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A partially ordered set or poset is a set P and a binary
relation < such that for all a,b,c € P

Q@ a < a(reflexivity).
©Q a=<bandb =< cimplies a < c (transitivity).
© a=<bandb < aimplies a = b. (anti-symmetry).

Examples
@ P={1,2,...,}and a < b has the usual meaning.
Q@ P={1,2,...,} and a < bif adivides b.
© P ={A{ A, ...,An} where the A, are sets and <=C.
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A pair of elements a, b are comparable if a < bor b < a.
Otherwise they are incomparable.

A poset without incomparable elements (Example 1) is a linear
or total order.

We write a< bifa< band a # b.
A chain is a sequence a; < a» < - -+ < @s.

A set A is an anti-chain if every pair of elements in A are
incomparable.

Thus a Sperner family is an anti-chain in our third example.
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Let P be a finite poset, then
min{m : 3 anti-chains Ay, A, ..., A, with P =J/_, Ai}=
max{|C| : A is a chain}.

The minimum number of anti-chains needed to cover P is at
least the size of any chain, since a chain can contain at most
one element from each anti-chain.
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We prove the converse by induction on the maximum length 1
of a chain. We have to show that P can be partitioned into
anti-chains.

If x = 1 then P itself is an anti-chain and this provides the basis
of the induction.

So now suppose that C = xy < xp < --- < X, is @ maximum
length chain and let A be the set of maximal elements of P.

(An element is x maximal if Ay such that y > x.)

A is an anti-chain.
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Now consider P’ = P\ A. P’ contains no chain of length . If it
contained yy < y» < --- <y, then since y, ¢ A, there exists

a € Asuch that P contains the chain y; < y» < --- <y, < a,
contradiction.

Thus the maximum length of a chain in P’ is , — 1 and so it can
be partitioned into anti-chains Ay UA> U --- A, _4. Putting
A,, = A completes the proof. O
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Suppose that Cq, Co, ..., Cy are a collection of chains such
that P = ", C;.

Suppose that A is an anti-chain. Then m > |A| because if
m < |A| then by the pigeon-hole principle there will be two
elements of A in some chain.

(Dilworth) Let P be a finite poset, then
min{m: 3 chains Cy, Cy,...,Cp with P =", C;}=
max{|A| : A s an anti-chain}.
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We have already argued that max{|A|} < min{m}.
We will prove there is equality here by induction on |P].
The result is trivial if |[P| = 0.

Now assume that |P| > 0 and that x is the maximum size of an
anti-chain in P. We show that P can be partitioned into
chains.

Let C = x4 < X2 <--- < X, be @a maximal chain in P i.e. we
cannot add elements to it and keep it a chain.

Case 1 Every anti-chain in P\ C has < u — 1 elements. Then
by induction P\ C = |J\~]' C;and then P = CuU |\, C; and
we are done.
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There exists an anti-chain A= {ay,ap,...,a,} in P\ C. Let
@ P ={xeP: x = ag;forsome i}.
@ Pt ={xeP: x = a;for some i}.

Note that

@ P = P~ UPT. Otherwise there is an element x of P which
is incomparable with every element of A and so y is not the
maximum size of an anti-chain.

@ P~ n PT™ = A. Otherwise there exists x, i, j such that
a; < x < aj and so Ais not an anti-chain.

© xp ¢ P~. Otherwise x, < a; for some i and the chain C is
not maximal.

PARTIALLY ORDERED SETS



Applying the inductive hypothesis to P~ (|P~| < |P| follows
from 3) we see that P~ can be partitioned into ;. chains
C;,.G ..., Cp.

Now the elements of A must be distributed one to a chain and
so we can assume that a; € C; fori=1,2,..., 4.

a; must be the maximum element of chain C;, else the
maximum of C;” isin (P~ N P*)\ A, which contradicts 2.

Applying the same argument to P+ we get chains
Cf,Cy,...,Cl with a; as the minimum element of C;" for
i=1,2,...,p¢.

Then from 2 we see that P= Cy UCo U --- U C, where
Ci=C; uUClisachainfori=1,2,... 4 O
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Three applications of Dilworth’s Theorem

(i) Another proof of

Erd6s and Szekerés
ay, a,...,ap,¢ contains a monotone subsequence of length
n+1.

Let P={(i,a): 1 <i<n?+1}andletsay (/,a) = (j, g) if
i<jand a; < a.

A chain in P corresponds to a monotone increasing
subsequence. So, suppose that there are no monotone
increasing sequences of length n+ 1. Then any cover of P by
chains requires at least n + 1 chains and so, by Dilworths
theorem, there exists an anti-chain A of size n + 1.
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Let A= {(it,a;): 1 <t<n+1}whereis < <- - <lpyq.

