

Claim 4 For any algorithm there exists an input which
requires at least % log» l0g> n rounds.
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Suppose that the first round of comparisons involves
comparing z;, z; for edge ¢5 of the above graph and
that the arrows point to the larger of the two values.
Consider the independent set {1,2,5,8,9, }. These
are the indices of the 5 largest elements, but their rel-
ative order can be arbitrary since there is no implied
relation between their values.
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Let C'(a, b) be the maximum number of rounds needed
for a processors to compute the maximum of b values
In this way.

Lemma 3

b2
C(a,b) > 1—|—C’<a, {Qa—l—b—‘).

Proof The set of b comparisons defines a b-edge
graph G on a vertices where comparison of x;, x; pro-
duces an edge 75 of G. Theorem 10 implies that

b | [ b
22410 |2a+b|
For any independent set I it is always possible to de-
fine values for x1,z5,... , x4 Such I is the index set
of the || largest values and so that the comparisons

do not yield any information about the ordering of the
elements z;,: € 1.

a(G) >

Thus after one round one has the problem of finding
the maximum among o (G) elements. O
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Now define the sequence cg, c1,... by cg = n and

2
C; = | .
i+l {Qn + cz--‘
It follows from Lemma 3 that

¢ > 2 implies C(n,n) > k + 1.

Claim 4 now follows from

Claim 5

S n
C’i = - .
322—1

By induction on . Trivial for : = 0. Then

n2 1

. X
2i+1_2 n
3 2n + 31
n 3
32“‘1—1 % 2+ 1
32'-1

1V

Ci+1

> n
— gtl-o1’
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