
Independent sets and cliques

S ⊆ V is independent if no edge of G has both of its
endpoints in S.

α(G)=maximum size of an independent set of G.

Lemma 1 S is independent iff V \ S is a cover.

Corollary 1

α(G) + β(G) = ν.

1



L ⊆ E is an edge covering if every v ∈ V is contained
in an edge of L.

β′(G)=minimum size of an edge cover
α′(G)=maximum size of a matching.

Theorem 1 If there are no isolated vertices then

α′ + β′ = ν.
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Proof
(a) α′ + β′ ≤ ν.

Let M be a maximum matching of G.
Let U be the set of vertices unsaturated by M .

Cover U with edges X, |X| = |U |.
M ∪ X is a cover.

M M M M M M

X X X X

U U U U

β′ ≤ |M | + |X|
= α′ + (ν − 2α′)
= ν − α′.
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(b) α′ + β′ ≥ ν.

Let L be a minimum edge cover of G.
G[L] is a collection of disjoint stars S1, S2, . . . , Sk.

[If G[L] contained 
x y z

then L-y is a smaller cover.]

M M
M M

Choose matching M , one edge from each Si.

β′ = |L| = ν − k

= ν − |M |
≥ ν − α′

2
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Ramsey’s Theorem

Suppose we 2-colour the edges K6 of Red and Blue.
There must be either a Red triangle or a Blue triangle.

This is not true for K5.
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There are 3 edges of the same colour incident with
vertex 1, say (1,2), (1,3), (1,4) are Red. Either (2,3,4)
is a blue triangle or one of the edges of (2,3,4) is Red,
say (2,3). But the latter implies (1,2,3) is a Red trian-
gle.
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Ramsey’s Theorem

For all positive integers k, ` there exists R(k, `) such
that if N ≥ R(k, `) and the edges of KN are coloured
Red or Blue then then either there is a “Red k-clique”
or there is a “Blue `-clique.

A clique is a complete subgraph and it is Red if all of
its edges are coloured red etc.

R(1, k) = R(k,1) = 1
R(2, k) = R(k,2) = k
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Theorem 2

R(k, `) ≤ R(k, ` − 1) + R(k − 1, `).

Proof Let N = R(k, ` − 1) + R(k − 1, `).

1

V

V

Red
edges

Blue
edges

R

B

VR = {(x : (1, x) is coloured Red} and VB = {(x :

(1, x) is coloured Blue}.
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|VR| ≥ R(k − 1, `) or |VB| ≥ R(k, ` − 1).

Since

|VR| + |VB| = N − 1

= R(k, ` − 1) + R(k − 1, `) − 1.

Suppose for example that |VR| ≥ R(k − 1, `). Then
either VR contains a Blue `-clique – done, or it con-
tains a Red k − 1-clique K. But then K ∪ {1} is a
Red k-clique.

Similarly, if |VB| ≥ R(k, `−1) then either VB contains
a Red k-clique – done, or it contains a Blue ` − 1-
clique L and then L ∪ {1} is a Blue `-clique. 2
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Theorem 3

R(k, `) ≤
(k + ` − 2

k − 1

)

.

Proof Induction on k + `. True for k + ` ≤ 5 say.
Then

R(k, `) ≤ R(k, ` − 1) + R(k − 1, `)

≤
(k + ` − 3

k − 1

)

+
(k + ` − 3

k − 2

)

=
(k + ` − 2

k − 1

)

.

2

So, for example,

R(k, k) ≤
(2k − 2

k − 1

)

≤ 4k
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Theorem 4

R(k, k) > 2k/2

Proof We must prove that if n ≤ 2k/2 then there
exists a Red-Blue colouring of the edges of Kn which
contains no Red k-clique and no Blue k-clique. We
can assume k ≥ 4 since we know R(3,3) = 6.

We show that this is true with positive probability in a
random Red-Blue colouring. So let Ω be the set of all
Red-Blue edge colourings of Kn with uniform distribu-
tion. Equivalently we independently colour each edge
Red with probability 1/2 and Blue with probability 1/2.

Let
ER be the event: {There is a Red k-clique} and
EB be the event: {There is a Blue k-clique}.

We show

Pr(ER ∪ EB) < 1.
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Let C1, C2, . . . , CN , N =
(

n
k

)

be the vertices of the
N k-cliques of Kn.
Let ER,j be the event: {Cj is Red}.

Pr(ER ∪ EB) ≤ Pr(ER) + Pr(EB)

= 2Pr(ER)

= 2Pr





N
⋃

j=1

ER,j





≤ 2

N
∑

j=1

Pr(ER,j)

= 2

N
∑

j=1

(

1

2

)(k

2)

= 2
(n

k

)

(

1

2

)(k

2)

≤ 2
nk

k!

(

1

2

)(k

2)

≤ 2
2k2/2

k!

(

1

2

)(k

2)

=
21+k/2

k!
< 1.

