
Matchings

A matching M of a graph G = (V, E) is a set

of edges, no two of which are incident to a

common vertex.

M={ }

Perfect Matching

M-unsaturated

M-saturated
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M-alternating path
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(a,b,c,d,e,f) is an
M-alternating path

An M-alternating path joining 2 M-unsaturated

vertices is called an M-augmenting path.
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M is a maximum matching of G if no matching

M ′ has more edges.

Theorem 1 M is a maximum matching iff M

admits no M-augmenting paths.

Proof Suppose M has an augmenting path

P = (a0, b1, a1, . . . , ak, bk+1) where ei = (ai−1, bi) /∈

M, 1 ≤ i ≤ k+1 and fi = (bi, ai) ∈ M, 1 ≤ i ≤ k.

PSfrag replacements

a0

a1 a2

b1

b2

b3

M ′ = M − {f1, f2, . . . , fk} + {e1, e2, . . . , ek+1}.
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• |M ′| = |M | + 1.

• M ′ is a matching

For x ∈ V let dM(x) denote the degree of x in

matching M , So dM(x) is 0 or 1.

dM ′(x) =











dM(x) x 6∈ {a0, b1, . . . , bk+1}
dM(x) x ∈ {b1, . . . , ak}
dM(x) + 1 x ∈ {a0, bk+1}

So if M has an augmenting path it is not max-

imum.
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Suppose M is not a maximum matching and |M ′| > |M |.
Consider H = G[M∆M ′] where M∆M ′ = (M \ M ′) ∪
(M ′ \ M) is the set of edges in exactly one of M, M ′.

Maximum degree of H is 2, at most 1 edge from M or
M ′. So H is a collection of vertex disjoint alternating
paths and cycles.

M

M’

x

y

(a) (b)

(c) (d)

x,y M-unsaturated

|M ′| > |M | implies that there is at least one path of type
(d).

Such a path is M-augmenting 2
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Bipartite Graphs

Let G = (A ∪ B, E) be a bipartite graph with

bipartition A, B.

For S ⊆ A let N(S) = {b ∈ B : ∃a ∈ S, (a, b) ∈

E}.
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N(a2, a3) = {b1, b3, b4}

Clearly, |M | ≤ |A|, |B| for any matching M of

G.
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Hall’s Theorem

Theorem 2 G contains a matching of size |A|

iff

|N(S)| ≥ |S| ∀S ⊆ A. (1)
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N({a1, a2, a3}) = {b1, b2} and so at most 2 of

a1, a2, a3 can be saturated by a matching.
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Only if: Suppose M = {(a, φ(a)) : a ∈ A}

saturates A.

1
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ε
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N(S)

N(S)

N(S)

S
+non-matching
edges

2

|N(S)| ≥ |{φ(s) : s ∈ S}| = |S|

and so (1) holds.

If: Let M = {(a, φ(a)) : a ∈ A′} (A′ ⊆ A)

is a maximum matching. Suppose a0 ∈ A is

M-unsaturated. We show that (1) fails.
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Let

A1 = {a ∈ A : such that a is reachable from a0

by an M-alternating path.}

B1 = {b ∈ B : such that b is reachable from a0

by an M-alternating path.}
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No A1 : B \ B1 edges

a0 A1A1A1A1

B1
B1B1B1
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• B1 is M-saturated else there exists an M-

augmenting path.

• If a ∈ A1 \ {a0} then φ(a) ∈ B1.
PSfrag replacements

a0
aφ(a)

• If b ∈ B1 then φ−1(b) ∈ A1 \ {a0}.

So

|B1| = |A1| − 1.

• N(A1) ⊆ B1
PSfrag replacements

a0 b φ−1(b)

So

|N(A1)| = |A1| − 1

and (1) fails to hold.
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Marriage Theorem

Theorem 3 Suppose G = (A∪B, E) is k-regular.

(k ≥ 1) i.e. dG(v) = k for all v ∈ A ∪ B. Then

G has a perfect matching.

Proof

k|A| = |E| = k|B|

and so |A| = |B|.

Suppose S ⊆ A. Let m be the number of edges

incident with S. Then

k|S| = m ≤ k|N(S)|.

So (1) holds and there is a matching of size

|A| i.e. a perfect matching.
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Edge Covers

A set of vertices X ⊆ V is a covering of G =

(V, E) if every edge of E contains at least one

endpoint in X.

