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Colouring Problem

Theorem 1

Let A1,A2, . . . ,An be subsets of A and |Ai | = k for 1 ≤ i ≤ n. If
n < 2k−1 then there exists a partition A = R ∪ B such that

Ai ∩ R 6= ∅ and Ai ∩ B 6= ∅ 1 ≤ i ≤ n.

[R = Red elements and B= Blue elements.]

Proof Randomly colour A.
Ω = {R,B}A = {f : A→ {R,B}}, uniform distribution.

BAD = {∃i : Ai ⊆ R or Ai ⊆ B}.

Claim: P(BAD) < 1.
Thus Ω \ BAD 6= ∅ and this proves the theorem.
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BAD(i) = {Ai ⊆ R or Ai ⊆ B} and BAD =
n⋃

i=1

BAD(i).

Boole’s Inequality: if A1,A2, . . . ,AN are a collection of events,
then

P

(
N⋃

i=1

Ai

)
≤

N∑
i=1

P(Ai).

This easily proved by induction on N. When N = 2 we use

P(A1 ∪ A2) = P(A1) + P(A2)− P(A1 ∩ A2) ≤ P(A1 ∪ A2).

In general,

P

(
N⋃

i=1

Ai

)
≤ P

(
N−1⋃
i=1

Ai

)
+ P(AN) ≤

N−1∑
i=1

P(Ai) + P(AN).

The first inequality is the two event case and the second is by
induction on N.
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So,

P(BAD) ≤
n∑

i=1

P(BAD(i))

=
n∑

i=1

(
1
2

)k−1

= n/2k−1

< 1.
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Example of system which is not 2-colorable.

Let n =
(2k−1

k

)
and A = [2k − 1] and

{A1,A2, . . . ,An} =

(
[2k − 1]

k

)
.

Then in any 2-coloring of A1,A2, . . . ,An there is a set Ai all of
whose elements are of one color.

Suppose A is partitioned into 2 sets R,B. At least one of these
two sets is of size at least k (since (k − 1) + (k − 1) < 2k − 1).
Suppose then that R ≥ k and let S be any k -subset of R. Then
there exists i such that Ai = S ⊆ R.
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De-randomising the coloring procedure.

We describe how we can deterministically color the elements
of A one at a time so that we end up with a coloring satisfying
Ai ∩ R 6= ∅ and Ai ∩ B 6= ∅, 1 ≤ i ≤ n.

We need some notation: Suppose that we have only colored a
subset C of A and C = R ∪ B defines the colors of the elemtns
in C. (Abusing notation, R,B now refer to a partial coloring of
A).

Let Z (R,B) be the number of sets among the Ai that will be
mono-colored if we randomly color the remaining elements in
A \ (R ∪ B).
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Z (R,B)) =
n∑

i=1

Zi(R,B)

where

E(Zi(R,B)) =



1 Ai ⊆ R or Ai ⊆ B
0 Ai ∩ R 6= ∅ and Ai ∩ B 6= ∅
21−k Ai ∩ C = ∅
2−|Ai\C| Ai ∩ R 6= ∅ and Ai ∩ B = ∅
2−|Ai\C| Ai ∩ R = ∅ and Ai ∩ B 6= ∅

Initially we have E(Z (∅, ∅)) < 1.

Not also that we can compute E(Z (R,B)) in O(n|A|) time.
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Suppose now that we have managed to color some of the
elements of A and E(Z (R,B)) < 1.

Suppose that x is an arbitrary element of A \ C. Then if we
consider the random color c for x then

1 > E(Z (R,B)) =

E(Z (R,B) | c = Red)P(c = Red)+

E(Z (R,B) | c = Blue)P(c = Blue) =

E(Z (R ∪ {x} ,B)) + E(Z (R,B ∪ {x}))

2

It follows that at least one of E(Z (R ∪ {x} ,B)),E(Z (R,B ∪ {x})
is less than 1.

Probabilistic Method



If E(Z (R ∪ {x} ,B)) < 1 then we color x Red, otherwise we
color it Blue.

We continue in this way until we find R,B such that

R ∪ B = A and E(Z (R,B)) < 1.

Now if R ∪ B = A then there are no more random choices and
E(Z (R,B)) = Z (R,B) is the number of mono-colored sets.

Since Z (R,B) < 1, this number is zero.
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Theorem 2

Let A1,A2, . . . ,An be subsets of A and |Ai | = k ≥ 2 for
1 ≤ i ≤ n. If n < 2k−1k1/4/3 then there exists a partition
A = R ∪ B such that

Ai ∩ R 6= ∅ and Ai ∩ B 6= ∅ 1 ≤ i ≤ n.

[R = Red elements and B= Blue elements.]

Randomly order the elements of A as a1,a2, . . . ,aN .

Assume that we have colored a1,a2, . . . ,ai−1. Then we color ai
Red, unless there is an edge Ai for which Ai \ {ai} is all Red. In
which case, we color ai Blue.

We now argue that with a positive probability, this algorithm
colors A so that no set is mono-colored.
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If this fails then there exists j such that Aj is all Blue, by
construction. Let v be the first element of Aj to be colored.

Then there exists Ai such that (i) Ai ∩ Aj = {v} and (ii) v is the
last element of Ai to be colored.

Because v is Blue, it is the last element of Ai to be colored.
Also (i) holds because all other elements of Ai are Red.

Supppose that n = 2k−1`. Then the probability of (i), (ii) is at
most

(2k−1`)2 · 1
2k − 1

· 1(2k−2
k−1

) .
For such a pair Ai ,Aj we have |Ai ∪ Aj | = 2k − 1. The

probability that v is the middle element selected is 1/(2k − 1)
and given this the probability that the first k − 1 elements of
Ai ∪ Aj are Ai \ {v} is 1/

(2k−2
k−1

)
.
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(2k−1`)2 bounds the number of choices for i , j .

Using Stirling’s formula N! ∼ (2πN)(N/e)N we see that(2M
M

)
≥ 2M/(3M1/2) for all M.

It follows that the probability of failure is bounded by

22k−2`2 · 3(k − 1)1/2

22k−2(k − 1)
=

3`2

(k − 1)1/2 < 1,

if ` ≤ k1/4/3.
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Tournaments

n players in a tournament each play each other i.e. there are(n
2

)
games.

Fix some k . Is it possible that for every set S of k players there
is a person wS who beats everyone in S?
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Suppose that the results of the tournament are decided by a
random coin toss.

Fix S, |S| = k and let ES be the event that nobody beats
everyone in S.

The event
E =

⋃
S

ES

is that there is a set S for which wS does not exist.

