Directed graphs

Digraph D = (V, A).
V={vertices}, A={arcs}

v={ab,...n}, A={(ab).(b,a),...}

(2 arcs with endpoints (c,d))

Thus a digraph is a graph with oriented edges.
D is strict if there are no loops or repeated edges.



Digraph D: G(D) is the underlying graph obtained by
replaced each arc (a,b) by an edge {a, b}.

The graph underlying the digraph on previous slide



Graph G: an orientation of (G is obtained by replacing
each edge {a, b} by (a,b) or (b, a).
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G Orientation of G

There are 2|E! distinct orientations of G.



Walks, trails, paths, cycles now have directed coun-
terparts.

Directed Walk: (c,d,e,f,a,b,qg,f).
Directed Path: (a,b,g,f).
Directed Cycle: (g,a,b,a)

(ef,g,a) isnot adirected walk -- thereis
no arc (f,g).



The indegree d;(v) of vertex v is the number of arcs
(z,v),z € V. The outdegree dD (v) of vertex v is the
number of arcs (v,z),x € V.

a b c de f g h
dt 2 2 41 2 0 2 2
dc 21 023520

Note that since each arc contributes one to a vertex
outdegree and one to a vertex indegree,

Y dtw) =Y d(v) = Al

veV veV



Strong Connectivity or Diconnectivity

Given digraph D we define the relation ~ on V by
v ~ w Iff there is a directed walk from v to w and a
directed walk from w to v.

This is an equivalence relation (proof same as directed
case) and the equivalence classes are called strong
components or dicomponents.

Here the strong components are

1a,b,9},{c}, {d}; {e, f, h}.



A graph is strongly connected if it has one strong com-
ponent i.e. if there is a directed walk between each
pair of vertices.

ForasetS C V let

NT(S)={w¢ S: FveSst(v,w) € A)}.

N (S)={w & S: FJveSst(w,v) € A)}.

Theorem 1 D is strongly connected iff there does not
exist S C V, S # 0,V such that NT(S) = 0.

Proof Only if: suppose there is such an S and
x € S,y € V\ S and suppose there is a directed
walk W from x to y. Let (v; = z,vo,..., v = ¥y)
be the sequence of vertices traversed by W. Let v;
be the first vertex of this sequence which is not in S.
Then v; € NT(9), contradiction, since arc (v;_1, v;)
exists.



If: suppose that D is not strongly connected and that
there is no directed walk from x to y. Let S = {v €
V . Jadirected walk from x to v}.

S*Pasrxe Sand S #Vasy¢S.

S VIS

Then NT(S) = 0. If z € NT(S) then there exists
w € S such that (w,z) € A. But then since w €
S there is a directed walk from x to w which can be
extended to z, contradicting the fact that z ¢ S. O



A Directed Acyclic Graph (DAG) is a digraph without
any directed cycles.

Lemmal If D is a DAG then D has at least one
source (vertex of indegree 0) and at least one sink
(vertex of outdegree 0).

Proof Let P = (vq,vp,...,v;) be adirected path
of maximum length in D. Then v is a source and vy,
IS a sink.



Suppose for example that there is an edge xv41. Then
either

(@) x ¢ {vp,vs3,...,v;}. Butthen (x, P) is a longer
directed path than P — contradiction.

(b) x = v; for some ¢ = 1 and D contains the cycle

V1,0V2,...,04, V7. O

A topological ordering v1,vo, ..., vy, Of the vertex set
of a digraph D is one in which

v;vj € Alimplies ¢ < j.
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Theorem 2 D has a topological ordering iff D is a
DAG.

Proof Only if: Suppose there is a topological or-
dering and a directed cycle v;, v;,,...,v; . Then

11 <t < - < <11

which is absurd.

If: By induction on v. Suppose that D is a DAG.
The result is true for v = 1 since D has no loops.
Suppose that v > 1, vy, Is any sink of D and let
D' =D —uv,.

D' is a DAG and has atopological ordering v, vo, .. .,
v,_1, induction. v1, vy, ..., vy IS a topological order-
ing of D. For if there is an edge v;v; with 7 > j then
(i) it cannot be in D’ and (ii) ¢ % v since v, is a sink.

O
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Theorem 3 Let G = G(D). Then D contains a di-
rected path of length x(G) — 1.

Proof Let D = (V, A) and A’ C A be a minimal
set of edges such that D' = D — A is a DAG.

Let k be the length of the longest directed path in D’.
Define c¢(v)=length of longest path from v in D’.

c(v) € {0,1,2,...,k}. Weclaimthat c(v) is a proper
colouring of G, proving the theorem.
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Note first that if D’ contains apath P = (z1,z2,...,xL)
then

c(z1) > c(zg) +k — 1. (1)

(We can add the longest path @ from x;, to P to create
a path (P, Q). This uses the fact that D’ is a DAG.)

Suppose c is not a proper colouring of G and there
exists an edge vw € G with ¢(v) = c¢(w). Suppose
vw € A l.e. itis directed from v to w.

Case 1. vw ¢ A’. (1) implies c(v) > c(w) + 1 —
contradiction.

Case 2: vw € A’. There is a cycle in D’ 4+ vw which
contains vw, by the minimality of A’. Suppose that
C has ¢ > 2 edges. Then (1) implies that c(w) >
c(v) +¢—1. O
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Tournaments

A tournament is an orientation of a complete graph
Kn.

1,2,5,4,3 isadirected Hamilton Path

Corollary 1 Atournament 7’ contains a directed Hamil-
ton path.

