RAMSEY THEORY

Ramsey Theory



Ramsey’s Theorem

Suppose we 2-colour the edges of K of Red and Blue. There
must be either a Red triangle or a Blue triangle.

This is not true for Ks.
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There are 3 edges of the same colour incident with vertex 1,
say (1,2), (1,3), (1,4) are Red. Either (2,3,4) is a blue triangle or
one of the edges of (2,3,4) is Red, say (2,3). But the latter
implies (1,2,3) is a Red triangle.



Ramsey’s Theorem

For all positive integers k, ¢ there exists R(k, ¢) such that if

N > R(k, ¢) and the edges of Ky are coloured Red or Blue then
then either there is a “Red k-clique” or there is a “Blue /-clique.
A clique is a complete subgraph and it is Red if all of its edges

are coloured red etc.
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R(k,0) < R(k, 0 — 1)+ R(k —1,0).

Proof  LetN=R(k,¢— 1)+ R(k —1,0).

Red e
edges
1 —
Blue
edges
Ve

Ve ={(x: (1,x) is coloured Red} and Vg = {(x : (1,x)is
coloured Blue}.
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|Vg| > R(k —1,¢)or|Vg| > R(k,t—1).

Since

\VRl+ VBl = N-1
— Rk, —1)+ Rk —1,0)—1.

Suppose for example that |Vz| > R(k — 1,¢). Then either Vg
contains a Blue /-clique — done, or it contains a Red

k — 1-clique K. But then KU {1} is a Red k-clique.

Similarly, if | V| > R(k, ¢ — 1) then either Vg contains a Red
k-clique — done, or it contains a Blue ¢ — 1-clique L and then
LU {1} is a Blue ¢-clique. O
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Proof Induction on k + ¢. True for k + ¢ < 5 say. Then
R(k,t) < R(k,t—1)+R(k—1,¢)

. <k+£—3>+<k+£—3>

=\ k-1 k—2
k+¢—2

- (%55

. <?k—2>

= k-1

< 4k

Ramsey Theory
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R(k, k) > 2k/2

Proof  We must prove that if n < 24/ then there exists a
Red-Blue colouring of the edges of K, which contains no Red
k-clique and no Blue k-clique. We can assume k > 4 since we
know R(3,3) = 6.

We show that this is true with positive probability in a random
Red-Blue colouring. So let Q be the set of all Red-Blue edge
colourings of K, with uniform distribution. Equivalently we
independently colour each edge Red with probability 1/2 and
Blue with probability 1/2.
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Let
&g be the event: {There is a Red k-clique} and
Ep be the event: {There is a Blue k-clique}.
We show

Pr(f,q U 53) < 1.

Let Ci, Co, ..., Cn, N = () be the vertices of the N k-cliques
of K.

Let &g be the event: {C; is Red} and let £g; be the event: {C; is
Blue}.
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Pr(é’,:, U 55) < Pl’(g,q) + Pr(EB) = 2PI‘(5R)
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Very few of the Ramsey numbers are known exactly. Here are a
few known values.

R(3,3) = 6
R(3,4) = 9
R(4,4) = 18
R(4,5) = 25
43 < R(5,5) < 49
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Ramsey’s Theorem in general

Remember that the elements of (f) are the r-subsets of S

Theorem

Letr,s>1,q; >r, 1 <i<sbe given. Then there exists

N = N(q1,qo, ..., Qqs; r) with the following property: Suppose
that S is a set with n > N elements. Let each of the elements of
(%) be given one of s colors. .

Then there exists i and a gj-subset T of S such that all of the
elements of (f) are colored with the ith color.

Proof First assume that s = 2 i.e. two colors, Red, Blue.
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Ramsey’s Theorem in general

Note that

(a) N(p,g:1) = p+qg—1
(b) N(p.r;r) = p(>r)
N(r.q;r) = q(=r)
We proceed by induction on r. It is true for r = 1 and so
assume r > 2 and it is true for r — 1 and arbitrary p, q.
Now we further proceed by induction on p + q. It is true for
p+ q = 2r and so assume it is true for r and all p’, ¢’ with

P+q <p+aq.
Let

pr = N(p-1,q:r)
p2 = N(p,g—1;r)

These exist by induction.
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Ramsey’s Theorem in general

Now we prove that

N(p,q;r) <1+ N(py,q1;r—1)

where the RHS exists by induction.

Suppose that n > 1+ N(py, gi; r — 1) and we color (") with 2
colors. Call this coloring o.

From this we define a coloring 7 of ([” 1]) as follows: If
X e (I"~11) then give it the color of X U {n} under o.