2
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More than two colours

n ≥ R(k1, k2, . . . , km) implies that if the edges of
Kn are coloured with {1,2, . . . , m} then ∃i : Kn

contains a ki-clique all of whose edges have colour i.
These numbers exist and satisfy

Theorem 5 (a)

R(k1, k2, . . . , km) ≤
R(k1 − 1, k2, . . . , km)+

R(k1, k2 − 1, . . . , km)+

+· · ·+R(k1, k2, . . . , km−1)−(m−2).

(b)

R(k1, k2, . . . , km) ≤ (k1 + k2 + · · · + km − m)!

(k1 − 1)!(k2 − 1)! · · · (km − 1)!
.

2
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Schur’s Theorem

Theorem 6 For any k ≥ 1 there exists an integer fk
such that for any partition S1, S2, . . . , Sk of {1,2, . . . , fk}
there exists an i and a, b, c ∈ Si such that a + b = c.

Proof Let f = fk = R(3,3, . . . ,3). Edge colour
Kf by

xy gets colour i iff |x − y| ∈ Si.

There exists i such that a triangle is coloured i.

x

y z

i i

i

x<y<z

a = y − x ∈ Si

b = z − y ∈ Si

c = z − x ∈ Si

a + b = c
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Turan’s Theorem

A graph is Km − free if it contains no clique of size
m (or more).

How many edges can a there be in a Km − free

graph?

m = 3 – triangle free.

Kbν/2c,dν/2e has no triangles and no triangle free graph
with ν vertices has more edges.
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t-partite graphs

G is t-partite if V = V1 ∪ V2 ∪ · · · ∪ Vt is a partition
where V1, V2, . . . , Vt are independent sets.

3-partite

A t-partite graph is Kt+1-free — pigeon hole princi-
ple.

Km1,m2,... ,mt is a complete t-partite graph.
|Vi| = mi for 1 ≤ i ≤ t.
Every vertex in Vi is connected to every vertex in Vj

by an edge, 1 ≤ i < j ≤ t.
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Therefore

ε(Km1,m2,... ,mt) =
t−1
∑

i=1

t
∑

j=i+1

mimj.

Which ν vertex t-partite graph has most edges?

Suppose ν = kt + ` where 0 ≤ ` < t.

Tt,ν = Kk,k,... ,k+1

(t−` k’s and ` k+1’s in the sequence k, k, . . . , k+1.)

Lemma 2 If m1 + m2 + · · · + mt = ν then

ε(Km1,m2,... ,mt) < ε(Tt,ν)

unless Km1,m2,... ,mt
∼= Tt,ν.

Proof Suppose that m2 ≥ m1 + 2. Then

ε(Km1+1,m2−1,... ,mt
) = ε(Km1,m2,... ,mt) +

+ m2 − m1 − 1

> ε(Km1,m2,... ,mt).

So if the block sizes are not as even as possible, the
number of edges is not maximum. 2
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G1 = (V, E1) degree majorises G2 = (V, E2) if

dG1
(v) ≥ dG2

(v) for all v ∈ V.

We write G1 ≥dm G2.

Theorem 7 If G is simple and Km+1 free then there
exists a complete m-partite graph H such that

(a) H ≥dm G.

(b) ε(G) = ε(H) implies that G ∼= H.

Proof By induction on m.

True for m = 1 as K2-free means E = ∅.

Assume the result for m′ < m and let G be Km+1-
free.
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Let dG(u) = ∆(G), V1 = N(u), |V1| = ∆ and
V2 = V \ V1.

u

V

V1

2

G1 = G[V1] is Km-free.

There is a complete (m − 1)-partite graph H1 such
that H1 ≥dm G1 — induction.
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Let

H = V2 ∧ G1.

V 2
H contains all
possible V1 edges.2:V V 11H

We claim that

H ≥dm G.

v ∈ V2 implies dG(v) ≤ ∆ = dH(v)

v ∈ V1 implies dG(v) ≤ |V2| + dG1
(v)

≤ |V2| + dH1
(v)

= dH(v)
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(b) Now suppose that ε(G) = ε(H). This implies that
dG(v) = dH(v) for all v ∈ V .

Let t be the number of edges contained in V2. We
claim that t = 0.

∆|V2| = 2t + |V2 : V1|
ε(G) = t + |V2 : V1| + ε(G1)

ε(H) = ∆|V2| + ε(H1).

So 0 ≤ t = ε(G1) − ε(H1) ≤ 0. Thus ε(G1) =

ε(G2) and V2 is an independent set in G. We can
now use induction to argue that G1

∼= H1 and then
G ∼= H. 2
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Theorem 8 If G is simple and Km+1-free then

(a) ε(G) ≤ ε(Tm,ν).

(b) ε(G) = ε(Tm,ν) imlpies that G ∼= Tm,ν.

Proof (a) follows from Lemma 2 and Theorem 7a.
For (b) we observe that the graph H of Theorem 7
satisfies

ε(G) = ε(H) = ε(Tm,ν)

G ∼= H

But then ε(H) = ε(Tm,ν) and Lemma 2 implies that
H ∼= Tm,ν. 2
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Geometry Problem

Theorem 9 Let X1, X2, . . . , Xn be points in the plane
such that for 1 ≤ i < j ≤ n

|Xi − Xj| ≤ 1.

