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Ramsey’s Theorem

Suppose we 2-colour the edges of K6 of Red and Blue. There
must be either a Red triangle or a Blue triangle.

This is not true for K5.

Ramsey Theory



1

2

3

4

5

6

R

R

R

There are 3 edges of the same colour incident with vertex 1,
say (1,2), (1,3), (1,4) are Red. Either (2,3,4) is a blue triangle or
one of the edges of (2,3,4) is Red, say (2,3). But the latter
implies (1,2,3) is a Red triangle.
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Ramsey’s Theorem

For all positive integers k , ` there exists R(k , `) such that if
N ≥ R(k , `) and the edges of KN are coloured Red or Blue then
then either there is a “Red k -clique” or there is a “Blue `-clique.
A clique is a complete subgraph and it is Red if all of its edges
are coloured red etc.

R(1, k) = R(k ,1) = 1
R(2, k) = R(k ,2) = k
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Theorem

R(k , `) ≤ R(k , `− 1) + R(k − 1, `).

Proof Let N = R(k , `− 1) + R(k − 1, `).
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VR = {(x : (1, x) is coloured Red} and VB = {(x : (1, x) is
coloured Blue}.
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|VR| ≥ R(k − 1, `) or |VB| ≥ R(k , `− 1).

Since

|VR|+ |VB| = N − 1
= R(k , `− 1) + R(k − 1, `)− 1.

Suppose for example that |VR| ≥ R(k − 1, `). Then either VR
contains a Blue `-clique – done, or it contains a Red
k − 1-clique K . But then K ∪ {1} is a Red k -clique.
Similarly, if |VB| ≥ R(k , `− 1) then either VB contains a Red
k -clique – done, or it contains a Blue `− 1-clique L and then
L ∪ {1} is a Blue `-clique. �
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Theorem

R(k , `) ≤
(

k + `− 2
k − 1

)
.

Proof Induction on k + `. True for k + ` ≤ 5 say. Then

R(k , `) ≤ R(k , `− 1) + R(k − 1, `)

≤
(

k + `− 3
k − 1

)
+

(
k + `− 3

k − 2

)
=

(
k + `− 2

k − 1

)
.

�
So, for example,

R(k , k) ≤
(

2k − 2
k − 1

)
≤ 4k
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Theorem

R(k , k) > 2k/2

Proof We must prove that if n ≤ 2k/2 then there exists a
Red-Blue colouring of the edges of Kn which contains no Red
k -clique and no Blue k -clique. We can assume k ≥ 4 since we
know R(3,3) = 6.
We show that this is true with positive probability in a random
Red-Blue colouring. So let Ω be the set of all Red-Blue edge
colourings of Kn with uniform distribution. Equivalently we
independently colour each edge Red with probability 1/2 and
Blue with probability 1/2.
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Let
ER be the event: {There is a Red k -clique} and
EB be the event: {There is a Blue k -clique}.
We show

Pr(ER ∪ EB) < 1.

Let C1,C2, . . . ,CN , N =
(n

k

)
be the vertices of the N k -cliques

of Kn.

Let ER,j be the event: {Cj is Red} and let EB,j be the event: {Cj is
Blue}.
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Pr(ER ∪ EB) ≤ Pr(ER) + Pr(EB) = 2Pr(ER)

= 2Pr

 N⋃
j=1

ER,j

 ≤ 2
N∑

j=1

Pr(ER,j)

= 2
N∑

j=1

(
1
2

)(k
2)

= 2
(

n
k

)(
1
2

)(k
2)

≤ 2
nk

k !

(
1
2

)(k
2)

≤ 2
2k2/2

k !

(
1
2

)(k
2)

=
21+k/2

k !
< 1.
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Very few of the Ramsey numbers are known exactly. Here are a
few known values.