Observe that a;, > a;,,, for 1 <t < n, for otherwise
(it, &) = (i1, @,,,) and Ais not an anti-chain.

Thus A defines a monotone decreasing sequence of length
n+1. O
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Matchings in bipartite graphs

Re-call that a matching is a set of vertex disjoint edges.

™~
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Let G = (AU B, E) be a bipartite graph with bipartition A, B.
For SC Alet N(S)={be B: Jac S,(a,b) € E}.

al bl

a2 b2

a3 b3

ad b4
N

Clearly, [M| < |A|,|B| for any matching M of G.
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(Hall) G contains a matching of size |A| iff

IN(S)| > |S] VSC A
al bl
a3 b3
a4 b4

N({ai, as,as}) = {bq, b2} and so at most 2 of a4, a,, az can be
saturated by a matching.
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If G contains a matching M of size |A| then
M= {(a,f(a)): ac A}, wheref: A— Bisa 1-1 function.

But then,
IN(S)| > |f(S)| =S
forall S C A.
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Let G = (AU B, E) be a bipartite graph which satisfies Hall's
condition. Define a poset P = AU B and define < by a < b only
ifac Abe Band (a,b) € E.

Suppose that the largest anti-chain in P is
A={ay,as,...,an by, bo,..., b} and let s = h+ k.

Now
N({a17827"'7ah})g B\{b17b27"'7bk}

for otherwise A will not be an anti-chain.

From Hall’'s condition we see that

|B| — k > hor equivalently|B| > s.
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Now by Dilworth’s theorem, P is the union of s chains:

A matching M of size m, |A| — m members of Aand |B| — m
members of B.

But then
m+ (JA| —m) +(|B| —m) =s < B

and so m > |A|. O
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Marriage Theorem

Suppose G = (AU B, E) is k-regular. (k > 1) i.e. dg(v) = k for
allv € AU B. Then G has a perfect matching.

Proof
k|A| = |E| = K|B|
and so |A| = |B.
Suppose S C A. Let m be the number of edges incident with S.
Then

k|S| = m < kIN(S)|.

So Hall’s condition holds and there is a matching of size |A| i.e.
a perfect matching.
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Konig’s Theorem

We will use Hall’s Theorem to prove Konig’s Theorem. Given a
bipartite graph G = (AU B), E) we say that S C V is a cover if
enS#(foraleecE.

min{|S| : S is a cover} = max{|M| : M is a matching}.

Proof One part is easy. If Siis a cover and M is a matching
then |S| > |M|. This is because no vertex in S can belong to
more than one edge in M.
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To begin the main proof, we first prove a lemma that is a small
generalisation of Hall's Theorem.

Lemma

Assume that |A| < |B. Letd = max{(|X] — [N(X)|)* : X C A}
where ¢t = max{0,¢}. Then

w=max{|M| : M is a matching } = |A| —d.

Proof That 1o < |A| — d is easy. For the lower bound, add d
dummy vertices D to B and add an edge between each vertex
in D and each vertex in A to create the graph I'. We now find
that I satisfies the conditions of Hall's Theorem.

If M is a matching of size |A| in I' then removing the edges of
M, incident with D gives us a matching of size |[A| —din G. O
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Continuing the proof of Kénig’s Theorem let S C A be such that
IN(S)| = [S] —d.

Let T=A\ S. Then T U N(S) is a cover, since there are no
edges joining Sto B\ N(S).

Finally observe that

ITUN(S)| = |A|~ |S| +|S| —d = A - d = u.
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Intervals Problem

li, b, ..., Imnyq are closed intervals on the real line i.e.
l; = [a;, bj] where a; < b; for 1 < j < mn+1.

Either (i) there are m + 1 intervals that are pair-wise disjoint or
(ii) there are n + 1 intervals with a non-empty intersection

Define a partial ordering < on the intervals by /I, < /s iff b, < as.
Suppose that [, /;,, ..., I; is a collection of pair-wise disjoint
intervals. Assume that a;, < a;,--- < a;,. Then [; < [, --- <[,
form a chain and conversely a chain of length t comes from a
set of f pair-wise disjoint intervals.

So if (i) does not hold, then the maximum length of a chain is m.
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This means that the minimum number of chains needed to
cover the poset is at least [™251] = n+ 1.

Dilworth’s theorem implies that there must exist an anti-chain
o B i 3

Let a= max{a;,a,,...,a,,}and b= min{b;,b,,...,b; . }.

We must have a < b else the two intervals giving a, b are
disjoint.

But then every interval of the anti-chain contains [a, b].
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Mobius Inversion

Suppose that |P| = n. We argue next that we can label the
elements of P = {py,po, ..., pn} so that

pi = pj implies i <. (1)

We prove this by induction on n. The base case n =1 is trivial.

