Trees
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A tree is a graph which is
(a) Connected and

(b) has no cycles (acyclic).



Lemma 1 Let the components of G be
C1,Co,...,Cr, Supposee = (u,v) ¢ E,ue C;, v €
C.

J

@) i=7j=w(lG@4+e) =uw(Q).

(b) 1 #=j=w(G+e) =w(G)— 1.

(@




Proof Every path P in G + e which is not in G
must contain e. Also,

w(G +e) <w(@).
Suppose

(x = ug,u1,... , Uy = U, Upp1 =V,...,U = Y)

IS a path in G + e that uses e. Then clearly x € C
and y € Cj.

(a) follows as now no new relations x ~ y are added.
(b) Only possible new relations = ~ y are for x € C}

and y € C;. Butu ~ vin G+ eandso C; UCj
becomes (only) new component. O



Lemma2 G = (V, E) is acyclic (forest) with (tree)
components C1,C5,... ,CL. |V]| =n. e = (u,v) ¢
E,’LLGC@',UECj.

(a) « = 5 = GG + e contains a cycle.

(b) © # 5 = G + e is acyclic and has one less com-
ponent.

(c) G has n — k edges.



(@) u, v € C; implies there exists a path
(u = ug,uy,... ,uy =wv)in G.

So G + e contains the cycle ug, u1, ... ,uy, ug.




(@)

Suppose GG 4 e contains the cycle C. e € C' else C'is
a cycle of GG.

C=(u=ug,ui,...,up=v,up).

But then G contains the path (ug,uq, ... ,up) from
to v — contradiction.




The drop in the number of components follows from
Lemma 1.

The rest of the lemma follows from

(c) Suppose £ = {eq,eo,...,er} and
G; = (V,{e1,en,... ,e;}) for0 <i <.

Claim: G; has n — ¢+ components.

Induction on 1.

1 = 0: GG has no edges.
¢t > 0: G;_1 Is acyclic and so is GG;. It follows from
part (a) that e; joins vertices in distinct components of
G,;_1. It follows from (b) that G; has one less compo-
nent than G;_1.

End of proof of claim

Thus r = n — k (we assumed G had k components).
O



Corollary 1 If a tree T" has n vertices then
(a) It has n — 1 edges.
(b) It has at least 2 vertices of degree 1, (n > 2).

Proof (a) is part (c) of previous lemma. £ = 1
since 1" is connnected.

(b) Let s be the number of vertices of degree 1 in T'.
There are no vertices of degree 0 — these would form
separate components. Thus

2n — 2 = Z dr(v) > 2(n — s) + s.
veV

So s > 2. O



Theorem 1 Suppose |V| =nand |E| =n — 1. The
following three statements become equivalent.

(a) G is connected.

(b) G is acyclic.

(c) G is atree.

Proof Let £ = {eq,eo,... ,e,_1} and
G; = (V,{e1,ep,...,e;})for0 <i<n-—1.



(a) = (b): Go has n components and G,,_1 has
1 component. Addition of each edge e; must reduce
the number of components by 1 — Lemma 1(b). Thus
(G;_1 acyclic implies G, is acyclic — Lemma 2(b). (b)
follows as G Is acyclic.

(b) = (c¢): We need to show that GG is connected.
Since G,,_1 is acyclic, w(G;) = w(G;_1) — 1 for
each ¢ — Lemma 2(b). Thus w(G,,_1) = 1.

(¢) = (a): trivial.
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Corollary 2 If v is a vertex of degree 1 in a tree T
then T' — v Is also a tree.

Proof Suppose 1" has n vertices and n edges.
Then T'— v has n — 1 vertices and n — 2 edges. It
acyclic and so must be a tree. O
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Cut edges

cut edge

eis acutedge of Gif w(G — e) > w(@).

Theorem 2 e = (u,v) is a cut edge iff e is not on any
cycle of G.

Proof w Increases iff there exist x ~ y € V such
that all walks from z to y use e.

Suppose there is a cycle (u, P, v, u) containing e. Then
fW = x, Wq,u,v, Wsr,y is a walk from z to y using
e, v, W1, P,W»>,y is a walk from z to y that doesn’t
use e. Thus e is not a cut edge.
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If e is not a cut edge then G — e contains a path P from
u to v (u ~ v in G and relations are maintained after
deletion of €). So (v, u, P,v) is a cycle containing e.

O

Corollary 3 A connected graph is a tree iff every edge
IS a cut edge.
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Corollary 4 Every finite connected graph G contains
a spanning tree.

Proof Consider the following process: starting with
G,

1. If there are no cycles — stop.

2. If there is a cycle, delete an edge of a cycle.

Observe that (i) the graph remains connected — we
delete edges of cycles. (ii) the process must terminate
as the number of edges is assumed finite.