R(3,3) = 6
R(3,4) = 9
R(4,4) = 18
R(4,5) = 25

43 ≤ R(5,5) ≤ 49
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Ramsey’s Theorem in general

Remember that the elements of
(S

r

)
are the r -subsets of S

Theorem
Let r , s ≥ 1, qi ≥ r , 1 ≤ i ≤ s be given. Then there exists
N = N(q1,q2, . . . ,qs; r) with the following property: Suppose
that S is a set with n ≥ N elements. Let each of the elements of(S

r

)
be given one of s colors. .

Then there exists i and a qi -subset T of S such that all of the
elements of

(T
r

)
are colored with the ith color.

Proof First assume that s = 2 i.e. two colors, Red, Blue.
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Ramsey’s Theorem in general

Note that

(a) N(p,q; 1) = p + q − 1
(b) N(p, r ; r) = p(≥ r)

N(r ,q; r) = q(≥ r)

We proceed by induction on r . It is true for r = 1 and so
assume r ≥ 2 and it is true for r − 1 and arbitrary p,q.
Now we further proceed by induction on p + q. It is true for
p + q = 2r and so assume it is true for r and all p′,q′ with
p′ + q′ < p + q.
Let

p1 = N(p − 1,q; r)

p2 = N(p,q − 1; r)

These exist by induction.
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Ramsey’s Theorem in general

Now we prove that

N(p,q; r) ≤ 1 + N(p1,q1; r − 1)

where the RHS exists by induction.

Suppose that n ≥ 1 + N(p1,q1; r − 1) and we color
([n]

r

)
with 2

colors. Call this coloring σ.

From this we define a coloring τ of
([n−1]

r−1

)
as follows: If

X ∈
([n−1]

r−1

)
then give it the color of X ∪ {n} under σ.

Now either (i) there exists A ⊆ [n − 1], |A| = p1 such that
(under τ ) all members of

( A
r−1

)
are Red or (ii) there exists

B ⊆ [n − 1], |A| = q1 such that (under τ ) all members of
( B

r−1

)
are Blue.
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Ramsey’s Theorem in general

Assume w.l.o.g. that (i) holds.

|A| = p1 = N(p − 1,q; r).

Then either

(a) ∃B ⊆ A such that |B| = q and under σ all of
(B

r

)
is Blue,

or

(b) ∃A′ ⊆ A such that |A′| = p − 1 and all of
(A′

r

)
is Red. But

then all of
(A′∪{n}

r

)
is Red. If X ⊆ A′, |X | = r − 1 then τ colors X

Red, since A′ ⊆ A. But then σ will color X ∪ {n} Red.
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Ramsey’s Theorem in general

Now consider the case of s colors. We show that

N(q1,q2, . . . ,qs; r) ≤ N(Q1,Q2; r)

where

Q1 = N(q1,q2, . . . ,qbs/2c; r)

Q2 = N(qbs/2c+1,qbs/2c+2, . . . ,qs; r)

Let n = N(Q1,Q2; r) and assume we are given an s-coloring of([n]
r

)
.

First temporarily re-color Red, any r -set colored with i ≤ bs/2c
and re-color Blue any r -set colored with i > bs/2c.
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Ramsey’s Theorem in general

Then either (a) there exists a Q1-subset A of [n] with
(A

r

)
colored Red or (b) there exists a Q2-subset B of [n] with

(A
r

)
colored Blue.

W.l.o.g. assume the first case. Now replace the colors of the
r -sets of A by there original colors. We have a bs/2c-coloring of(A

r

)
. Since |A| = N(q1,q2, . . . ,qbs/2c; r) there must exist some

i ≤ bs/2c and a qi -subset S of A such that all of
(S

r

)
has color i .

�
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Hales-Jewett Theorem

The n-dimensional m-cube is defined as

[m]n = {x = (x1, x2, . . . , xn) : 1 ≤ xi ≤ m}.

A subset L ⊆ [m]n is a combinatorial line if there exists a
non-empty set I ⊆ [n] and integers ai , i /∈ I such that

L = {x ∈ [m]n : xi = ai , i /∈ I and xi = xj for i , j ∈ I}.