Choose a maximal element of P and label it p,. Assume that
(1) can be achieved for posets with fewer than n elements. Let

P"= P\ {pn}.

We can, by induction, re-label P’ = {py,po, ..., pn_1} SO that
(1) holds. Because p,, is maximal, we now have a labelling for
all of P.
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We now define ¢ : P2 — {0,1} by

1 x=y.
0 Otherwise.

C(X,y):{

Given (1) the n x nmatrix A; = [((x, y)] is an upper triangular
matrix with an all 1’s diagonal.

A¢ is invertible and its inverse is called A, = [u(x, y)]. The
function p is called the Mdbius function of P. The equation
A.A; = limplies the following:

S ux,2)¢(zy) = Y M(X7Z)={1 =7 ®)

oyt x <7y 0 Otherwise.
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@ For P equal to the subsets of some finite set X and <=C
we have

(_1)|AIfIBI ACB
0 Otherwise.

(A, B) = {

@ ForP =[n] and a = b if a divides b we have

(—=1)" b/ais the product of r distinct primes
0 Otherwise.

n(a, b) = {
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We just have to verify (2):
(a) We have

S XICHA Z (1 4 )B4
ACCCB

Putting x = —1 we get a RHS of zero, unless A = B, in which
case we get 00 = 1.

(b) Suppose that b/a = ppk2 ... plr where py, p2, ..., p are
primes and ki, ko, ..., k, > 1.

1 r=o.
d_uleb)= ) (-1)= {o :> 1,

alclb Sclr]
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Mobius Inversion

Suppose that f, g, h are functions from P to R such that

=> f(a) and h(x)=)_f(b) (3)

a=<x b=x

Then,

=> wax)ga) and f(x)=>_ u(x,b)h(b). (4)

a=x bix

Proof Treating f, g, h as column vectors f, g, h we see that
(3) is equivalent to g = A’f and h = A f. Thus

f=A:"g=Alg and f=Ah=A.
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Let A;,i € I be a family of subsets of a finite set X.

For J C Ilet f(J) equal the number of elements in ), A; that
are also in (¢ (X \ Aj).
Let h(J) be the number of elements in (), , A;. Then
h(J) =Y f(K)=>_ f(K).
K2J KrJ
Mdbius inversion gives us
f(J) =D wK.Dh(K) = (-1 "Hih(K).
KrJ K2J
Putting J = () we get

X\ A)

iel
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Divisibility Poset

Supose now that f : N — R and that g is given by

g(n) = _f(d).

d|n

Then Mébius inversion gives

f(n)=> w(d.mg(d)= > (=1)P"Ig(a)
d|n d|n
n/d square free

where p(m) is the number of distinct prime factors of m.
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Totient function

For a natural number n, let ¢(n) denote the number of integers
m < n such that m, n have n common factors (other than one) —
co-prime.

n=3"6(d) =Y é(n/d).

d|n d|n

Proof If (m, n) = dthen m= myd, n= nyd where
(mq,nqy) = 1. So the number of choices for m is the number of
choices for my i.e. ¢(ny) = ¢(n/d). O
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Mébius inversion with g(n) = nand f(n) = ¢(n) applied to (5)

gives ;
o(n) = %(—1 JPn/9d = %(—1 PO (6)
—1)p(d)
o(m =3 S (7)
d|n

ﬁ 1
=n 1—>,
,-:1< Pi

assuming that n = pl"p% ... pk where py, p2, ..., p are
primes and ki, ko, ..., kr > 1.

PARTIALLY ORDERED SETS



2-colored necklace

A necklace is a sequence xix» - - - X, of n 0’ and 1’s arranged in
circle.

Two necklaces x, y are said to equivalent if there exists d|n
such that y; = xj.q4,i = 1,2,..., n where we interpret j + d
mod n. In this case we say that x is periodic with period d.

Let N, denote the number of distinct i.e. non-equivalent
necklaces and let M(d) denote the number of aperiodic
necklaces of length d.

Thus
No=> M(d) and > dM(d)=2".

d|n d|n
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No=> M(d) and > dM(d)=2".

d|n d|n

For the second equation think about rotating a periodic
necklace one step at a time for d steps. If we do this for all
periodic necklaces then we get all 2" sequences.

Applying Mébius inversion to the second equation with
f(d) = dM(d),g(n) = 2", we get

M(n) = 15 > p(d,n)2e.
d|n
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So,

Nop =" M(d) szwd Z > p(t,d)2f
dln dn ¢|d din — ¢d
Now substitute d = k¢ and tidy up to get

D DL S S

Lin k|4 Lln

For the second equation, we use the expression (7).
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