We only have to show that P(E) < 1.
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P(E) ≤
∑
|S|=k

P(ES)

=

(
n
k

)
(1− 2−k )n−k

< nke−(n−k)2−k

= exp{k ln n − (n − k)2−k}
→ 0

since we are assuming here that k is fixed independent of n.
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Random Binary Search Trees

A binary tree consists of a set of nodes, one of which is the root.
Each node is connected to 0,1 or 2 nodes below it and every
node other than the root is connected to exactly one node
above it. The root is the highest node.
The depth of a node is the number of edges in its path to the
root.
The depth of a tree is the maximum over the depths of its
nodes.
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Starting with a tree T0 consisting of a single root r , we grow a
tree Tn as follows:

The n’th particle starts at r and flips a fair coin. It goes left (L)
with probability 1/2 and right (R) with probability 1/2.

It tries to move along the tree in the chosen direction. If there is
a node below it in this direction then it goes there and continues
its random moves. Otherwise it creates a new node where it
wanted to move and stops.
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Let Dn be the depth of this tree.
Claim: for any t ≥ 0,

P(Dn ≥ t) ≤ (n2−(t−1)/2)t .

Proof The process requires at most n2 coin flips and so we let
Ω = {L,R}n2

– most coin flips will not be needed most of the
time.

DEEP = {Dn ≥ t}.

For P ∈ {L,R}t and S ⊆ [n], |S| = t let
DEEP(P,S) = {the particles S = {s1, s2, . . . , st} follow P in the
tree i.e. the first i moves of si are along P, 1 ≤ i ≤ t}.

DEEP =
⋃
P

⋃
S

DEEP(P,S).
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4

8

17

11

13

t=5 and DEEP(P,S) occurs if 

17 goes LRR...

11 goes LRRL...

13 goes LRRLR...

4   goes L...

8   goes LR...

                    S={4,8,11,13,17}
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P(DEEP)≤
∑

P

∑
S

P(DEEP(P,S))

=
∑

P

∑
S

2−(1+2+···+t)

=
∑

P

∑
S

2−t(t+1)/2

= 2t
(

n
t

)
2−t(t+1)/2

≤ 2tnt2−t(t+1)/2

= (n2−(t−1)/2)t .

So if we put t = A log2 n then

P(Dn ≥ A log2 n) ≤ (2n1−A/2)A log2 n

which is very small, for A > 2.
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Secretary Problem

There are n applicants for a secretarial position and CEO Pat
will interview them in random order. The rule is that Pat must
decide on the spot whether to hire the current applicant or
interview the next one. Pat is an excellent judge of quality, but
she does not know the set of applicants a priori. She wants to
give herself a good chance of hiring the best.

Here is her strategy: She chooses a number m < n, interviews
the first m and then hires the first person in m + 1, . . . ,n who is
the best so far. (There is a chance that she will not hire
anyone).
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Let S be the event that Pat chooses the best person and let Pi
be the event that the best person is the i th applicant. Then

P(S) =
n∑

i=1

P(S | Pi)P(Pi) =
1
n

n∑
i=1

P(S | Pi).

Now Pat’s strategy implies that P(S | Pi) = 0 for 1 ≤ i ≤ m. If Pi
occurs for i > m then Pat will succeed iff the best of the first
i − 1 applicants (j say) is one of the first m, otherwise Pat will
mistakenly hire j . Thus, for i > m, P(S | Pi) = m

i−1 and hence

P(S) =
m
n

n∑
i=m+1

1
i − 1

.
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Now assume that n is large and that m = αn. Then

P(S) ∼ α(ln n − lnαn) = α ln 1/α.

Pat will want to choose the value of α that maximises
f (α) = α ln 1/α. But f ′(α) = ln 1/α− 1 and so the optimum
choice for α is 1/e. In which case,

P(S) ∼ e−1.
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A problem with hats

There are n people standing a circle. They are blind-folded and
someone places a hat on each person’s head. The hat has
been randomly colored Red or Blue.

They take off their blind-folds and everyone can see everyone
else’s hat. Each person then simultaneously declares (i) my hat
is red or (ii) my hat is blue or (iii) or I pass.

They win a big prize if the people who opt for (i) or (ii) are all
correct. They pay a big penalty if there is a person who
incorrectly guesses the color of their hat.

Is there a strategy which means they will win with probability
better than 1/2?
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Suppose that we partition Qn = {0,1}n into 2 sets W ,L which
have the property that L is a cover i.e. if
x = x1x2 · · · xn ∈W = Qn \ L then there is y1y2 · · · yn ∈ L such
that h(x , y) = 1 where

h(x , y) = |{j : xj 6= yj}|.

Hamming distance between x and y .

Assume that 0 ≡ Red and 1 ≡ Blue. Person i knows xj for j 6= i
(color of hat j) and if there is a unique value ξ of xi which places
x in W then person i will declare that their hat has color ξ.

The people assume that x ∈W and if indeed x ∈W then there
is at least one person who will be in this situation and any such
person will guess correctly.

Is there a small cover L?
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Let p = ln n
n . Choose L1 randomly by placing y ∈ Qn into L1 with

probability p.

Then let L2 be those z ∈ Qn which are not at Hamming
distance ≤ 1 from some member of L1.

Clearly L = L1 ∪ L2 is a cover and
E(|L|) = 2np + 2n(1− p)n+1 ≤ 2n(p + e−np) ≤ 2n 2 ln n

n .

So there must exist a cover of size at most 2n 2 ln n
n and the

players can win with probability at least 1− 2 ln n
n .
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Markov Inequality: if X is a non-negative random variable with
mean µ then for any x ≥ 0

P(X ≥ x) ≤ µ

x
.

First moment method: if X is a random variable taking values
in {0,1, . . .} then

P(X ≥ 1) ≤ E(X ).

We just apply the Markov inequality with x = 1.

E(X ) = E(X | X = 0)P(X = 0) + E(X | X ≥ 1)P(X ≥ 1)

≥ P(X ≥ 1).
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Intersection Safe Families

Let A be a family of sub-sets of [n]. We say that A is
Intersection Safe if for distinct A,B,C ∈ A we have C 6⊇ A ∩ B.
We use the probabilistic method to show the existence of an
Intersection Safe family of exponential size.
Suppose that A consists of p randomly and independently
chosen sets X1,X2, . . . ,Xp. Let Z denote the number of 3-tples
i , j , k such that Xi ∩ Xj ⊆ Xk . Then

E(Z ) = p(p−1)(p−2)P(Xi ∩Xj ⊆ Xk ) = p(p−1)(p−2)

(
7
8

)n

.

(Observe that P(x ∈ (Xi ∩ Xj) \ Xk = 1/8.)
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So if p ≤ (8/7)n/3 then

P(Z ≥ 1) ≤ E(Z ) < p3
(

7
8

)n

≤ 1

implying that there exists a union free family of size p.

There is a small problem here in that we might have repetitions
Xi = Xj for i 6= j . Then our set will not be of size p.

But if Z1 denotes the number of pairs i , j such that Xi = Xj then

P(Z1 6= 0) ≤ E(Z1) =

(
p
2

)
2−n

and so we should really choose p so that
P(Z + Z1 6= 0) ≤ E(Z ) + E(Z1) < p3 (7

8

)n
+ p2 (1

2

)n ≤ 1.
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Application: Suppose that we have a central storage containing
n keys {k1, k2, . . . , kn}.