Proof x(G(T)) = n. Now apply Theorem 3. O
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Theorem 4 If D is a strongly connected tournament
with v > 3 then D contains a directed cycle of size k
forall 3 <k <v.

Proof By induction on k.

k= 3.

Choose v € VandletS = NT(V), T = N~ (v) =
VA (SU{v}).

X > y

=N (V) T=N (V)

S # () since D is strongly connected. Similarly, S #=
V\ {v}else NT(V\ {v}) = 0.

Thus NT(S) %2 0. v ¢ NT(S)andso NT(S) =T.
Thus dx € S,y € T with zy € A.
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Suppose now that there exists a directed cycle C' =
(vla VD, ...y, Uk, Ul)'

Case 1: Jw ¢ C'andi # j suchthatv,w € A, wv; €
A.
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It follows that there exists £ with vpw € A, wvyyy €
A.

C' = (w,vp41,...,001,...,0p,w) isacycle of length
k—+ 1.
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Case 2V \ C = SUT where

w e S implies wy; € A, 1 <<k,
w e T implies vywe A, 1 <1i<k.

N

AN
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S = () implies T' = ( (and C is a Hamilton cycle) or
NHT(T) = 0.
T = () implies N1 (C) = 0.

Thus we can assume
S, T # ¢ and NT(T) # 0.
NH(T)NnC =0andso NT(T) NS # 0.

Thus dx € T,y € S such that xy € A.

X ~, \Y4
L ~N—
< —
The cycle (v, z,y,vs3, ..., v, v1) IS a cycle of length

k—+ 1.
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Robbin’'s Theorem

Theorem 5 A connected graph GG has an orientation
which is strongly connected iff GG is 2-edge connected.

Only if: Suppose that GG has a cut edge e = zy.

If we orient e from x to y (resp. y to x) then there is
no directed path from y to x (resp. x to y).
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If: Suppose G is 2-edge connected. It contains a cy-
cle C which we can orient to produce a directed cycle.

At a general stage of the process we have a set of
vertices S O C and an orientation of the edges of
G'[S] which is strongly connected.

If S % V choosex € S,y ¢ S.

There are 2 edge disjoint paths Py, P> joining y to .
Let a; be the first vertex of P; whichisin S.

Orient P1 [y, aq] from y to a1.

Orient P>[y, as] from as to y.
21



Claim: The subgraph G[S U P; U P»] is strongly con-
nected.

Let S’ = S U P; U P>. We must show that there is a
directed path from o to 8 for all o, 3 € S’.

() o, B € S: d adirected path from o« to 5in S.

(i) e S,B€ P;\S: Gofromatoasin S, from as
to y on P5, from y to 5 along P;.

(i e S, B e P>\ S: Go from a to ap in S, from as
to B on P».

(iVyaa € P1\ S, 8 € S: Gofrom a to a1 on Py, from
ajtoginS.

V)a e P>\ S, B3 €S Gofromatoyon P, fromy
toa; on Py, fromaq to Bin S.

Continuing in this way we can orient the whole graph.
O
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Directed Euler Tours

An Euler tour of a digraph D is a directed walk which
traverses each arc of D exactly once.

Theorem 6 A digraph D has an Euler tour iff G(D)
is connected and d1T(v) = d—(v) forallv € V.

Proof This is similar to the undirected case.

If: Suppose W = (v1,vo,...,Um,v1)

(m = |A|) is an Euler Tour. Fix v € V. Whenever W
Vvisits v it enters through a new arc and leaves through
a new arc. Thus each visit requires one entering arc
and one leaving arc. Thus d*(v) = d~(v).

Only if: We use induction on the number of arcs. D is
not a DAG as it has no sources or sinks. Thus it must
have a directed cycle C. Now remove the edges of C.
Each component C; of G(D — C) satisfies the degree
conditions and so contains an Euler tour W;. Now, as
In the undirected case, go round the cycle C and the
first time you vist C; add the tour W;. This produces
an Euler tour of the whole digraph D.
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As a simple application of the previous theorem we
consider the following problem. A 0-1 sequence x =

(z1,xo,...,xm) has proprty P, if for every 0-1 se-
quence yv = (y1,vy»,...,yn there is an index k£ such
that Tl = Y1, Tp4+1 = Y2, -, Th4+n—-1 = Yn- Here

Tt = Tppt1-¢ iF > m.

Note that we must have m > 2™ in order to have a
distinct k for each possible z.

Theorem 7 There exists a sequence of length 2™ with
property F,.

Proof Define the digraph D,, with vertex set
{0,111 and 2™ directed arcs of the form
((p1,p2,---,Pn—1), (P2, P35+, Pn)).

G(Dy,) is connected as we can join (p1,p2, ..., Pn—1)
to (91,92, --,qn-1) by the path (p1,p2,...,Pn-1),

(p27p3"'?pn—].?q].)?(p37p47'"7pn—17q17QQ)7"'7
(g1,92,...,q9,—1). Each vertex of D,, has indegree

and outdegree 2 and so it has an Euler tour V.
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Suppose that W visits the vertices of D,, in the se-
quence (vq,vo,...,von . Let x; be the first bit of
v;. We claim that xq,xz5,...,zon has property P,.

Give arc ((p17p27 <. 7pn—1)7 (p27p37 s 7pn)) the la-
bel (p1,po,...,pn). NO other arc has this label.

Given (y1,y2,-..,yn) let k be such that (vg, vg41)
has this label. Then v, = (y1,y2,...,y,—1) and

V41 — (y27y37 e 7yn) and then Tl = Y1,Tp4+1 =
Y2y .-y Ldn—1 — Yn- |
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