Network Flows

A Network is a digraph D = (V, A) plus 2 distin-
guished vertices, a source x and a sink y.
Notation: if f : A — Rthenfor S, T C V,

f(Sa T) — Z f(u,v)

(u,0)EAN(SXT)
fis a flow from x to y if

f(’U,V)—f(V,’U) =0

forall v € V,v # x, y — conservation of flow.




Arc a has capacity c(a) > 0.

A flow is feasible if

0 < f(a) < c(a) a€ A

Lemmal If fis aflow from x to y then

f(CE,V)—f(V,CC) :f(vvy)_f(yav)

Proof

0

[z, V) + 5y, V] = [F(V,z) + F(V,y)] +
+ > (f(, V)= f(V,v))

VET,Y

= [f(@V)+ [y, V)] -[f(V,z) + F(V,y)].

O



f(xz,V) — f(V,z) is the net flow out of x.
f(V,y) — f(y, V) is the net flow into y.

The common value is called the value vy of the flow

f.

A feasible flow which maximises vy IS called a maxi-
mum flow.



Cuts

letz € SC Vandy € S =V \S. The set of arcs
S:S=AN(S x S)iscalled an z, y cut.

S={x,a.c,ef}: capacity of S:_S is4+5+15=24.

S : S has capacity ¢(S, S).



Lemma 2 If f is a feasible flow and S : S is an x,y
cut then

Proof

vf

IA

v <e(S: S).

f(LE,V) —f(V,m)
Z f(’U,V)— Z f(V,’U)

vES vES

c(S :S).



Flow f saturates arc a if f(a) = c(a).

Lemma 3 If flow f* and z, y cut S* : S* are such that
(i) f* saturates every arc of S* : S*.

(i) f*(a) = O for every a € S* : S*.

then

(@) v = c(S* : S%).

(b) f*is a maximum flow.

(c) S* : S*is a minumum capacity cut.

Proof (a) follows from (i), (ii) and (1). Now let f be

any feasible flow and let S : S be any z, y cut. Then
v < c(S*:8") =vp <e(S:05).



f-augmenting paths

Let f be afeasible flow. Apath P = (zg = z, 21, ...,
xi = y) from z to y in the underlying graph G(D) is
f-augmenting if

rir;41 € Aimplies that f(x;z;41) < c(xjTiq1).
(2)

ri412; € Aimplies that f(xz;41x;) > 0. (3)

a 5(51) b
10(9)
2 4(3)
X \./3(2) 1@ y
7(7) 13(13)
’ 10(9) d

X,a,c,d,b,y Is f-augmenting



Theorem 1 f is a maximum flow iff if there are no f-
augmenting paths.

Proof If: Suppose P = (xg = x,x1,... ,2 =
y) is an f-augmenting path. let

flxip17;) Tiy1x; € A
(4)

0 — min { c(ziwit1) — f(@izi41) @izwip1 €A

Then 6 > 0.
Define f’ by

f(zizip1) +0 a=zz;41 €A
/
fila) =1 f(zig17;) =0 a=z417;,€ A
f(a) otherwise



(i) f'is a flow.

vg¢ P= f'(v,V) = f(v,V)and f'(V,v) = f(V,v)



veP

+0O

+0O

+0O

+0
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(i) Vgt = Uy + 6 > v

X

X

Only if: Suppose there are no f-augmenting paths.
let

S={ueV: dJapath P, = (zg =z,21,... ,2 = u)inG
(5)

a 5(5\) b
10(40
22) 4(4)
X \./3(3) \/3(1) '
7 13(13)
10(10) d

S={x} yields amimimum cut
11



Then
()xeSandy ¢ S

(i) a = uv € S : Simplies f(a) = c(a). If f(a) <
c(a) then (P, v) satisfies (2),(3) and so v € S — con-
tradiction.

(i) a = vu € S : Simplies f(a) = 0. If f(a) > O
then (P, v) satisfies (2),(3) and so v € S — contra-
diction.

It follows from Lemma 3 that f is a maximum flow (and
S : S is a minimum cut).
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Max-Flow Min-Cut Theorem

Theorem 2

m]ngJf = mbln c(S:S5). (6)

Proof Lemma 2 shows that the LHS of (6) is at
most the RHS.

Suppose f is a maximum flow. Let S be as defined in
(5). f has no f-augmenting paths and so
vp = c(S : S') O

13



Lemma 4 If c(a) is an integer for all a € A then there
Is a maximum flow with f(a) integer for all a € A.

Proof Start with the feasible flow f = 0. Repeat-
edly find flow augmenting paths until a maximum flow
Is reached. We can argue inductively that f stays inte-
ger throughout. This is because 6 of (4) will be integer
If f and c are. O
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Alternate proof of Hall's Theorem

X v G=(V,E)
1
X y
1
m = |X| < |Y].
Let
l a=zu,ue X
cla) =< 1 a=wvy,veY

oo a€k
An integral flow f from z to y defines a matching
M={uw e E: f(uv) = 1},

and conversely.
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Let S : S be an z, y cut and let
S =SNX, S =5NY.
If Ju € S1and v € Y \ X5 such that uv € FE then
c(S:8) > c(uwv) = oo.
So
(S : §) < ooiff N(S1) C So.