We must distribute sets of keys to p people. Person i will get
the set Ki = {kj : j ∈ Xi}. The sets X1,X2, . . . ,Xp are public
knowledge.

If person r wishes to communicate with person s then he/she
will send them {kj : j ∈ Xr ∩ Xs} as a means of proving their
identity.

If the sets X1,X2, . . . ,Xp are intersection safe, then person t
cannot pretend to be person r .

It is possible therefore to have a “secure“ system with p people
that requires each person to get O(ln p) keys.
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Graph Crossing Number

The crossing number of a graph G is the minimum number of
edge crossings of a drawing of G in the plane.

Euler’s forula implies that a planar graph with n vertices has at
most 3n edges.

This implies that a graph G = (V ,E) requires at least |E | − 3|V |
crossings.

Theorem 3

If |E | > 4|V | then G has crossing number Ω(|E |3/|V |2).

If |E | ≈ |V |3/2 then this gives Ω(|V |5/2) whereas
|E | − 3|V | = O(|V |3/2).

Probabilistic Method



Proof

Suppose that G has a drawing with k crossings and let
0 < p < 1.

Let Gp = (Vp,Ep) denote the subgraph of G obtained by
including each vertex in Vp independently with probability p.

Ep is then the set of edges {x , y} such that x , y ∈ Vp.

E(|Vp|) = p|V | and E(|Ep|) = p2|E |.

Also,

E(number of crossings in the drawing of Gp) = p4k .

Probabilistic Method



So,
p4k ≥ E(|Ep| − 3|Vp|) = p2|E | − 3p|V |.

So

k ≥ p2|E | − 3p|V |
p4 .

Maximising the RHS over p ≤ 1 gives p = 4|V |/|E | and

k ≥ |E |3

64|V |2
.
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Connectivity of a Random Graph

The random graph Gn,p is defined as follows: each edge of the
complete graph Kn is included independently with probability p.

Thus if G = (V ,E) has vertex set V = [n] then

P(Gn,p = G) = p|E |(1− p)(n
2)−|E |.

Theorem 4

Let p = log n+cn
n . Then

lim
n→∞

P(Gn,p is connected) =


0 cn → −∞.
e−e−c

cn → c.
1 cn →∞.
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Proof

A vertex of Gn,p is said to isolated if it has degree zero. If Gn,p
has isolated vertices then it is not connected. Let X1 denote the
number of isolated vertices in Gn,p. Therefore

P(X1 > 0) ≤ P(Gn,p is not connected)

≤ P(X1 > 0)+P
(

Gn,p has component with 2 ≤ k ≤ n
2

vertices
)
.

It will suffice to prove that if cn → c then

lim
n→∞

P(Gn,p is connected) = e−e−c
.

This is because if p′ ≥ p then

P(Gn,p is connected) ≤ P(Gn,p′ is connected).

e−e−cn → 0 if cn → −∞ and e−e−cn → 1 if cn →∞.
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Let Xk denote the number of components in Gn,p with k
vertices. Then

P
(

Gn,p has component with 2 ≤ k ≤ n
2

vertices
)

= P
(
∃2 ≤ k ≤ n

2
: Xk > 0

)
.

So, using Boole’s inequality and the first moment method,

P
(
∃2 ≤ k ≤ n

2
: Xk > 0

)
≤

n/2∑
k=2

P(Xk > 0) ≤
n/2∑
k=2

E(Xk )

≤
n/2∑
k=2

(
n
k

)
kk−2pk−1(1− p)k(n−k) =

n/2∑
k=2

uk .

The factor kk−2 in the second line is the number of spanning
trees of Kk . In effect we are bounding the number of connected
components by the number of spanning trees in such
components.
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Now, for 2 ≤ k ≤ 10,

uk ≤ eknk
(

log n + c
n

)k−1

e−k(n−10)(log n+c)/n

≤ (1 + o(1))ek(1−c)
(

log n
n

)k−1

,

and for k > 10

uk ≤
(ne

k

)k
kk−2

(
log n + c

n

)k−1

e−k(log n+c)/2

≤ n

(
e1−c/2+o(1) log n

n1/2

)k

.

So
n/2∑
k=2

uk ≤ (1 + o(1))
e2(1−c) log n

n
+

n/2∑
k=10

n1+o(1)−k/2

= O
(

no(1)−1
)
.
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We have so far proved that if p = (log n + c)/n then

P(Gn,p is connected) = (1+o(1))P(Gn,p has no isolated vertices.)

We use inclusion-exclusion to estimate the RHS probability.

Let A denote the set of graphs with vertex set [n]. For a graph
G = (V ,E) ∈ Ai we let wG = p|E |(1− p)(n

2)−|E |.

For i ∈ [n], we let Ai = {G : i isolated in G}.

Then

P(Gn,p has no isolated vertices) = w

(
n⋂

i=1

Āi

)
.
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If S ⊆ [n] then

w(AS) = P( the vertices in S are isolated) = (1−p)|S|(n−|S|)+(|S|2 ).

So, by inclusion-exclusion,

w

(
n⋂

i=1

Āi

)
=
∑

S⊆[n]

(−1)|S|(1− p)|S|(n−|S|)+(|S|2 )

=
n∑

s=0

(
n
s

)
(−1)s(1− p)s(n−s)+(s

2).
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Now fix an arbitrary positive integer, independent of n. The
Bonferroni inequalities imply that

w

(
n⋂

i=1

Āi

)
≤

2k∑
s=0

(
n
s

)
(−1)s(1− p)s(n−s)+(s

2)

=

(
1 + O

(
k2 log n

n

)) 2k∑
s=0

ns

s!
(−1)se−snp

=

(
1 + O

(
k2 log n

n

)) 2k∑
s=0

ns

s!
(−1)se−s(log n+c)

=

(
1 + O

(
k2 log n

n

)) 2k∑
s=0

(−1)se−cs

s!
.

So, for all positive integers k ,

lim sup
n→∞

w

(
n⋂

i=1

Āi

)
≤

2k∑
s=0

(−1)se−cs

s!
.
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Similarly, for all positive integers k ,

lim inf
n→∞

w

(
n⋂

i=1

Āi

)
≥

2k−1∑
s=0

(−1)se−cs

s!
.

But,

lim
k→∞

2k∑
s=0

(−1)se−cs

s!
= lim

k→∞

2k−1∑
s=0

(−1)se−cs

s!
= e−e−c

.