On termination there are no cycles and so we have a
connected acyclic spanning subgraph i.e. we have a
spanning tree. O
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Alternative Construction
Let E = {eq,eo,... ,em}.

begin
T:=10
fore =1,2,... ,mdo
begin
if T 4 e; does not contain a cycle
then 7" «— T" + ¢;
end
Output T’
end
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Lemma 3 If G is connected then (V,T") is a spanning
tree of GG.

Proof Clearly T is acyclic. Suppose it is not con-
nected and has compponnents C1,C5,... ,Cr, k >
2. Let D = (> U ---UCCL. Then G has no edges
joining C'1 and D — contradiction. (The first C7 : D
edge found by the algorithm would have been added.)
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Theorem 3 Let T" be a spanning tree of G = (V, E),
V| = n. Suppose e = (u,v) € E\T.

(@) T + e contains a unique cycle C(T,e).

(b) f e C(T,e) impliesthat T'+ e — f is a spanning
tree of GG.
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Proof (a) Lemma 2(a) implies that T + e has a
cycle C. Suppose that T' + e contains another cycle
C'"#£ C. Letedge g e C'\C. T" =T +e—gis
connected, has n — 1 edges. But 7" contains a cycle
C', contradictng Theorem 1.

(b) T' + e — f is connected and has n — 1 edges.
Therefore it is a tree. u

18



Maximum weight trees
G = (V, E) is a connected graph.
w: EF — R. w(e) is the weight of edge e.
For spanning tree T', w(T") = Y .c7w(e).

Problem: find a spanning tree of maximum weight.
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Greedy Algorithm

Sort edges so that £ = {eq,eo,... ,em} Where

w(er) > w(ez) > -+ > w(em).

begin
T:=10
forcr=1,2,... ,mdo
begin
if T 4 e; does not contain a cycle
then 7" «— T" + ¢;
end
Output T’
end

Greedy always adds the maximum weight edge which
does not make a cycle with previously chosen edges.
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Theorem 4 Let G be a connected weighted graph.
The tree constructed by GREEDY is a maximum weight
spanning tree.

Proof Lemma 3 implies that 1" is a spanning tree
of GG.

Let the edges of the greedy tree be

ey, es5,... ,exr_q,inorderof choice. Note that w(e;) >

w(ej_irl) since neither makes a cycle with ey, e%, ... ;e ;.

Let f1, fo,..., f,—1 be the edges of any other tree
where w(f1) > w(f2) > - w(fr-1)-

We show that

w(ey) >w(f;) 1<i<n—1. (1)
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Suppose (1) is false. There exists k& > 0 such that

w(ed) > w(fy), 1< i< kandw(e}) < w(f).

Each f;, 1 <1 < k is either one of or makes a cycle
with e7, e5,... ,e;_;. Otherwise one of the f; would
have been chosen in preference to e7.

Let components of forest (V,{e7,e5,... ,ex_1}) be
C1,C5, ... 7Cn—k—|—1' Each fi) 1 < ¢ < k has both
of its endpoints in the same component.

C;

22



Let u; be the number of f; which have both endpoints
In C; and let v; be the number of vertices of C;. Then

p1 T+ po e g1 k (2)
Vit vt Ul = N (3)

It follows from (2) and (3) that there exists ¢ such that

p > vi. (4)
[Otherwise
n—k-+1 n—k—+1
doow <> (1)
n—k-+1
i=1
= k—1.

But (4) implies that the edges f; such that f; C C;
contain a cycle. O
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Cut Sets and Bonds

If S CV, S # 0,V then the cut-set

S:S={e=vweE:veSweS=V\S5}
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Lemma4 Let G be connected and X C FE. Then
G[E \ X] is not connected iff X contains a cutset.

Proof
Only if
G[FE \ X] contains components C1,C>, ... ,Cy,

kE>2andso X DCy:Ciand C; #0,V.

I
Suppose X = S : Sandv € S,w € S. Then every
walk from v to w in G contains an edge of X.

Q IS

5/\/\/\§
v W

S

So G[E \ X] contains no walk from v to w. O
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A Bond B is a minimal cut-set. l.e. B= S : S and if
T:TCBthenB=T:T.

S1=1{1,2,3} B;=S;:S;isabond
So =1{2,3,4,5} Bo = S5 :S5isnotabond

since B> D S3 : Sz and B, # Sz : S3 Where S3 =

{1}
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Theorem 5 G is connected and B isa abond «— G\
B contains exactly 2 components.

Proof —: GG\ B contains components C1,C>5, ... ,C}.
Assume w.l.0.g. that there is at least one edge e in G
joining C1 and C>. If kK > 3 then B D C3 : C3 and
B # (O3 : C3 since B contains e.