Now either (i) there exists A C [n— 1], |A| = py such that
(under 7) all members of (,#,) are Red or (ii) there exists

B C [n— 1], |A] = g4 such that (under 7) all members of (,Z.)
are Blue.
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Ramsey’s Theorem in general

Assume w.l.o.g. that (i) holds.

|Al=p1=N(p—1,q9r).

Then either
(a) 3B C Asuch that |B| = g and under o all of (©) is Blue,
or

(b) 3A' C Asuch that |A'| = p — 1 and all of (*) is Red. But

then all of (*“{™) is Red. If X C A, |X| = r — 1 then 7 colors X
Red, since A’ C A. But then o will color X U {n} Red.
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Ramsey’s Theorem in general

Now consider the case of s colors. We show that
N(g1.qz,....qsir) < N(Qi, Qz; 1)
where
Q = N(Q1,Q2,~--7QLS/2JW)
Q = N(qu/2j+1’qu/2J+2v“'vqs;r)
(I[_rs—]z;[ n = N(Qq, Q; r) and assume we are given an s-coloring of
7).

First temporarily re-color Red, any r-set colored with i < [s/2]
and re-color Blue any r-set colored with / > |s/2].
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Ramsey’s Theorem in general

Then either (a) there exists a Q;-subset A of [n] with (7)

colored Red or (b) there exists a Q,-subset B of [n] with (%)
colored Blue.

W.l.0.g. assume the first case. Now replace the colors of the
r-sets of A by there original colors. We have a |s/2|-coloring of
(4. Since |A| = N(q1, e, - - -, q|s/2): 1) there must exist some

i < |s/2] and a g;-subset S of A such that all of () has color .
O
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Hales-Jewett Theorem

The n-dimensional m-cube is defined as
[m]" = {x=(x1,X2,...,Xn) : 1< x; < m}.

A subset L C [m]" is a combinatorial line if there exists a
non-empty set / C [n] and integers a;, i ¢ | such that

L={xe[m]":xi=a;,i¢ land x; = x;jfori,jel}.

Forexampleifn=5m=4and /= {1,3,5},a0 =3,a4 = 1
then

{(1,3,1,1,1),(2,3,2,1,2),(3,3,3,1,3),(4,3,4,1,4)} is a line.

Note that the active indices in I are required to increase from 1
to m.
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Hales-Jewett Theorem

For all positive integers r, m there exists a least integer
HJ(r, m) such that if n > HJ(r, m) and [m]" is colored with r
colors, then there is a monochromatic combinatorial line.

Proof: Note that if every r-coloring of [m]"” contains a
monochromatic line, then so does every r-coloring of [m]"+1. (If
we fix x,.1 = 1 then we are esentially dealing with [m]".)

Given a line L we define L—, L™ to be its first and last points, as
the active indices increase from 1 to m.
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Hales-Jewett Theorem

Lines Ly, Ly, ..., Ls are focused at a point f if Lfr = f for
i=1,2,...,s.

Lines Ly, Ly, ..., Ls are color focused at a point f if they are
focused at f and the truncated lines L; \ {L;"} are
monochromatic with different colors.

For the proof we use induction on m. The case m = 1 is trivial.

We will show by induction on s that for each 1 < s < r there
exists N = FHJ(r, s, m) such that any r-coloring of [m]N
contains either

@ A monochromatic line, or
@ s color-focused lines.
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Hales-Jewett Theorem

The case s = r implies the theorem, since at least one of the
foci f; of the r lines has the same color as the common color of
the truncated lines and extend it to a whole line.

For s = 1 we take FHJ(r,1, m) = HJ(r, m — 1), which exists by
induction. (We just need to add an mth point to the
monochromatic line of length m — 1.)

Assuming that n 4 FHJ(r,s — 1, m) exists, we claim that

FHJ(r,s,m) < N=n+n',

where r 2 HJ(r™ m—1). (Note that the inductive assumption
asssumes that HJ(p, m — 1) exists for all choices of p.)
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Hales-Jewett Theorem

An r-coloring x of [m]N = [m]” x [m]" can thought of as an r™”
coloring x’ of [m]”™ where b € [m]" is “colored” with the
x-colored cube {(a,b) : a € [m]"}.

By induction on m, there is a line L in [m]" with active
coordinate set / such that the truncated line L\ {L"} is
monochromatic. (This being a line in [m —1]"".)

In terms of x this means that for all a € [m]"” and all
b,b € L\ {L"}, we have

x((a,b)) = x((a. b)) £ X"(a).
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Hales-Jewett Theorem

Now we examine x”. By hypothesis, (induction on s), either (i)
there is a monochromatic line or (ii) we can find s — 1 color
focused lines Ly, ..., Ls_1 in [m]™ with active coordinate sets
li,...,ls_1 and focus f. Assume that (ii) holds, implying that f
has a different colorto L;,i < s.

