
Graph Theory

Simple Graph G = (V,E).
V ={vertices}, E={edges}.
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V={a,b,c,d,e,f,g,h,k}

E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}        |E|=16.
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Graph or Multi-Graph

We allow loops and multiple edges.
G = (V,E.ψ)
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V = {a, b, c, d, e}, E = {e1, e2, . . . , e8}.

t 1 2 3 4 5 6 7 8
ψ(t) ab ae be bb bc cd de de
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Eulerian Graphs

Can you draw the diagram below without taking your
pen off the paper or going over the same line twice?
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Bipartite Graphs

G is bipartite if V = X∪Y whereX and Y are disjoint
and every edge is of the form (x, y) where x ∈ X and
y ∈ Y .

In the diagram below, A,B,C,D are women and a,b,c,d
are men. T here is an edge joining x and y iff x and y
like each other. The red edges form a “perfect match-
ing” enabling everybody to be paired with someone
they like. Not all graphs will have perfect matching!
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Vertex Colouring
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Colours {R,B,G}

Let C = {colours}. A vertex colouring of G is a map
f : V → C. We say that v ∈ V gets coloured with
f(v).

The colouring is proper iff (a, b) ∈ E ⇒ f(a) 6= f(b).

The Chromatic Number χ(G) is the minimum number
of colours in a proper colouring.

Application: V ={exams}. (a, b) is an edge iff there is
some student who needs to take both exams. χ(G) is
the minimum number of periods required in order that
no student is scheduled to take two exams at once.
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Subgraphs

G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V
and E′ ⊆ E.
G′ is a spanning subgraph if V ′ = V .
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If V ′ ⊆ V then

G[V ′] = (V ′, {(u, v) ∈ E : u, v ∈ V ′})

is the subgraph of G induced by V ′.
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d e G[{a,b,c,d,e}]
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Similarly, if E1 ⊆ E then G[E1] = (V1, E1) where

V1 = {v ∈ V1 : ∃e ∈ E1 such that v ∈ e}

is also induced (by E1).

= {(a,b), (a,d)}

b
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d G[ ]
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Isomorphism for Simple Graphs

G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if
there exists a bijection f : V1 → V2 such that

(v, w) ∈ E1 ↔ (f(v), f(w)) ∈ E2.
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f(a)=A etc.

Isomorphism for Graphs

G1 = (V1, E1, ψ1) and G2 = (V2, E2, ψ2) are iso-
morphic if there exist bijections f : V1 → V2 and
g : E1 → E2 such that

ψ1(e) = ab↔ ψ2(g(e)) = f(a)f(b).
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Complete Graphs

Kn = ([n], {(i, j) : 1 ≤ i < j ≤ n})

is the complete graph on n vertices.

Km,n = ([m] ∪ [n], {(i, j) : i ∈ [m], j ∈ [n]})

is the complete bipartite graph on m+ n vertices.
(The notation is a little imprecise but hopefully clear.)
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Vertex Degrees

dG(v) = degree of vertex v in G

= number of edges incident with v

δ(G) = min
v
dG(v)

∆(G) = max
v

dG(v)
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PSfrag replacements
dG(a) = 2, dG(g) = 4 etc.

δ(G) = 2,∆(G) = 4

If V = {1,2, . . . , n} then d = d1, d2, . . . , dn where
dj = dG(j) is called the degree sequence of G.
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Matrices and Graphs

Incidence matrix M : V × E matrix.

M(v, e) =

{

1 v ∈ e
0 v /∈ e

e1 e2 e3 e4 e5 e6 e7 e8
a 1 1 1
b 1 1 1
c 1 1 1
d 1 1 1
e 1 1 1 1
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Adjacency matrix A: V × V matrix.

A(v, w) = number of v, w edges.

a b c d e
a 1 1 1
b 1 1 1
c 1 1 1
d 1 1 1
e 1 1 1 1
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Theorem 1
∑

v∈V

dG(v) = 2|E|

Proof Consider the incidence matrix M . Row v

has dG(v) 1’s. So

# 1’s in matrix M is
∑

v∈V

dG(v).

Column e has two 1’s. So

# 1’s in matrix M is 2|E|.

2
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Corollary 1 In any graph, the number of vertices of
odd degree, is even.

Proof Let ODD = {odd degree vertices} and
EV EN = V \ODD.

∑

v∈ODD

d(v) = 2|E| −
∑

v∈EV EN

d(v)

is even.

So |ODD| is even. 2
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Paths and Walks

W = (v1, v2, . . . , vk) is a walk in G if (vi, vi+1) ∈ E

for 1 ≤ i < k.

A path is a walk in which the vertices are distinct.