For example if n = 5,m = 4 and I = {1,3,5},a2 = 3,a4 = 1
then

{(1,3,1,1,1), (2,3,2,1,2), (3,3,3,1,3), (4,3,4,1,4)} is a line.

Note that the active indices in I are required to increase from 1
to m.
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Hales-Jewett Theorem

Theorem
For all positive integers r ,m there exists a least integer
HJ(r ,m) such that if n ≥ HJ(r ,m) and [m]n is colored with r
colors, then there is a monochromatic combinatorial line.

Proof: Note that if every r -coloring of [m]n contains a
monochromatic line, then so does every r -coloring of [m]n+1. (If
we fix xn+1 = 1 then we are esentially dealing with [m]n.)

Given a line L we define L−,L+ to be its first and last points, as
the active indices increase from 1 to m.
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Hales-Jewett Theorem

Lines L1,L2, . . . ,Ls are focused at a point f if L+
i = f for

i = 1,2, . . . , s.

Lines L1,L2, . . . ,Ls are color focused at a point f if they are
focused at f and the truncated lines Li \ {L+

i } are
monochromatic with different colors.

For the proof we use induction on m. The case m = 1 is trivial.

We will show by induction on s that for each 1 ≤ s ≤ r there
exists N = FHJ(r , s,m) such that any r -coloring of [m]N

contains either

1 A monochromatic line, or
2 s color-focused lines.
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Hales-Jewett Theorem

The case s = r implies the theorem, since at least one of the
foci fi of the r lines has the same color as the common color of
the truncated lines and extend it to a whole line.

For s = 1 we take FHJ(r ,1,m) = HJ(r ,m − 1), which exists by
induction. (We just need to add an mth point to the
monochromatic line of length m − 1.)

Assuming that n d
= FHJ(r , s − 1,m) exists, we claim that

FHJ(r , s,m) ≤ N = n + n′,

where n′ d
= HJ(rmn

,m−1). (Note that the inductive assumption
asssumes that HJ(ρ,m − 1) exists for all choices of ρ.)

Ramsey Theory



Hales-Jewett Theorem

An r -coloring χ of [m]N = [m]n × [m]n
′

can thought of as an rmn

coloring χ′ of [m]n
′

where b ∈ [m]n
′

is “colored” with the
χ-colored cube {(a,b) : a ∈ [m]n}.

By induction on m, there is a line L in [m]n
′

with active
coordinate set I such that the truncated line L \ {L+} is
monochromatic. (This being a line in [m − 1]n

′
.)

In terms of χ this means that for all a ∈ [m]n and all
b,b′ ∈ L \ {L+}, we have

χ((a,b)) = χ((a,b′))
d
= χ′′(a).
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Hales-Jewett Theorem

Now we examine χ′′. By hypothesis, (induction on s), either (i)
there is a monochromatic line or (ii) we can find s − 1 color
focused lines L1, . . . ,Ls−1 in [m]n with active coordinate sets
I1, . . . , Is−1 and focus f . Assume that (ii) holds, implying that f
has a different color to Li , i < s.

For 1 ≤ i ≤ s − 1, define L′i to be the line in [m]N with first point
(L−i ,L

−) and active coordinates Ii ∪ I,

Define L′s to be the line in [m]N with first point (f ,L−) and active
coordinate set I.

The lines L′i ,1 ≤ i ≤ s form a set of s color-focused lines with
focus (f ,L+), completing the induction on s.
(Note that L′s has a different color to L′i , i < s because f has a
different color to Li , i < s.)
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Van der Waerden’s theorem

An arithmetic progression is a sequence of integers
a,a + d , . . . ,a + (m − 1)d where a,d > 0. The length of the
progression is m.

Theorem
There exists a positive integer W = W (m, k) such that if n ≥W
and the integers [n] are colored with k colors then then [n]
contains a monochromatic arithmetic progression of lenth m.