For 1 < i< s—1,define L] to be the line in [m]N with first point
(L;, L) and active coordinates /; U /,

Define L to be the line in [m]"N with first point (f, L~) and active
coordinate set /.

The lines Lj,1 < i < s form a set of s color-focused lines with
focus (f, L™), completing the induction on s.
(Note that L} has a different color to L}, i < s because f has a

different colorto L;./ < s.
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Van der Waerden’s theorem

An arithmetic progression is a sequence of integers
a,a+d,...,a+ (m—1)d where a,d > 0. The length of the
progression is m.

There exists a positive integer W = W(m, k) such that if n > W
and the integers [n] are colored with k colors then then [n]
contains a monochromatic arithmetic progression of lenth m.

Proof Let n= HJ(m, k). Let n = HJ(m, k). Give [mn] a
k-coloring ¢ : [mn] — [k] and define ¢’ : [m]" — [k] by letting
c'(X1,Xo,...,Xn) = C(X1 + X2 + Xpn), for X1, X2, ..., Xn € [M].

Since x; + xo + - - - + x5, < mn, the function is well-defined.
By the definition of n, there exists a monochromatic line in [m]".
Let / be the set of active coordinates and d = |/|.
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Van der Waerden’s theorem

Leta= ) L . Note that

L= ={(x4,X,..., X)) | x; = aiforicland x; =1, fori ¢ I},
and the jth point

U= {(xy,Xs,...,xp)|X = a, fori e land x; = j, fori ¢ I}.

This means a+ (j — 1)d = 3_ L/. The line is monochromatic
and so a,a+ d,a+ (m— 1)d are colored the same

Thus W(m, k) < mHJ(m, k).
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Schur’s Theorem

Let r, = N(3,3,...,3;2) be the smallest n such that if we
k-color the edges of K, then there is a mono-chromatic triangle.

For all partitions Sy, Sy, ..., Sk of [rk], there exist i and
X,y,z€ Sjsuchthatx +y = z.

Proof Given a partition Sy, Sy, ..., Sk of [n] where n > ry
we define a coloring of the edges of K, by coloring (u, v) with
color j where |[u —v| € S;.

There will be a mono-chromatic triangle i.e. there exist j and
x<y<zsuchthatu=y-x,v=z-x,w=z-yc§,.
Butu+v=w. O
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Convex Polygons

A set of points X in the plane is in general position if no 3 points
of X are collinear.

If n> N(k, k;3) and X is a set of n points in the plane which
are in general position then X contains a k-subset Y which
form the vertices of a convex polygon.

Proof We first observe that if every 4-subset of Y C X
forms a convex quadrilateral then Y itself induces a convex

polygon.

Now label the points in S from X; to X, and then color each
triangle T = {X;, X;, Xk}, i <j < k as follows: If traversing
triangle X;X;Xj in this order goes round it clockwise, color T
Red, otherwise color T Blue.
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Convex Polygons

Now there must exist a k-set T such that all triangles formed
from T have the same color. All we have to show is that T does
not contain the following configuration:

C
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Convex Polygons

Assume w.l.o.g. that a < b < ¢ which implies that X;X; X is
colored Blue.

All triangles in the previous picture are colored Blue.

So the possibilities are
adc

T

bcd dbc

abd dab
and all are impossible.
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Ramsey R(H1 , H2)

We define r(H;, Ho) to be the minimum n such that in in
Red-Blue coloring of the edges of K}, there is eithere (i) a Red
copy of H; or (ii) a Blue copy of Ho.

As an example, consider r(Ps, P3) where P; denotes a path
with t edges.

We show that
f(P3, P3) = 5.

R(Ps, P3) > 4: We color edges incident with 1 Red and the
remaining edges {(2,3),(3,4), (4,1)} Blue. There is no
mono-chromatic Ps.
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Ramsey R(H1 , HQ)

R(Ps, P3) < 5: There must be two edges of the same color
incident with 1.

Assume then that (1,2), (1, 3) are both Red.

If any of (2,4),(2,5),(3,4),(3,5) are Red then we have a Red
Ps.

If all four of these edges are Blue then (4,2,5, 3) is Blue.
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Ramsey R(H1 , H2)

We show next that r(Ki s, Pt) < s+ t. Here Ky sis a star: i.e. a
vertex v and t incident edges.

Let n = s+ t. If there is no vertex of Red degree s then the
minimum degree in the graph induced by the Blue edges is at
least t.

We then note that a graph of minimum degree § contains a path
of length 6.
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