Matchings

A matching M of a graph G = (V,F) is a set
of edges, no two of which are incident to a
common vertex.

M-saturated

M=—]

M-unsaturated

Perfect Matching

AN



M-alternating path

M not M M not M

(ab,c,def) isan
M-alternating path

An M-alternating path joining 2 M-unsaturated
vertices is called an M-augmenting path.



M is a maximum matching of G if no matching
M’ has more edges.

Theorem 1 M is a maximum matching iff M
admits no M-augmenting paths.

Proof Suppose M has an augmenting path
P = (a'07b17a17 e 7a’k7bk—|—l) where €, — (ai—labi) %
M,1<:<k+1and f; = (b;,a;) € M, 1<i<k.

ai a

ag b2

M' =M —{f1,f2,.-- . [} +{e1.e2, ... ept1}-



o |M'|=|M|+1.

e M’ is a matching

For x € V let dy;(x) denote the degree of x in
matching M, So dy;(x) is 0 or 1.

dpr(x) r & {ag,b1,... ,bp41}
dyp(e) = dy(z) w2 € {bys. . ap}
dy(z) +1 z € {ag, bp41}

So if M has an augmenting path it is not max-
imum.



Suppose M is not a maximum matching and |M’'| > |M].
Consider H = G[MAM'] where MAM' = (M \ M) U
(M'\ M) is the set of edges in exactly one of M, M’.

Maximum degree of H is 2, at most 1 edge from M or
M'. So H is a collection of vertex disjoint alternating
paths and cycles.

X,y M-unsaturated

(© (d)

|M'| > | M| implies that there is at least one path of type
(d).

Such a path is M-augmenting O



Bipartite Graphs

Let G = (AU B, FE) be a bipartite graph with
bipartition A, B.

For SC Alet N(S)={be B: da € S,(a,b) €
E}.

ai b1
a bo

as b3
aq bg

N(ap,a3) = {b1,b3,b4}

M| < |A],|B| for any matching M of

Clearly,
G.



Hall’'s Theorem

Theorem 2 G contains a matching of size |A|

i
N(S)| > 15| ST A Q)
al b1
a bo
as b3
aq ba

N({{a1,ao,a3}) = {b1,bo} and so at most 2 of
ai,an,a3 can be saturated by a matching.
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Only if: Suppose M = {(a,¢(a)) : a € A}
saturates A.

1 ¢ (2 € N(S
2
S " P(4) +non-matching
edges
¢ (1) e N(S
4 @(3) € N(9

IN(S)| = {o(s) : s € S} =|5]
and so (1) holds.

If: Let M = {(a,¢9(a)) : a € A’} (A C A)
IS @ maximum matching. Suppose ag € A is
M-unsaturated. We show that (1) fails.



Let

A1 = {a € A : such that a is reachable from ag
by an M-alternating path.}

B1 = {b € B : such that b is reachable from ag
by an M-alternating path.}

By Bi1 B1 By

>

ag  Aq A1 Aq Aq

No A; : B\ By edges



e B1 is M-saturated else there exists an M-
augmenting path.

o If a € A1\ {ag} then ¢(a) € B;.

, M
O C s O 9 —

ao ¢(a) @

o If b€ By then ¢~ 1(b) € A1\ {ap}.

So
|B1| = |A1] — 1.
e N(A1) C By
0 e © —O O ° .
ao b ¢~ (b)
So

[N(A)| = [A1] =1
and (1) fails to hold.
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Marriage Theorem

Theorem 3 Suppose G = (AUB, E) is k-regular.
(k>1) ie dg(v) =k for allve AUB. Then
GG has a perfect matching.

Proof
k|A| = |E| = k|B|
and so |A| = |Bj|.
Suppose S C A. Let m be the number of edges
incident with S. Then

kS| = m < k|N(S)|.

So (1) holds and there is a matching of size
|A| i.e. a perfect matching.
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Edge Covers

A set of vertices X C V is a covering of G =
(V, FE) if every edge of E contains at least one
endpoint in X.