Then

|{(i, j) : i < j and |Xi − Xj| > 1/
√

2}| ≤ bn2/3c.

Proof Define graph G with V = {1,2, . . . , n}
and E = {(i, j) : |Xi − Xj| > 1/

√
2}. We claim

that G has no K4 and so

|E| ≤ ε(T3,n) = bn2/3c.
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X X X X

X

X X

X

X X

X

X

i j k l

i

j
k

l

i j

k

l

There exist i, j, k such that ∠X1XjXk ≥ π/2. Then

1 ≥ |XiXk|2 ≥ |XiXj|2 + |XjXk|2.

2
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The circles are of radius r and the sides of the triangle
are 1 − 2r where 0 < r < (1 − 1/

√
2)/4. The

n points are split as evenly as possible within each
circle.
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Theorem 10 If d̄ = 2ε/ν = the average degree of
simple graph G then

α(G) ≥ ν

d̄ + 1
.

Proof Let π(1), π(2), . . . , π(ν) be an arbitrary per-
mutation of V . Let N(v) denote the set of neighbours
of vertex v and let

I(π) = {v : π(w) > π(v) for all w ∈ N(v)}.

Claim 1 I is an independent set.

a

b

c

d

e

f

g

h

a b c d e f g h I
π1 c b f h a g e d {c, f}
π2 g f h d e a b c {g, d, a}
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Proof of Claim 1
Suppose w1, w2 ∈ I(π) and w1w2 ∈ E. Suppose
π(w1) < π(w2). Then w2 /∈ I(π) — contradiction.

2

Now let π be a random permutation.

Claim 2

E(|I|) ≥
∑

v∈V

1

d(v) + 1
.

Proof of Claim 2
Let

δ(v) =

{

1 v ∈ I
0 v /∈ I

Thus

|I| =
∑

v∈V

δ(v)

E(|I|) =
∑

v∈V

E(δ(v))

=
∑

v∈V

Pr(δ(v) = 1).
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Now δ(v) = 1 if v comes before all of its neighbours
in the order π. Thus

Pr(δ(v) = 1) ≥ 1

d(v) + 1

and the claim follows. 2

Thus there exists a π such that

|I(π)| ≥
∑

v∈V

1

d(v) + 1

and so

α(G) ≥
∑

v∈V

1

d(v) + 1
.

We finish the proof of Theorem 10 by showing that
∑

v∈V

1

d(v) + 1
≥ ν

d̄ + 1
.

This follows from the following claim by putting xv =

d(v) + 1 for v ∈ V .

Claim 3 If x1, x2, . . . xk > 0 then

1

x1
+

1

x2
+ · · · + 1

xk
≥ k2

x1 + x2 + · · · + xk
. (1)
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Proof of Claim 3
Multiplying (1) by x1 + x2 + · · ·+ xk and subtracting
k from both sides we see that (1) is equivalent to

∑

1≤i<j≤k

(

xi

xj
+

xj

xi

)

≥ k(k − 1). (2)

But for all x, y > 0

x

y
+

y

x
≥ 2

and (2) follows. 2
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Parallel searching for the maximum – Valiant

We have n processors and n numbers x1, x2, . . . , xn.
In each round we choose n pairs i, j and compare the
values of xi, xj.
The set of pairs chosen in a round can depend on the
results of previous comparisons.

Aim: find i∗ such that xi∗ = maxi xi.

Claim 4 For any algorithm there exists an input which
requires at least 1

2 log2 log2 n rounds.
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1

Suppose that the first round of comparisons involves
comparing xi, xj for edge ij of the above graph and
that the arrows point to the larger of the two values.
Consider the independent set {1,2,5,8,9, }. These
are the indices of the 5 largest elements, but their rel-
ative order can be arbitrary since there is no implied
relation between their values.

31



Let C(a, b) be the maximum number of rounds needed
for a processors to compute the maximum of b values
in this way.

Lemma 3

C(a, b) ≥ 1 + C

(

a,

⌈

b2

2a + b

⌉)

.

Proof The set of b comparisons defines a b-edge
graph G on a vertices where comparison of xi, xj pro-
duces an edge ij of G. Theorem 10 implies that

α(G) ≥








b
2a
b + 1









=

⌈

b2

2a + b

⌉

.

For any independent set I it is always possible to de-
fine values for x1, x2, . . . , xa such I is the index set
of the |I| largest values and so that the comparisons
do not yield any information about the ordering of the
elements xi, i ∈ I.

Thus after one round one has the problem of finding
the maximum among α(G) elements. 2
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Now define the sequence c0, c1, . . . by c0 = n and

ci+1 =

⌈

c2i
2n + ci

⌉

.

It follows from Lemma 3 that

ck ≥ 2 implies C(n, n) ≥ k + 1.

Claim 4 now follows from

Claim 5

ci ≥
n

32i−1
.

By induction on i. Trivial for i = 0. Then

ci+1 ≥ n2

32i+1−2
× 1

2n + n

32i−1

=
n

32i+1−1
× 3

2 + 1

32i−1

≥ n

32i+1−1
.

2
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