{ } is a covering

Lemma 1 If X is a covering and M is a match-

ing then |X| ≥ |M |.

Proof Let M = {(a1, bi) : 1 ≤ i ≤ k}.
Then |X| ≥ |M | since ai ∈ X or bi ∈ X for

1 ≤ i ≤ k and a1, . . . , bk are distinct. 2
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Konig’s Theorem

Let µ(G) be the maximum size of a matching.

Let β(G) be the minimum size of a covering.

Then

µ(G) ≤ β(G).

Theorem 4 If G is bipartite then µ(G) = β(G).

Proof Let M be a maximum matching.

Let S0 be the M-unsaturated vertices of A.

Let S ⊇ S0 be the A-vertices which are reach-

able from S by M-alternating paths.

Let T be the M-neighbours of S \ S0.
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Let X = (A \ S) ∪ T .

• |X| = |M |.

|T | = |S \S0|. The remaining edges of M cover

A \ S exactly once.

• X is a cover.

There are no edges (x, y) where x ∈ S and

y ∈ B \ T . Otherwise, since y is M-saturated

(no M-augmenting paths) the M-neightbour

of y would have to be in S, contradicting y /∈ T .

2
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Tutte’s Theorem

We now discuss arbitrary (i.e. non-bipartite)

graphs.

For S ⊆ V we let o(G − S) denote the number

of components of odd cardinality in G − S.

Theorem 5 G has a perfect matching iff

o(G − S) ≤ |S| for all S ⊆ V. (2)

Proof We restrict our attention to simple

graphs.
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Only if:

Components

Even

x

y

z

a

b

Need to match x,y,z to a,b 

Suppose |S| = k and O1, O2, . . . , Ok+1 are odd

components of G−S. In any perfect matching

of G, at least one vertex xi of Ci will have to

be matched outside Oi for i = 1,2, . . . , k + 1.

But then x1, x2, . . . , xk+1 will all have to be

matched with S, which is impossible.
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If: Suppose (2) holds and G has no perfect

matching. Add edges until we have a graph

G∗ which satisfies

• G∗ has no perfect matching.

• G∗ + e has a perfect matching for all e /∈

E(G∗).

Clearly,

o(G∗ − S) ≤ o(G − S) ≤ |S| for all S ⊆ V.

(3)

In particular, if S = ∅, o(G∗) = 0 and |V | is

even.

U = {v ∈ V : dG∗(v) = ν − 1}.

U 6= V else G∗ has a perfect matching.
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Claim: G∗−U is the disjoint union of complete

graphs.

Suppose C is a component of G∗ − U which is

not a clique. Then there exist x, y, z ∈ C such

that xy, xz ∈ E(G∗) and xz /∈ E(G∗).

Take x, z ∈ C at distance 2 in G∗.

y

x z

w

y /∈ U implies that there exists w /∈ U with

yw /∈ E(G∗).

Let M1, M2 be perfect matchings in G∗+xz, G∗+

yw respectively.
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Let H = M1∆M2. H is a collection of vertex

disjoint even cycles.

Case 1: xz, yw are in different cycles of H.

+

+
+

+ +

+
+

z

y

x

w
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+ edges form a perfect matching in G∗ – con-

tradiction.
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Case 2: xz, yw are in same cycle of H.

+
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+
+
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z

+
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+ edges form a perfect matching in G∗ – con-

tradiction.

Claim is proved.
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Suppose G − U has ` odd components. Then

• ` ≤ |U | from (3).

• ` = |U | mod 2, since |V | is even.

U

------- Odd Components ---------- --Even Components---

G∗ has a perfect matching – contradiction. 2
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Petersen’s Theorem

Theorem 6 Every 3-regular graph without cut-

edges contains a perfect matching.

Proof Suppose S ⊆ V . Let G − S have

components C1, C2, . . . , Cr where C1, C2, . . . , C`

are odd.

mi is the number of Ci : S edges; mi ≥ 2.

ni is the number of edges contained in Ci.

3|Ci| = mi + 2ni.

So mi is odd for 1 ≤ i ≤ `. Hence mi ≥ 3 for

1 ≤ i ≤ `. Thus

3` ≤ m1 + m2 + · · · + m` ≤ 3|S|,

and (2) holds. 2
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