And so

lim
n→∞

w

(
n⋂

i=1

Āi

)
= e−e−c

.
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It is instructive to (i) use the first moment method to show that if
cn →∞ then P(X1 > 0) = o(1) and (ii) use the second moment
method to prove that if cn → −∞ then P(X1 > 0) = 1− o(1).
(i) Suppose that cn = ω →∞ , ω = O(log n):

P(X1 > 0) ≤ E(X1) = n(1− p)n−1 ≤ ne−(n−1)(log n+ω)/n

= n exp

{
− log n − ω +

log n + ω

n

}
≤ (1 + o(1))e−ω → 0.

(ii) Second Moment Method (Paley-Zygmund).

Suppose that X is a random variable taking values in
{0,1,2, . . .}. Then

P(X ≥ 1) ≥ E(X )2

E(X 2)
.
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Let Y = 1X≥1. The Y 2 = Y and XY = X . Applying the
Cauchy-Schwartz inequality

E(X )2 = E(XY )2 ≤ E(X 2)E(Y 2) = E(X 2)E(Y ) =

E(X 2)P(Y = 1) = E(X 2)P(X ≥ 1).

We apply this to X1 – the number of isolated vertices.

E(X1) = n(1− p)n−1 = n exp

{
−(n − 1)

∞∑
k=1

pk

k

}
≥ n exp

{
−(n − 1)(p + p2)

}
= (1− o(1))eω →∞.

E(X 2
1 ) =

n∑
i=1

n∑
j=1

P(i and j are both isolated)

= E(X1) + 2
n∑

i=1

n∑
j=i+1

P(i and j are both isolated)
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If i 6= j then

P(i and j are both isolated) = (1− p)2n−3.

So,

E(X 2
1 )

E(X1)2 =
E(X1) + n(n − 1)(1− p)2n−3

n2(1− p)2n−2

=
1

E(X )
+

(n − 1)(1− p)

n
→ 1.

So, of course,
E(X1)2

E(X 2
1 )
→ 1.
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Average case of Quicksort

Quicksort is an algorithm for sorting numbers. Given distinct
x1, x2, . . . , xn we

1 Randomly choose an integer p between 1 and and n – the
pivot.

2 Divide the remaining numbers into 2 sets L,R where
L = {xj : xj < xp} and R = {xj : xj > xp}.

3 Recursively sort L,R.

Let Tn be the expected number of comparisons taken by
Quicksort.
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We have T0 = 0 and for n ≥ 1

Tn =
n∑

i=1

E(No. comparisons | p is i ′th largest)P(p is i ′th largest) =

n∑
i=1

(n − 1 + Ti−1 + Tn−i)×
1
n

= n − 1 +
2
n

n−1∑
i=0

Ti

or

nTn = n(n − 1) + 2
n−1∑
i=0

Ti .
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Let T (x) =
∑∞

n=0 Tnxn be the generating function for Tn.

We note that
∞∑

n=1

nTnxn = xT ′(x).

∞∑
n=1

n(n − 1)xn =
2x2

(1− x)3 .

∞∑
n=1

(
n−1∑
i=0

Ti

)
xn =

xT (x)

1− x
.
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Thus,

T ′(x) =
2x

(1− x)3 +
2T (x)

1− x

or
(1− x)2T ′(x)− 2(1− x)T (x) =

2x
1− x

or
d
dx

((1− x)2T (x)) =
2x

1− x

and so
(1− x)2T (x) = C − 2x − 2 ln(1− x).
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(1− x)2T (x) = C − 2x − 2 ln(1− x).

Now T (0) = 0 implies that C = 0 and so

T (x) = − 2x
(1− x)2 −

2 ln(1− x)

(1− x)2

= −2
∞∑

n=0

nxn + 2
∞∑

n=0

(
n∑

k=1

n − k + 1
k

)
xn

So

Tn = −4n + 2(n + 1)
n∑

k=1

1
k

≈ 2n ln n.
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Hashing

Let U = {0,1, . . . ,N − 1} and H = {0,1, . . . ,n − 1} where n
divides N and N � n. f : U → H, f (u) = u mod n.
(H is a hash table and U is the universe of objects from which a
subset is to be stored in the table.)
Suppose u1,u2, . . . ,um, m = αn, are a random subset of U. A
copy of ui is stored in “cell” f (ui) and ui ’s that “hash” to the
same cell are stored as a linked list.
Questions: u is chosen uniformly from U.
(i) What is the expected time T1 to determine whether or not u
is in the table?
(ii) If it is given that u is in the table, what is the expected time
T2 to find where it is placed?
Time = The number of comparisons between elements of U
needed.
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Let M = N/n, the average number of u′s that map to a cell. Let
Xk denote the number of ui for which f (ui) = k . Then

E(T1) =
n∑

k=1

E(T1 | f (u) = k)P(f (u) = k)

=
1
n

n∑
k=1

E(T1 | f (u) = k)

≤ 1
n

n∑
k=1

E(Xk )

=
1
n
E

(
n∑

k=1

Xk

)
= α.
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Let X denote X1,X2, . . . ,Xn and let X denote the set of possible
values for X . Then

E(T2) =
∑
X∈X

E(T2 | X )P(X )

=
∑
X∈X

n∑
k=1

E(T2 | f (u) = k ,X )P(f (u) = k)P(X )

=
∑
X∈X

n∑
k=1

E(T2 | f (u) = k ,X )
Xk

m
P(X )

=
∑
X∈X

n∑
k=1

(
1 + Xk

2

)
Xk

m
P(X )

=
1

2m

∑
X∈X

n∑
k=1

Xk (1 + Xk )P(X )
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E(T2) =
1
2

+
1

2M
E(X 2

1 + · · ·+ X 2
n )

=
1
2

+
1

2α
E(X 2

1 )

=
1
2

+
1

2α

m∑
t=1

t2

(M
t

)(N−M
m−t

)(N
m

) .
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If α is small and t is small then we can write(M
t

)(N−M
m−t

)(N
m

) ≈ M t

t!
(N −M)m−t

(m − t)!

m!

Nm

≈
(

1− 1
n

)m mt

t!nt

≈ αte−α

t!
.

Then we can further write

E(T2) ≈ 1
2

+
1

2α

∞∑
t=1

t2α
te−α

t!
= 1 +

α

2
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Finding Minimum

Consider the following program which computes the minimum
of the n numbers x1, x2, . . . , xn.
begin
min :=∞;
for i = 1 to n do
begin
if xi < min then min := xi
end
output min
end
If the xi are all different and in random order, what is the
expected number of times that that the statement min := xi is
executed?
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Ω = {permutations of 1,2, . . . ,n} – uniform distribution.
Let X be the number of executions of statement min := xi . Let

Xi =

{
1 statement executed at i .
0 otherwise

Then Xi = 1 iff xi = min{x1, x2, . . . , xi} and so

P(Xi = 1) =
(i − 1)!

i!
=

1
i
.

[The number of permutations of {x1, x2, . . . , xi} in which xi is
the largest is (i − 1)!.]

