
Eulerian Graphs

An Eulerian cycle of a graph G = (V, E) is a

closed walk which uses each edge e ∈ E exactly

once.
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The walk using edges a,b,c,d,e,f,g,h,j,k in 
this order is an Eulerian cycle.
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Theorem 1 A connected graph is Eulerian i.e.

has an Eulerian cycle, iff it has no vertex of odd

degree.

Proof Suppose W = (v1, v2, . . . , vm, v1)

(m = |E|) is an Eulerian cycle. Fix v ∈ V .

Whenever W visits v it enters through a new

edge and leaves through a new edge. Thus

each visit requires 2 new edges. Thus the de-

gree of v is even.

v

PSfrag replacements

vi−1

vi+1

vj−1

vj+1

2



The converse is proved by induction on |E|.
The result is true for |E| = 3. The only possi-

ble graph is a triangle.

Assume |E| ≥ 4. G is not a tree, since it has

no vertex of degree 1. Therefore it contains a

cycle C. Delete the edges of C. The remaining

graph has components K1, K2, . . . , Kr.

Each Ki is connected and is of even degree –

deleting C removes 0 or 2 edges incident with

a given v ∈ V . Also, each Ki has strictly less

than |E| edges. So, by induction, each Ki has

an Eulerian cycle, Ci say.

We create an Eulerian cycle of G as follows:

let C = (v1, v2, . . . , vs, v1). Let vit be the first

vertex of C which is in Kt. Assume w.l.o.g.

that i1 < i2 < · · · < ir.

W = (v1, v2, . . . , vi1, C1, , vi1, . . . , vi2, C2, vi2,
. . . , vir, Cr, vir, . . . , v1)

is an Eulerian cycle of G. 2
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Corollary 1 A connected graph has an Eule-

rian Walk i.e. a walk which uses each edge

exactly once, iff it has exactly 2 vertices of

odd degree.

Proof If a walk exists then the endpoints

have odd degree and the interior vertices have

even degree.

Conversely, if there are two odd degree ver-

tices x, y add an extra edge e = xy to create

a connected graph G′ with only even vertices.

This has an Eulerian cycle C. Delete e from C

to create the required path. 2
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Hamilton Cycles

A Hamilton Cycle of a graph G = (V, E) is a

cycle which goes through each vertex (once).

A graph is called Hamiltonian if it contains a

Hamilton cycle.

Hamiltonian Graph            Non-Hamiltonian Graph
Petersen Graph
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Lemma 1 Let G = (V, E) and |V | = n. Sup-

pose x, y ∈ V , e = (x, y) /∈ E and d(x) + d(y) ≥

n. Then

G + e is Hamiltonian ↔ G is Hamiltonian.

Proof

← Trivial.

→ Suppose G + e has a Hamilton cycle H. If

e /∈ H then H ⊆ G and G is Hamiltonian.

Suppose e ∈ H. We show that we can find

another Hamilton cycle in G + e which does

not use e.
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H = (x = v1, v2, . . . , vn = y, x).

S = {i : (x, vi+1) ∈ E} and

T = {i : (y, vi) ∈ E}.

S ⊆ {1,2, . . . , n− 2}, T ⊆ {2,3, . . . , n− 1}.

|S|+ |T | ≥ n and |S ∪ T | ≤ n− 1.

Thus

|S ∩ T | = |S|+ |T | − |S ∪ T | ≥ 1

and so ∃1 6= k ∈ S ∩ T and then

H ′ = (v1, v2, . . . , vk, vn, vn−1, . . . , vk+1, v1)

is a Hamilton cycle of G.
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Bondy-Chvatál Closure of a graph

begin

c(G) := G

while ∃(x, y) /∈ E with dc(G)(x) + dc(G)(y) ≥ n do

begin

c(G) := c(G) + (x, y)

end

Output c(G)

end

The graph c(G) is called the closure of G.
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Lemma 2 c(G) is independent of the order in

which edges are added i.e. it depends only on

G.

Proof Suppose algorithm is run twice to

obtain

G1 = G + e1 + e2 + · · ·+ ek and

G2 = G + f1 + f2 + · · ·+ f`.

We show that {e1, e2, . . . , ek} = {f1, f2, . . . , f`}.

Suppose not. Let t = min{i : ei /∈ G2}, et =

(x, y) and G′ = G + e1 + e2 + · · ·+ et−1. Then

dG2
(x) + dG2

(y) ≥ dG′(x) + dG′(y)

≥ n

since et was added to G′.

But then et should have been added to G2 –

contradiction.
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• c(G) Hamiltonian ⇒ G is Hamiltonian.

• c(G) complete ⇒ G is Hamiltonian.

• δ(G) ≥ n/2 ⇒ G is Hamiltonian.

Second statement is due to Bondy and Murty.

Third statement is due to Dirac.
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Theorem 2 Let G be a simple graph with de-

gree sequence d1 ≤ d2 ≤ · · · ≤ dν, ν ≥ 3. Sup-

pose that there does not exist m < ν/2 such

that

dm ≤ m and dν−m < ν −m.

Then G is Hamiltonian.

Proof We prove that c(G) is complete.

Let d′ denote degree in c(G). Suppose c(G)

is not complete. Among all pairs of vertices

u, v which are not adjacent in c(G) choose a

pair which maximise d′(u) + d′(v) and assume

m = d′(u) ≤ d′(v). Note that

d′(u) + d′(v) ≤ ν − 1.

S = {w ∈ V \ {v} : v, w not adjacent in c(G)}.

T = {w ∈ V \ {u} : u, w not adjacent in c(G)}.

|S| = ν − 1− d′(v) ≥ d′(u) = m (1)

|T ∪ {u}| = ν −m. (2)
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The choice of u, v means that

d′(w) ≤ d′(u) for w ∈ S (3)

d′(w) ≤ d′(v) < ν −m for w ∈ T (4)

Now d(w) ≤ d′(w) for w ∈ V and so

(1) and (3) imply that dm ≤ m.

(2) and (4) imply that dν−m < ν −m.

Contradiction. 2
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