
PIGEON HOLE PRINCIPLE

Pigeon Hole Principle



If f : [m]→ [n] then there exists i ∈ [n] such that

|f−1(i)| ≥ dm/ne.

Informally: If m pigeons are to be placed in n pigeon-holes, at
least one hole will end up with at leat dm/ne pigeons.
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Positive integers n and k are co-prime if their largest common
divisor is 1.
Example 2. If we take an arbitrary subset A of n + 1 integers
from the set [2n] = {1, . . .2n} it will contain a pair of co-prime
integers.

If we take the n even integers between 1 and 2n. This set of n
elements does not contain a pair of mutually prime integers.
Thus we cannot replace the n + 1 by n in the statement. We
say that the statement is tight.
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Define the holes as sets {1,2}, {3,4}, . . . {2n − 1,2n}. Thus n
holes are defined.

If we place the n + 1 integers of A into their corresponding
holes – by the pigeon-hole principle – there will be a hole,
which will contains two numbers.

This means, that A has to contain two consecutive integers,
say, x and x + 1. But two such numbers are always co-prime.

If some integer y 6= 1 divides x , i.e., x = ky , then
x + 1 = ky + 1 and this is not divisible by y . �

Pigeon Hole Principle



We have two disks, each partitioned into 200 sectors of the
same size. 100 of the sectors of Disk 1 are coloured Red and
100 are colored Blue. The 200 sectors of Disk 2 are arbitrarily
coloured Red and Blue.

It is always possible to place Disk 2 on top of Disk 1 so that the
centres coincide, the sectors line up and at least 100 sectors of
Disk 2 have the same colour as the sector underneath them.

Fix the position of Disk 1. There are 200 positions for Disk 2
and let qi denote the number of matches if Disk 2 is placed in
position i . Now for each sector of Disk 2 there are 100 positions
i in which the colour of the sector underneath it coincides with
its own.
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Therefore
q1 + q2 + · · ·+ q200 = 200× 100 (1)

and so there is an i such that qi ≥ 100.

Explanation of (1).
Consider 0-1 200× 200 matrix A(i , j) where A(i , j) = 1 iff sector
j lies on top of a sector with the same colour when in position i .
Row i of A has qi 1’s and column j of A has 100 1’s. The LHS of
(1) counts the number of 1’s by adding rows and the RHS
counts the number of 1’s by adding columns.

Pigeon Hole Principle



Alternative solution: Place Disk 2 randomly on Disk 1 so that
the sectors align. For i = 1,2, . . . ,200 let

Xi =

{
1 sector i of disk 2 is on sector of disk 1 of same color
0 otherwise

We have

E(Xi) = 1/2 for i = 1,2, . . . ,200.

So if X = X1 + · · ·+ X200 is the number of sectors sitting above
sectors of the same color, then E(X ) = 100 and there must
exist at least one way to achieve 100.
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Theorem
(Erdős-Szekeres) An arbitrary sequence of integers
(a1,a2, . . . ,ak2+1) contains a monotone subsequence of length
k + 1.

Proof. Let (ai ,a1
i ,a

2
i , . . . ,a

`−1
i ) be the longest monotone

increasing subsequence of (a1, . . . ,ak2+1) that starts with
ai , (1 ≤ i ≤ k2 + 1), and let `(ai) be its length.

If for some 1 ≤ i ≤ k2 + 1, `(ai) ≥ k + 1, then
(ai ,a1

i ,a
2
i , . . . ,a

l−1
i ) is a monotone increasing subsequence of

length ≥ k + 1.

So assume that `(ai) ≤ k holds for every 1 ≤ i ≤ k2 + 1.
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Consider k holes 1,2, . . . , k and place i into hole `(ai).

There are k2 + 1 subsequences and ≤ k non-empty holes
(different lengths), so by the pigeon-hole principle there will
exist `∗ such that there are (at least) k + 1 indices
i1 < i2 < · · · < ik+1 such that `(ait ) = `∗ for 1 ≤ t ≤ k + 1.

Then we must have ai1 ≥ ai2 ≥ · · · ≥ aik+1 .

Indeed, assume to the contrary that aim < ain for some
1 ≤ m < n ≤ k + 1. Then aim ≤ ain ≤ a1

in ≤ a2
in ≤ · · · ≤ a`∗−1

in ,
i.e., `(aim) ≥ `∗ + 1, a contradiction. �
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The sequence

n,n−1, . . . ,1,2n,2n−1, . . . ,n+1, . . . ,n2,n2−1, . . . ,n2−n+1

has no monotone subsequence of length n + 1 and so the
Erdős-Szekerés result is best possible.
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Let P1,P2, . . . ,Pn be n points in the unit square [0,1]2. We will
show that there exist i , j , k ∈ [n] such that the triangle PiPjPk
has area

≤ 1
2(b

√
(n − 1)/2c)2

∼ 1
n

for large n.
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Let m = b
√
(n − 1)/2c and divide the square up into m2 < n

2
subsquares. By the pigeonhole principle, there must be a
square containing ≥ 3 points. Let 3 of these points be PiPjPk .
The area of the corresponding triangle is at most one half of the
area of an individual square.
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