Probabilistic Method



So

E(X ) = E

(
n∑

i=1

Xi

)

=
n∑

i=1

E(Xi)

=
n∑

i=1

1
i

(= Hn)

≈ loge n.
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Inequalities

Markov Inequality: let X : Ω→ {0,1,2, . . . , } be a random
variable. For any t ≥ 1

P(X ≥ t) ≤ E(X )

t
.

Proof

E(X ) =
∞∑

k=0

kP(X = k)

≥
∞∑

k=t

kP(X = k)

≥
∞∑

k=t

tP(X = k)

= tP(X ≥ t).

In particular, if t = 1 then P(X 6= 0) ≤ E(X ).
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Chebycheff Inequality
Now let σ =

√
Var(Z ).

P(|Z − µ| ≥ tσ) = P((Z − µ)2 ≥ t2σ2)

≤ E((Z − µ)2)

t2σ2

=
1
t2 .

(1) comes from the Markov inequality applied to the random
variable (Z − µ)2.
Back to Binomial: σ =

√
np(1− p).

P(|Bn,p − np| ≥ t
√

np(1− p)) ≤ 1
t2

which implies

P(|Bn,p − np| ≥ εnp) ≤ 1
ε2np

[Law of large numbers.]
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Hoeffding’s Inequality – I
Let X1,X2, . . . ,Xn be independent random variables taking
values such that P(Xi = 1) = 1/2 = P(Xi = −1) for
i = 1,2, . . . ,n. Let X = X1 + X2 + · · ·+ Xn. Then for any t ≥ 0

P(|X | ≥ t) < 2e−t2/2n.

Proof: For any λ > 0 we have

P(X ≥ t) = P(eλX ≥ eλt )

≤ e−λtE(eλX ).

Now for i = 1,2, . . . ,n we have

E(eλXi ) =
e−λ + eλ

2
= 1 +

λ2

2!
+
λ4

4!
+ · · · < eλ

2/2.
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So, by independence,

E(eλX ) = E

(
n∏

i=1

eλXi

)
=

n∏
i=1

E(eλXi ) ≤ eλ
2n/2.

Hence,
P(X ≥ t) ≤ e−λt+λ2n/2.

We choose λ = t/n to minimise −λt + λ2n/2. This yields

P(X ≥ t) ≤ e−t2/2n.

Similarly,

P(X ≤ −t) = P(e−λX ≥ eλt )

≤ e−λtE(e−λX )

≤ e−λt+λ2n/2.

Probabilistic Method



Discrepancy

Suppose that |X | = n and F ⊆ P(X ). If we color the elements
of X with Red and Blue i.e. partition X in R ∪ B then the
discrepancy disc(F ,R,B) of this coloring is defined

disc(F ,R,B) = max
F∈F

disc(F ,R,B)

where disc(F ,R,B) = ||R ∩ F | − |B ∩ F || i.e. the absolute
difference between the number of elements of F that are
colored Red and the number that are colored Blue.
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Claim:

If |F| = m then there exists a coloring R,B such that
disc(F ,R,B) ≤ (2n loge(2m))1/2.
Proof Fix F ∈ F and let s = |F |. If we color X randomly and let
Z = |R ∩ F | − |B ∩ F | then Z is the sum of s independent ±1
random variables.
So, by the Hoeffding inequality,

P(|Z | ≥ (2n loge(2m))1/2) < 2e−n loge(2m)/s ≤ 1
m
.
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Switching Game:

We are given an n × n matrix A where A(i , j) = ±1. We
interpret A(i , j) = 1 as the light at i , j is on.

Now suppose that x , y ∈ {±1}n are switches. The light at i , j is
on if A(i , j)xiyj = 1 and off otherwise.

Let σ(A) = maxx ,y

∣∣∣∑i,j A(i , j)xiyj

∣∣∣ be the maximum absolute
difference between the number of lights which are on and those
that are off, obtaianble by switching.

Claim: There exists A such that σ(A) ≤ cn3/2 where
c = 2(ln 2)1/2.
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Fix x , y ∈ {±1}n and let A be a random ±1 matrix. Consider
the random variable

Zx ,y =
∑
i,j

A(i , j)xiyj .

This is the sum of n2 independent random variables (A(i , j)xiyj )
taking values in ±1.

It follows from the Hoeffding inequality that

|Zx ,y | ≥ cn3/2 < 2e−(cn3/2)2/2n2
= 2−2n

So
P(max

x ,y
|Zx ,y | ≥ cn3/2) < 2n × 2n× = 2−2n = 1.

Hence there exists A such that σ(A) ≤ cn3/2.
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Hoeffding’s Inequality – II
Now let Sn = X1 + X2 + · · ·+ Xn where Xi , i = 1, . . . ,n are
independent random variables where 0 ≤ Xi ≤ 1 and EXi = µi
for i = 1,2, . . . ,n. Let µ = µ1 + µ2 + · · ·+ µn. Then for λ ≥ 0

P(Sn ≥ µ+ t) ≤ e−λ(µ+t)
n∏

i=1

E(eλXi ) (2)

and for λ ≤ 0

P(Sn ≤ µ− t) ≤ e−λ(µ−t)
n∏

i=1

E(eλXi ). (3)

Now the convexity of ex and 0 ≤ Xi ≤ 1 implies that

eλXi ≤ 1− Xi + Xieλ.

Taking expectations we get

E(eλXi ) ≤ 1− µi + µieλ.
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Equation (2) becomes, for λ ≥ 0,

P(Sn ≥ µ+ t) ≤ e−λ(µ+t)
n∏

i=1

(1− µi + µieλ)

≤ e−λ(µ+t)
(

n − µ+ µeλ

n

)n

. (4)

The second inequality follows from the fact that the geometric
mean is at most the arithmetic mean i.e.

(x1x2 · · · xn)1/n ≤ x1 + x2 + · · ·+ xn

n

for non-negative x1, x2, . . . , xn.
The right hand side of (4) attains its minimum, as a function of
λ, at

eλ =
(µ+ t)(n − µ)

(n − µ− t)µ
. (5)
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Hence, by (4) and (5), assuming that µ+ t < n,

P(Sn ≥ µ+ t) ≤
(

µ

µ+ t

)µ+t ( n − µ
n − µ− t

)n−µ−t

,

while for t > n − µ this probability is zero.
Now let

0 ≤ φ(x) = (1 + x) log(1 + x)− x , x ≥ −1,

and let φ(x) =∞ for x < −1. Now, for 0 ≤ t ≤ n − µ, we can
rewrite the bound (68) as

P(Sn ≥ µ+ t) ≤ exp

{
−µφ

(
t
µ

)
− (n − µ)φ

−t
n − µ

}
.

Since φ(x) ≥ 0 for every x ≥ −1, we get

P(Sn ≥ µ+ t) ≤ e−µφ(t/µ). (6)
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Similarly, putting n − Sn for Sn, or by an analogous argument,
using (3), we get for 0 ≤ t ≤ µ,

P(Sn ≤ µ− t) ≤ exp

{
−µφ

(
−t
µ

)
− (n − µ)φ

(
t

n − µ

)}
.