{® 1} isacovering

Lemma 1 If X is a covering and M is a match-
ing then |X| > |M].

Proof Let M = {(a1,b;) : 1 < i < k}.
Then |X| > |M]| since a; € X or b, € X for
1<+<kanday,...,b. are distinct. O



Konig’s Theorem

Let u(G) be the maximum size of a matching.
Let 8(G) be the minimum size of a covering.
Then

pu(G) < B(G).

Theorem 4 IfG isbipartite then u(G) = B(G).

Proof Let M be a maximum matching.
Let So be the M-unsaturated vertices of A.
Let S O Sg be the A-vertices which are reach-
able from S by M-alternating paths.

Let T" be the M-neighbours of S\ Sp.
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T T T T

N\

So Sg So S S S S

Let X = (A\S)UT.
'T| = |S\ Sp|- The remaining edges of M cover
A\ S exactly once.

e X is a cover.

There are no edges (x,y) where z € S and
y € B\ T. Otherwise, since y is M-saturated
(no M-augmenting paths) the M-neightbour

of y would have to be in S, contradicting y & T.
O
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Tutte’'s Theorem

We now discuss arbitrary (i.e. non-bipartite)
graphs.

For S CV we let o(G — S) denote the number
of components of odd cardinality in G — S.

Theorem 5 GG has a perfect matching iff

o(G—95) <|S5| for all S C V. (2)

Proof We restrict our attention to simple
graphs.
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Only if:

a
Even ¢
Components
b @

Need to match x,y,zto a,b

Suppose |S| =k and O1,09,...,0;4 are odd
components of G—S. In any perfect matching
of G, at least one vertex z; of C; will have to
be matched outside O; for : = 1,2,... ,k 4+ 1.
But then xq,2p,..., xpy41 will all have to be
matched with S, which is impossible.
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If: Suppose (2) holds and G has no perfect
matching. Add edges until we have a graph
G* which satisfies

e (G* has no perfect matching.

e G* 4 e has a perfect matching for all e ¢
E(G*).

Clearly,

o(G* = S) < o(G—5) <|S] for all S C V.
(3)
In particular, if S = 0, o(G*) = 0 and |V] is
even.

U={veV:dg(w)=v—1}.

U # V else G* has a perfect matching.
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Claim: G*—U is the disjoint union of complete
graphs.

Suppose C is a component of G* — U which is
not a cligue. Then there exist x,y,z € C such
that zy,zz € E(G*) and zz ¢ E(G™).

Take x,z € C' at distance 2 in G*.

y ¢ U implies that there exists w ¢ U with
yw ¢ E(G").

Let M1, M»> be perfect matchings in G*4xz, G*+
yw respectively.
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Let H = M{AM->. H is a collection of vertex
disjoint even cycles.

Case 1: zz,yw are in different cycles of H.

—

1 LI
+l |
R

+
I I = = =

+

0 y -

+
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XA
i
+
i

z
Lt

Il -M2

+ edges form a perfect matching in G* — con-

tradiction.
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Case 2: zz,yw are in same cycle of H.

* 0

| h+I
1 |

[
1 1
/+I \'+

e /4

m = m />

+ edges form a perfect matching in G* — con-
tradiction.

Claim is proved.
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Suppose G — U has ¢ odd components. Then
o / < |U| from (3).
e /= |U| mod 2, since |V] is even.

------- Ocd Components ---------- --Even Components---

L

[ ][]
[ [ ]

G™ has a perfect matching — contradiction. O
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Petersen’s Theorem

Theorem 6 Every 3-reqular graph without cut-
edges contains a perfect matching.

Proof Suppose S C V. Let G — S have
components C1,Cy, ... ,Crwhere Cq,Co, ...,y
are odd.

m; IS the number of C; : S edges; m; > 2.
n; IS the number of edges contained in Cj.

So m; is odd for 1 < < /¢. Hence m; > 3 for
1 <¢:<¥4. Thus

3 <mig+mo+---+my < 3|5,
and (2) holds. O
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