«—: Assume that G \ B contains exactly two compo-
nents C; = G[S],Co> = G[S]. Let e € B. Adding
e to the graph C'1{ U (5 clearly produces a connected
graph and so B \ e is not a cutset. O
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A co-tree T of a connected graph G is the edge com-
plement of a spanning tree of G i.e. T = E \ T for
some spanning tree 7',

Theorem 6 LetI" be a spanning tree of Gande € 7.
Then

(a) T contains no bond of G.

(b) T + e contains a unique bond B(T,e) of G.

(c) f € B(T,e) impliesthat T + e — f is a co-tree of
G.

[Compare with Tree + edge O cycle.]
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Proof (a) X C T « G\ X D T which implies
that G \ X is connected. So X is not a bond.

(b)&() G\ (T 4+ e) = T \ e contains exactly two
components and so by Theorem 5 T + e contains a
bond B = S : S where S, S are the 2 components of
T\ e.

feB = ecC(T, )

= T+ f—elsatree

= T + e — fisaco-tree proving (c)
Hence every bond of T' + e contains f — otherwise

T + e — f contains a bond, contradicting (a) and prov-
iIng (b). O
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How many trees? — Cayley’s Formula

n=4

/NN
F/ N AVARRRVAVA

%\ /N W=

120

W AN
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Contracting edges

If e = vw € E, v # w then we can contract e to
get G - e by (i) deleting e, (i) identifying v, w I.e. make
them into a single new vertex.

1 b 4
g

a e 5 )
f

2 C 3

G — e Is obtained by deleting e.

7(G) is the number of spanning trees of G.
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Theorem 7 If e € E is not a loop then

7(G) =7(G-¢e)+7(G —e).

Proof

e 7(G — e) = the number of spanning trees of G
which do not contain e.

e 7(G - e) = the number of spanning trees of GG
which contain e.

[Bijection T — T" - e maps spanning trees of G which
contain e to spanning trees of GG - e.]
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Matrix Tree Theorem

Define the V x V matrix L = D — A where A is the
adjacency matrix of G and D is the diagonal matrix
with D (v, v) = degree of v.

2

3 -1 -1 1
L =
-1 3 - -
4 1 1
5 -1 -1 3 1
T | 3
3 -1
Li= |4 5 Determinant L; = 16
-1 -1 3

Let L1 be obtained by deleting the first row and col-
umn of L.

Theorem 8

7(G) = determinant Lq.
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Pfuffer’'s Correspondence

There is a 1-1 correspondence ¢y, between spanning
trees of Ky, (the complete graph with vertex set V)
and sequences V"2, Thus for n > 2

7(Kp) = n" 2 Cayley’s Formula.

Assume some arbitrary ordering V. = {v1 < vp <

oy (T):
begin
T =T
forio =1ton —2do
begin
s; .= neighbour of least leaf ¢, of T;.
Ti—|—1 — Ti - E,L

end qbv(T) = 85182...87,-2
end
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6,4,5,14,2,6,11,14,8,5,11,4,2
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Lemmab5 v € V(T) appears exactly dr(v) —1 times
in ¢y (7T).

Proof Assume n = |V (T')| > 2. By induction on
n.
n = 2: ¢y (T) = N\ = empty string.

Assume n > 3:

oy (T) = s1¢y,(T1) where Vi =V — {£4}.

s1 appears dp, (s1) — 1+ 1 = dp(s1) — 1 times —
induction.

v # s1 appears dp,(v) — 1 = dp(v) — 1 times —
induction. O
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Construction of gb‘_/l

Inductively assume that for all | X| < n there is an
Inverse function gb)_(l. (True for n = 2).

Now define qs;l by

gb‘_/l(slsz . Spy_n) = Qb‘_/ll(SQ ...5,_o) plus edge 5141,

where /1 = min{s: s ¢ s1,82,...5,_2}and V; =
V —{l}.

Then

by (dy (5152 ... 57-2)) =
- ¢v(¢‘_/11(82 ... 8p—2) plus edge s1/7)
= 5101, (y; (52 5p-2))
= 5182...5,_9.

Thus ¢y has an inverse and the correspondence is
established.
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Number of trees with a given degree sequence

Corollary5 If dy +do + -+ + dp, = 2n — 2 then
he number of spanning trees of K, with degree se-

guence dq,d»,... ,dp IS

(dy — D)!(do — 1)!---(dp — 1)V

Proof From Pfuffer’'s correspondence and Lemma
5 this is the number of sequences of length n — 2 in
which 1 appears di — 1 times, 2 appears d> — 1 times
and so on. O
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