W1 is a path, but W2,W3 are not.
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fg

2 =a,b,a,c,e
=g,f,c,e,f

= a,b,c,e,d
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A walk is closed if v1 = vk. A cycle is a closed walk
in which the vertices are distinct except for v1, vk.

b, c, e, d, b is a cycle.

b, c, a, b, d, e, c, b is not a cycle.
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Connected components

We define a relation ∼ on V .
a ∼ b iff there is a walk from a to b.
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a ∼ b but a 6∼ d.

Claim: ∼ is an equivalence relation.

Reflexivity v ∼ v as v is a (trivial) walk from v to v.

Symmetry u ∼ v implies v ∼ u.
(u = u1, u2 . . . , uk = v) is a walk from u to v
implies (uk, uk−1, . . . , u1) is a walk from v to u.
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Transitivity u ∼ v and v ∼ w implies u ∼ w.
W1 = (u = u1, u2 . . . , uk = v) is a walk from u

to v and W2 = (v1 = v, v2, v3, . . . , v` = w) is a
walk from v to w imples that
(W1,W2) = (u1, u2 . . . , uk, v2, v3, . . . , v`) is a
walk from u to w.

The equivalence classes of ∼ are called connected
components.

In general V = C1∪V2∪ · · ·∪Cr where C1, C2, . . . ,

Cr are the connected comonents.

We let ω(G)(= r) be the number of components of
G.

G is connected iff ω(G) = 1 i.e. there is a walk be-
tween every pair of vertices.

Thus C1, C2, . . . , Cr induce connected subgraphs
G[C1], . . . , G[Cr] of G
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Paths and walks

For a walk W we let `(W ) = no. of edges in W .

PSfrag replacements

`(W ) = 6

Lemma 1 Suppose W is a walk from vertex a to ver-
tex b and that W minimises ` over all walks from a to
b. Then W is a path.

Proof Suppose W = (a = a0, a1, . . . , ak = b)

and ai = aj where 0 ≤ i < j ≤ k. Then W ′ =

(a0, a1, . . . , ai, aj+1, . . . , ak) is also a walk from a to
b and `(W ′) = `(W )− (j − i) < `(W ) – contradic-
tion. 2

Corollary 2 If a ∼ b then there is a path from a to b.

So G is connected ↔ ∀a, b ∈ V there is a path from
a to b.
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Walks and powers of matrices

Theorem 2 Ak(v, w) = number of walks of length k
from v to w with k edges.

Proof By induction on k. Trivially true for k = 1.
Assume true for some k ≥ 1.

Let Nt(v, w) be the number of walks from v to w with
t edges.
Let Nt(v, w;u) be the number of walks from v to w
with t edges whose penultimate vertex is u.

w

u

v
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Nk+1(v, w) =
∑

u∈V

Nk+1(v, w;u)

=
∑

u∈V

Nk(v, u)A(u,w)

=
∑

u∈V

Ak(v, u)A(u,w) induction

= Ak+1(v, w).
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Breadth First Search – BFS

Fix v ∈ V . For w ∈ V let

d(v, w) = minimum number of edges in a path from v to w.

For t = 0,1,2, . . . , let

At = {w ∈ V : d(v, w) = t}.

v
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A0 = {v} and v ∼ w↔ d(v, w) <∞.
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In BFS we construct A0, A1, A2, . . . , by

At+1 = {w /∈ A0 ∪A1 ∪ · · · ∪At : ∃ an edge

(u,w) such that u ∈ At}.

Note : no edges (a, b) between Ak and A`
for `− k ≥ 2, else w ∈ Ak+1 6= A`.

(1)

In this way we can find all vertices in the same com-
ponent C as v.

By repeating for v′ /∈ C we find another component
etc.
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Characterisation of bipartite graphs

Theorem 3 G is bipartite ↔ G has no cycles of odd
length.

Proof →: G = (X ∪ Y,E).

X

Y X

Y

XY

Typical Cycle

Suppose C = (u1, u2, . . . , uk, u1) is a cycle. Sup-
pose u1 ∈ X. Then u2 ∈ Y, u3 ∈ X, . . . , uk ∈ Y
implies k is even.

← Assume G is connected, else apply following argu-
ment to each component.
Choose v ∈ V and constructA0, A1, A2, . . . , by BFS.

X = A0∪A2∪A4∪· · · and Y = A1∪A3∪A5∪· · ·

25



We need only show that X and Y contain no edges
and then all edges must join X and Y . Suppose X
contains edge (a, b) where a ∈ Ak and b ∈ A`.

(i) If k 6= ` then |k − `| ≥ 2 which contradicts (1)
(ii) k = `:

a

bj
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There exist paths (v = v0, v1, v2, . . . , vk = a) and
(v = w0, w1, w2, . . . , wk = b).

Let j = max{t : vt = wt}.

(vj, vj+1, . . . , vk, wk, wk−1, . . . , wj)

is an odd cycle – length 2(k− j)+1 – contradiction.
2
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