Proof Let n = HJ(m, k). Let n = HJ(m, k). Give [mn] a
k -coloring c : [mn]→ [k ] and define c′ : [m]n → [k ] by letting
c′(x1, x2, . . . , xn) := c(x1 + x2 + xn), for x1, x2, . . . , xn ∈ [m].

Since x1 + x2 + · · ·+ xn ≤ mn, the function is well-defined.
By the definition of n, there exists a monochromatic line in [m]n.
Let I be the set of active coordinates and d = |I|.
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Van der Waerden’s theorem

Let a =
∑

L− . Note that

L− = {(x1, x2, . . . , xn) | xi = ai for i ∈ I and xi = 1, for i /∈ I},

and the j th point

Lj = {(x1, x2, . . . , xn)|xi = ai , for i ∈ I and xi = j , for i /∈ I}.

This means a + (j − 1)d =
∑

Lj . The line is monochromatic
and so a,a + d ,a + (m − 1)d are colored the same

Thus W (m, k) ≤ mHJ(m, k).

Ramsey Theory



Schur’s Theorem

Let rk = N(3,3, . . . ,3; 2) be the smallest n such that if we
k -color the edges of Kn then there is a mono-chromatic triangle.

Theorem
For all partitions S1,S2, . . . ,Sk of [rk ], there exist i and
x , y , z ∈ Si such that x + y = z.

Proof Given a partition S1,S2, . . . ,Sk of [n] where n ≥ rk
we define a coloring of the edges of Kn by coloring (u, v) with
color j where |u − v | ∈ Sj .

There will be a mono-chromatic triangle i.e. there exist j and
x < y < z such that u = y − x , v = z − x , w = z − y ∈ Sj .
But u + v = w . �
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Convex Polygons

A set of points X in the plane is in general position if no 3 points
of X are collinear.

Theorem
If n ≥ N(k , k ; 3) and X is a set of n points in the plane which
are in general position then X contains a k-subset Y which
form the vertices of a convex polygon.

Proof We first observe that if every 4-subset of Y ⊆ X
forms a convex quadrilateral then Y itself induces a convex
polygon.

Now label the points in S from X1 to Xn and then color each
triangle T = {Xi ,Xj ,Xk}, i < j < k as follows: If traversing
triangle XiXjXk in this order goes round it clockwise, color T
Red, otherwise color T Blue.
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Convex Polygons

Now there must exist a k -set T such that all triangles formed
from T have the same color. All we have to show is that T does
not contain the following configuration:

a b

c

d
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Convex Polygons

Assume w.l.o.g. that a < b < c which implies that XiXjXk is
colored Blue.

All triangles in the previous picture are colored Blue.

So the possibilities are
adc

bcd dbc

abd dab

and all are impossible.
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Ramsey R(H1,H2)

We define r(H1,H2) to be the minimum n such that in in
Red-Blue coloring of the edges of Kn there is eithere (i) a Red
copy of H1 or (ii) a Blue copy of H2.

As an example, consider r(P3,P3) where Pt denotes a path
with t edges.

We show that
r(P3,P3) = 5.

R(P3,P3) > 4: We color edges incident with 1 Red and the
remaining edges {(2,3), (3,4), (4,1)} Blue. There is no
mono-chromatic P3.
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Ramsey R(H1,H2)

R(P3,P3) ≤ 5: There must be two edges of the same color
incident with 1.

Assume then that (1,2), (1,3) are both Red.

If any of (2,4), (2,5), (3,4), (3,5) are Red then we have a Red
P3.

If all four of these edges are Blue then (4,2,5,3) is Blue.

Ramsey Theory



Ramsey R(H1,H2)

We show next that r(K1,s,Pt ) ≤ s + t . Here K1,s is a star: i.e. a
vertex v and t incident edges.

Let n = s + t . If there is no vertex of Red degree s then the
minimum degree in the graph induced by the Blue edges is at
least t .

We then note that a graph of minimum degree δ contains a path
of length δ.
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