In which case

c(S:8) = (|X]—151]) + 152!
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By the Max-Flow Min-Cut Theorem

max{|M|[} = min (1X] = [S1D) + |52
N(S1)CS,CY
= ' X|—|S N(S
min (1] = [S1]) + [N (Sp)

Thus there exists a matching of size | X| iff
[ X| = 1511+ [N(S1)] = | X]|

for all S;1 C X, which is Hall's theorem.
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A graph GG is m-orientable if there is an orientation D
of Gwith (D) > m. (6T (D) = min{dT(v) : v e
V1.

For S C V let 1(S) denote the number of edges of G
with at least one end in S.

Theorem 3 G is m-orientable iff 1(S) > m|S]| for all
SCV.

Proof Only if: Suppose that D is an orientation
of G with 6T > m. Then

(S) > > dT(S) >m|S].
vES
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=1 v
Interpret U\ f u Interpret U\

asorient uv fromutov. as orient uv from v to u.
f=1

(G is m-orientable iff there exists a flow of value m|V/|.
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Suppose the maximum flow value is < m|V|. Let S :
S be a minimumcutinl". Let A = SN Eand B =
SNV.

A

There are no edges from Ato ZinT else ¢(S : S) =
00. SO

(Z) < [E|-]A
|E| —[A] +m|B] < m|V]
and 1(Z) < m|Z|. O
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Menger’'s Theorems
In the following =,y € V.

Theorem 4 The maximum number of arc disjoint di-
rected paths joining = and y in a digraph D equals the
minimum number of arcs whose deletion destroys all
directed z, y paths.

Theorem 5 The maximum number of internally ver-
tex disjoint directed paths joining z and y in a digraph
D equals the minimum number of vertices (# z,y)
whose deletion destroys all directed x, y paths.

Theorem 6 The maximum number of edge disjoint
paths joining x and y in a graph G equals the min-
Imum number of edges whose deletion destroys all
x,y paths.

Theorem 7 The maximum number of internally ver-
tex disjoint paths joining x and y in a graph D equals
the minimum number of vertices (% z, y) whose dele-
tion destroys all x, y paths.
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Lemmab5 Let N be a network in which each arc has
capacity 1. Let f* be a maximum flow and S* : S* a
minimum cult.

(@) vy« is the maximum number m7, of arc disjoint
directed x, y paths.

(b) c(S* : S*) is the minimum number m% of arcs
whose deletion destroys all directed x, y paths.

(@) If Py, P>, ... ,Pmﬁ IS a set of arc disjoint directed
x,y paths then we can send one unit of flow along
each path. Thus vy« > m7.

To prove v« < m7j delete all arcs with f*(a) = O to
obtain arc set A*. Note that f*(a) = 1 for A € A*.
Add v+ yx arcs. The digraph D* = (V, A*) has an
Euler tour. Deleting the yx edges from the tour yields
v ¢« arc disjoint directed x, y paths.
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(b) Let S : Sbeanx,ycutin N. S : S meets every
z,y path and so deleting S : S destroys all , y paths
and c(S: S) =[S : 5] > ms5.

On the other hand, if X is any set of arcs which meet
every =,y path, let S = {v : v is reachable from
x by a directed path in D — X}. Theny € S and
X DS :S8. (fthereisanarcuv ¢ X, u € S,v € S
then v is reachable from z in D — X, contradiction.)
Thus | X| > ¢(S : S) which implies mJ} is at least the
minimum capacity of a cut. O

Theorem 4 follows from the above lemma and the

Max-Flow Min-Cut theorem.
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Lemma 6 Let

m1 be the maximum number of arc disjoint x,y di-
rected paths in D(G).

mo be the maximum number of arc disjoint x,y di-
rected paths in D(G) such that

at most one of uv, vu can be used
as an edge in the set of paths. (7)

Then mq1 = mo.

Proof Clearly mq1 > mo. For the converse, let
Py, Py, ... ,Pn, be acollection of arc disjoint z, y di-
rected paths and assume that > |F;| is as small as
possible. We claim that (7) holds.
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We can reduce Y | P;| by removing the uv and vu.
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Proof of Theorem 6.

m = max. humber of edge disjoint =, y paths in G

= mo of Lemma 6

= m1 of Lemma 6

= m1 (the minimum number of arcs whose deletion
destroys all directed x, y paths in G(D)
by Theorem 4)

> m’ = minimum number of edges whose deletion
destroys all x, y paths in G.
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U+V

u,\lf )V

Z

u——————— v

If Z covers all =,y paths in D(G) then Z’ covers all
x,y paths in G,
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We finish by showing that m’ > mq1. Suppose that
the deletion of X, | X| = m/' destroys all z, y paths in

G. X is minimal with this property. So G — X has two
components.

Cx Cy

Let Y = {uv : wv € X,u € Cy,v € Cy}. Then
| X| = |Y| and there are no directed z,y paths in
D(G) — Y. Thus m’ > m. O
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Proof of Theorem 5

Each vertex v of D becomes an arc a, of D’. For
SCVietAg ={ay: v e S}

(a) In the transformation D — D’ node disjoint paths
correspond to arc disjoint paths.

(b)

(i) Z covers all directed x,y paths in D implies A,
covers all directed z, y paths in D’.
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(i) Y covers all directed z, y paths in D/, Y has as few
arcs as possible, then we can assume Y C A .

(Can always replace a by b.)
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Proof of Theorem 7

Node disjoint paths in G map to node disjoint paths in
G(D).

X C V covers all z,y paths in G iff X covers all di-
rected x, y paths in D. O
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