Hence,
P(Sn ≤ µ− t) ≤ e−µφ(−t/µ). (7)
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We can simplify the expressions (6) and (7) by observing that

φ(x) ≥ x2

2(1 + x
3 )
. (8)

To see this observe that for |x | ≤ 1 we have

φ(x)− x2

2(1 + x
3 )

=
∞∑

k=2

(−1)k
(

1
k(k − 1)

− 1
2 · 3k−2

)
xk .

Equation (8) for |x | ≤ 1 follows from 1
k(k−1) −

1
2·3k−2 ≥ 0 for

k ≥ 2.
For x ≥ 1 we let f (x) = φ(x)− x2

2(1+ x
3 )

and then check that

f ′(1) ≥ 0 and

f ′(x) = log(1+x)−3+
9

3 + x
+

3x2

(3 + x)2 ≥ log 2−0.75+
3x2

(3 + x)2 ≥ 0

for x ≥ 1.
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Taking this into account we arrive at the following theorem,

Theorem 5

Suppose that Sn = X1 + X2 + · · ·+ Xn where (i) 0 ≤ Xi ≤ 1 and
EXi = µi for i = 1,2, . . . ,n, (ii) X1,X2, . . . ,Xn are independent.
Let µ = µ1 + µ2 + · · ·+ µn. Then for t ≥ 0,

P(Sn ≥ µ+ t) ≤ exp

{
− t2

2(µ+ t
3)

}

and for t ≤ µ,

P(Sn ≤ µ− t) ≤ exp

{
− t2

2(µ− t
3)

}
. (9)
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Putting t = εµ, for 0 < ε < 1, one can immediately obtain the
following bounds.

Corollary 6

Let 0 < ε < 1, then

P(Sn ≥ (1 + ε)µ) ≤
(

eε

(1 + ε)1+ε

)µ
≤ exp

{
−µε

2

3

}
,

while

P(Sn ≤ (1− ε)µ) ≤ exp

{
−µε

2

2

}

The formula (6) follows directly from (9) and (6) follows from
(68).
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For large deviations we have the following result.

Corollary 7

If c > 1 then

P(Sn ≥ cµ) ≤
{ e

ce1/c

}cµ
≤
(e

c

)cµ
. (10)

Put t = (c − 1)µ into (6).
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Valiant-Brebner routing algorithm:

Let Qn = (Vn = {0,1}n ,En) be the n-cube where (x,y) ∈ En iff

h(x,y) = |
{

j : xj 6= yj
}
| = 1.

Given a permutation π : Vn → Vn we wish to synchronously
send a packet px from x to π(x) along a path of Qn for all
x ∈ Vn.

At most one packet can cross any edge in one time step.
Packets form a queue waiting to cross.

Probabilistic Method



Bit Fixing Path: Given x,y let zi = (y1, y2, . . . , yi , xi+1, . . . , xn).
Let BFP(x,y) be the path (x, z1, z2, . . . , zn = y).

Step 1: For each x ∈ Vn choose δ(x) independently and randomly
from Vn.

Step 2: Send packet px to δ(x) along the path P(x) = BFP(x, δ(x)).
Step 3: Send packet px to π(x) along the path

Q(x) = BFP(δ(x), π(x)).

Note that for a given x, P(x) = (x,x1,x2, . . . ,xn = δ(x)) where
xi+1 is obtained from xi by flipping the i + 1th bit of xi with
probability 1/2. Note also that the length of P(x) is equal to the
number of i such that xi+1 6= xi .
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Let D(x) be the time spent by px waiting in a queue. Let

S(x) = {y 6= x : P(x) ∩ P(y) 6= ∅} .

Observation: D(x) ≤ |S(x)|. This follows from
|P(x) ∩ P(y)| ≤ 1 for all x,y. This follows from the fact that
paths can meet, continue together for a while and diverge.
They cannot meet again once they diverge.

We claim that
P(|S(x)| ≥ 3n) ≤ 3−n. (11)

It follows from this that

P(∃x : Step 2 takes more than 4n time) ≤ 2n × 3−n = o(1).

Step 3 can be analysed similarly.
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Proof of (11): We write

|S(x)| =
∑

y∈Vn\{x}

Zy

where
Zy = 1Py∩Px 6=∅.

Observe next that if u,v are chosen randomly from Vn then∑
x,y∈Vn

P(P(x) ∩ P(y) 6= ∅) = 22nP(P(v) ∩ P(u) 6= ∅)

≤ 22n
n∑

k=1

1
2k+1 ·

1
2n−k

= 2n−1n.

Here P(v) ∩ P(u) 6= ∅ only if there is some k such that u,v
agree on the last n − k components and P(u) amends the first
k + 1 components of u so that they agree with the first k + 1
components of the k + 1st vertex of P(v).
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On the other hand, symmetry yields that for any fixed x ∈ Vn,∑
x,y∈Vn

P(P(x) ∩ P(y) 6= ∅) = 2n
∑
y∈Vn

P(P(x) ∩ P(y) 6= ∅)

≥ 2nE(|S(x)|).

It follows that
E(|S(x)|) ≤ n

2
.

Applying the Chernoff bound (10) we see that

P(|S(x)| ≥ αn) ≤
( e

2α

)αn

and we obtain (11) by putting α = 3.
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Independent sets and cliques

S ⊆ V is independent if no edge of G has both of its endpoints
in S.

α(G)=maximum size of an independent set of G.
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Theorem 8

If graph G has n vertices and m edges then

α(G) ≥ n2

2m + n
.

Note that this says that α(G) is at least n
d+1 where d is the

average degree of G.
Proof Let π(1), π(2), . . . , π(ν) be an arbitrary permutation
of V . Let N(v) denote the set of neighbours of vertex v and let

I(π) = {v : π(w) > π(v) for all w ∈ N(v)}.
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Claim 1

I is an independent set.

Proof of Claim 1
Suppose w1,w2 ∈ I(π) and w1w2 ∈ E . Suppose π(w1) < π(w2).
Then w2 /∈ I(π) — contradiction. �
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a

b

c

d

e

f

g

h

a b c d e f g h I
π1 c b f h a g e d {c, f}
π2 g f h d e a b c {g,a}
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Claim 2
If π is a random permutation then

E(|I|) =
∑
v∈V

1
d(v) + 1

.

Proof: Let δ(v) =

{
1 v ∈ I
0 v /∈ I

Thus

|I| =
∑
v∈V

δ(v)

E(|I|) =
∑
v∈V

E(δ(v))

=
∑
v∈V

P(δ(v) = 1).
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Now δ(v) = 1 iff v comes before all of its neighbours in the
order π. Thus

P(δ(v) = 1) =
1

d(v) + 1

and the claim follows. �
Thus there exists a π such that

|I(π)| ≥
∑
v∈V

1
d(v) + 1

and so
α(G) ≥

∑
v∈V

1
d(v) + 1

.
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We finish the proof of the theorem by showing that

∑
v∈V

1
d(v) + 1

≥ n2

2m + n
.

This follows from the following claim by putting xv = d(v) + 1
for v ∈ V .

Claim 3

If x1, x2, . . . xk > 0 then

1
x1

+
1
x2

+ · · ·+ 1
xk
≥ k2

x1 + x2 + · · ·+ xk
.
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Proof
Multiplying (3) by x1 + x2 + · · ·+ xk and subtracting k from both
sides we see that (3) is equivalent to∑

1≤i<j≤k

(
xi

xj
+

xj

xi

)
≥ k(k − 1).

But for all x , y > 0
x
y

+
y
x
≥ 2

and (86) follows. �
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Corollary 9
If G contains no clique of size k then

m ≤ (k − 2)n2

2(k − 1)

For example, if G contains no triangle then m ≤ n2/4.
Proof Let Ḡ be the complement of G i.e. G + Ḡ = Kn.

By assumption

k − 1 ≥ α(Ḡ) ≥ n2

n(n − 1)− 2m + n
.

�
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Parallel searching for the maximum – Valiant

We have n processors and n numbers x1, x2, . . . , xn. In each
round we choose n pairs i , j and compare the values of xi , xj .
The set of pairs chosen in a round can depend on the results of
previous comparisons.
Aim: find i∗ such that xi∗ = maxi xi .

Claim 4

For any algorithm there exists an input which requires at least
1
2 log2 log2 n rounds.
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3

8

6

7

5

9

4 10

2
1

Suppose that the first round of comparisons involves comparing
xi , xj for edge ij of the above graph and that the arrows point to
the larger of the two values. Consider the independent set
{1,2,5,8,9}. These are the indices of the 5 largest elements,
but their relative order can be arbitrary since there is no implied
relation between their values.
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Let C(a,b) be the maximum number of rounds needed for a
processors to compute the maximum of b values in this way.

Lemma 10

C(a,b) ≥ 1 + C
(

a,
⌈

b2

2a + b

⌉)
.

Proof The set of b comparisons defines a b-edge graph G
on a vertices where comparison of xi , xj produces an edge ij of
G. Now,

α(G) ≥

⌈
b

2a
b + 1

⌉
=

⌈
b2

2a + b

⌉
.
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For any independent set I it is always possible to define values
for x1, x2, . . . , xa such I is the index set of the |I| largest values
and so that the comparisons do not yield any information about
the ordering of the elements xi , i ∈ I.
Thus after one round one has the problem of finding the
maximum among α(G) elements. �
Now define the sequence c0, c1, . . . by c0 = n and

ci+1 =

⌈
c2

i
2n + ci

⌉
.

It follows from the previous lemma that

ck ≥ 2 implies C(n,n) ≥ k + 1.
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Claim 4 now follows from

Claim 5

ci ≥
n

32i−1
.

By induction on i . Trivial for i = 0. Then

ci+1 ≥ n2

32i+1−2
× 1

2n + n
32i−1

=
n

32i+1−1
× 3

2 + 1
32i−1

≥ n
32i+1−1

.

�
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The Local Lemma

We go back to the coloring problem at the beginning of these
slides. We now place a different restriction on the sets involved.

Theorem 11

Let A1,A2, . . . ,An be subsets of A where |Ai | ≥ k for 1 ≤ i ≤ n.
If each Ai intersects at most 2k−3 other sets then there exists a
partition A = R ∪ B such that

Ai ∩ R 6= ∅ and Ai ∩ B 6= ∅ 1 ≤ i ≤ n.
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Symmetric Local Lemma: We consider the following situation.
X = {x1, x2, . . . , xN} is a collection of independent random
variables. Suppose that we have events Ei , i = 1,2, . . . ,m
where Ei depends only on the set Xi ⊆ X . Thus if Xi ∩ Xj = ∅
then Ei and Ej are independent.
The dependency graph Γ has vertex set [m] and an edge (i , j)
iff Xi ∩ Xj 6= ∅.

Theorem 12

Let

p = max
i

P(Ei) and let d be the maximum degree of Γ.

4dp ≤ 1 implies that P

(
m⋂

i=1

Ēi

)
≥ (1− 2p)m > 0.
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Proof: We prove by induction on |S| that for any i ,

P

Ei

∣∣∣∣ ⋂
j∈S

Ēj

 ≤ 2p. (12)

Notice that this suffices, since

P

(
m⋂

i=1

Ēi

)
=

m∏
i=1

P

Ēi

∣∣∣∣ i−1⋂
j=1

Ēj


The base case |S| = 0 for (12) is trivial.
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Inductive Step: Renumber for convenience so that
i = n,S = [s] and (i , x) /∈ Γ for x > d . Now

P

(
En

∣∣∣∣ s⋂
i=1

Ēi

)
=

P
(
En ∩

⋂d
i=1 Ēi

∣∣∣∣⋂s
i=d+1 Ēi

)
P
(⋂d

i=1 Ēi

∣∣∣∣⋂s
i=d+1 Ēi

) ,

≤
P
(
En

∣∣∣∣⋂s
i=d+1 Ēi

)
P
(⋂d

i=1 Ēi

∣∣∣∣⋂s
i=d+1 Ēi

) ,

≤
P
(
En

∣∣∣∣⋂s
i=d+1 Ēi

)
1−

∑d
i=1 P

(
Ei

∣∣∣∣⋂s
i=d+1 Ēi

) . (13)
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Now

P

(
En

∣∣∣∣ s⋂
i=d+1

Ēi

)
= P(En) ≤ p, (14)

since En is independent of Ed+1, . . . , Es.

Furthermore, we can assume that d > 0, else the events
E1, . . . , Em are independent and the result is trivial. So, by
induction, we have that

1−
d∑

i=1

P

(
Ei

∣∣∣∣ s⋂
i=d+1

Ēi

)
≥ 1− 2dp ≥ 1

2
. (15)

The induction is now completed by using (14) and (15) in (13).
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Proof of Theorem 11: We randomly color the elements of A
Red and Blue. Let Ei be the event that Ai is mono-colored.
Clearly, P(Ei) ≤ 2−(k−1). Thus,

p ≤ 2−(k−1).

The degree of vertex i of Γ is the number of j such that
Ai ∩ Aj 6= ∅. So, by assumption,

d ≤ 2k−3.

Theorem 12 implies that P
(⋂n

i=1 Ēi
)
> 0 and so the required

coloring exists.
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Theorem 13

Let G = (V ,E) be an r-regular graph. If r is sufficiently large,
then E can be partitioned into E1,E2 so that if
Gi = (V ,Ei), i = 1,2 then

r
2
− (20r log r)1/2 ≤ δ(Gi) ≤ ∆(Gi) ≤

r
2

+ (20r log r)1/2.

Proof: We randomly partition the edges of G by independently
placing e into E1 E1 with probability 1/2. For v ∈ V , we let Ev be
the event that the degree d1(v) in G1 satisfies

d1(v) /∈
[ r

2
− (3r log r)1/2,

r
2

+ (3r log r)1/2
]
.
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It follows from Hoeffding’s Inequality - I with t = (3r log r)1/2 that

P(Ev ) ≤ 2e−t2/2r = 2r−3/2.

Furthermore, Ev is independent of the events Ew for vertices w
at distance 2 or more from v in G. Thus,

d ≤ r .

Clearly, 4 · 2r−3/2 · r ≤ 1 for r large and the result follows from
Theorem 12. I.e. P

(⋂
v∈V Ēv

)
> 0 which imples that there

exists a partition where none of the events Ev , v ∈ V occur.
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For the next application, let D = (V ,E) be a k -regular digraph.
By this we mean that each vertex has exactly k in-neighbors
and k out-neighbors.

Theorem 14

Every k-regular digraph has a collection of bk/(4 log k)c vertex
disjoint cycles.

Proof: Let r = bk/(4 log k)c and color the vertices of D with
colors [r ]. For v ∈ V , let Ev be the event that there is a color
missing at the out-neighbors of v . We will show that
P
(⋂

v∈V Ēv
)
> 0.

Suppose then that none of the events Ev , v ∈ V occur.
Consider the graph Dj induced by a single color j ∈ [r ]. Note
that Dj is not the empty graph. Let Pj = (v1, v2, . . . , vm) be a
longest directed path in Dj . Let w be an out-neighbor of vm of
color j . We must have w ∈ {v1, . . . , vm}, else Pj is not a longest
path in Dj . Thus each Dj , j ∈ [r ] contains a cycle and these
cycles are vertex disjoint.
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We first estimate

P(Ev ) ≤ r
(

1− 1
r

)k

≤ ke−k/r ≤ ke−4 log k = k−3.

On the other hand, if N+(v) denotes the out-neighbors of v
plus v then Ev is independent of all events Ew for which
N+(v) ∩ N+(w) = ∅. It follows that

d ≤ k2.

To apply Theorem 12 we need to have 4k−3k2 ≤ 1. This is true
for k ≥ 4. For k ≤ 3 we have r = 1 and the local lemma is not
needed.
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Constructive version: Moser/Tardos
Suppose now that in the context of Theorem 12 we have

p
dd

(d − 1)d−1 ≤ 1. (16)

(Notice that this is a weaker assumption than 4dp ≤ 1.)
Algorithm MT:

Step 1. Assign values to x1, x2, . . . , xN .
Step 2. While ∃j : Ej holds do
Step 3. Pick smallest j such that Ej occurs.
Step 4. Randomly re-set

{
x ∈ Xj

}
.

Step 5. od
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Theorem 15

Assuming (16) holds, algorithm MT that finds an assignment of
values to x ∈ X such that

⋂m
i=1 Ēi holds in O(N) expected

number of iterations.

Let jt be the value of j in Step 3 at the t th execution of Steps
2–5.

The LOG of the execution is the sequence Yt = Xjt , t ≥ 1.

For j ∈ M we let COUNT (j) denote the number of times that
jt = j .
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Theorem 15 follows from

Lemma 16

E(COUNT (j)) ≤ 1
d − 1

for j ∈ [m].

It follows that the expected length of LOG is at most m
d−1 . Then

m ≤ Nd because each x ∈ X can be in at most d of the Xi ’s.

Proof of Lemma 16: Given an execution of MT of length at
least t we define a rooted tree TREE(t) with vertices from
X1,X2, . . . ,Xm as follows: Its root is Yt . Now for
i = t − 1, t − 2, . . . ,1 we see if there exists k such that i < k ≤ t
and Yi ∩ Yk 6= ∅. If so, choose Yk furthest from the root and
make Yi a child of Yk . Otherwise do nothing.
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We observe the following:
P1 s 6= t implies that TREE(s) 6= TREE(t).

Reason: Suppose not and Y = Ys = Yt . Then TREE(t)
will have at least one more appearance of Y (its root) than
TREE(s), contradiction.

P2 If Y ′,Y ′′ are children of Y in TREE(t) then Y ′ ∩ Y ′′ = ∅.
Reason: Otherwise, Y ′′ is a child of Y ′ or vice-versa.

P3 Let x ∈ X and let Yi1 ,Yi2 , . . . ,Yis be those Yi that contain x ,
ordered by their appearance in LOG. Then each value for
x comes from a different independent sample.
Reason: Because Yia appears in LOG, we re-sample the
random variables in Yia ∩ Yia+1 before Yia+1 appears.
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Next let T be a rooted tree with vertices labelled by
X1,X2, . . . ,Xm such that if Y ′ is a child of Y then Y ∩ Y ′ 6= ∅.
Let OCCUR(T ) be the event that TREE(t) = T for some t .

P(OCCUR(T )) ≤ p|T |. (17)

Let the vertices of T = TREE(t) be Xi1 ,Xi2 , . . . ,Xis ordered by
their appearence in LOG. Then

P(OCCUR(T )) ≤
s∏

j=1

P
(
Eij | Ei1 , . . . Eij−1

)
=

s∏
j=1

P
(
Eij

)
≤ p|T |.

The appearance of Xij implies that Eij has occurred and P3
means that the values of x ∈ Xij are fresh with respect to
Ei1 , . . . Eij−1 .
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Next let T denote an infinite tree with branching factor d rooted
at a vertex ρ. Then, for each j ,

E(Count(j)) ≤ y =
∑

T

p|T |

where T ranges over subtrees of T that are rooted at ρ.
This is because each ocurrence of Yj corresponds to a distinct
T ⊆ T .
We complete the proof of Theorem 15 by proving

ξ ≤ 1
d − 1

. (18)
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Let Ts denote the set of sub-trees of T that are rooted at ρ. Let
ys =

∑
T∈Ts

p|T | so that y = lims→∞ ys. Then y0 ≤ p and

ys+1 ≤ p
d∑

i=0

(
d
i

)
y i

s. (19)

Note that (19) follows from the fact that if T ∈ Ts+1 then it will
contain ρ and 0 ≤ i ≤ d subtrees, each of which is isomorphic
to a tree in Ts. The factor y i

s follows from (17).
All that remains to prove (18) is to prove that ys ≤ 1

d−1 for
s ≥ 0. We do this by induction on s.
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Now for the base case we have

y0 ≤ p ≤ (d − 1)d−1

dd ≤ 1
d − 1

.

For the inductive step we have

ys+1 ≤ p
d∑

i=0

(
d
i

)
1

(d − 1)i = p
(

1 +
1

d − 1

)d

≤

(d − 1)d−1

dd ·
(

d
d − 1

)d

=
1

d − 1
.

Note that ys is monotone increasing and bounded and so has a
limit.
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