

PIGEON HOLE PRINCIPLE

Pigeon Hole Principle

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

If $f : [m] \to [n]$ then there exists $i \in [n]$ such that $|f^{-1}(i)| \ge \lceil m/n \rceil$.

Informally: If *m* pigeons are to be placed in *n* pigeon-holes, at least one hole will end up with at leat $\lceil m/n \rceil$ pigeons.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Positive integers n and k are co-prime if their largest common divisor is 1.

Example 2. If we take an arbitrary subset *A* of n + 1 integers from the set $[2n] = \{1, ..., 2n\}$ it will contain a pair of co-prime integers.

If we take the *n* even integers between 1 and 2*n*. This set of *n* elements does not contain a pair of mutually prime integers. Thus we cannot replace the n + 1 by *n* in the statement. We say that the statement is *tight*.

Define the holes as sets $\{1,2\}, \{3,4\}, \dots, \{2n-1,2n\}$. Thus *n* holes are defined.

If we place the n + 1 integers of A into their corresponding holes – by the pigeon-hole principle – there will be a hole, which will contains two numbers.

This means, that *A* has to contain two consecutive integers, say, *x* and x + 1. But two such numbers are always co-prime.

If some integer $y \neq 1$ divides x, i.e., x = ky, then x + 1 = ky + 1 and this is not divisible by y.

(本間) (本語) (本語) (二)

We have two disks, each partitioned into 200 sectors of the same size. 100 of the sectors of Disk 1 are coloured Red and 100 are colored Blue. The 200 sectors of Disk 2 are arbitrarily coloured Red and Blue.

It is always possible to place Disk 2 on top of Disk 1 so that the centres coincide, the sectors line up and at least 100 sectors of Disk 2 have the same colour as the sector underneath them.

Fix the position of Disk 1. There are 200 positions for Disk 2 and let q_i denote the number of matches if Disk 2 is placed in position *i*. Now for each sector of Disk 2 there are 100 positions *i* in which the colour of the sector underneath it coincides with its own. Therefore

$$q_1 + q_2 + \dots + q_{200} = 200 \times 100 \tag{1}$$

and so there is an *i* such that $q_i \ge 100$.

Explanation of (1). Consider 0-1 200 × 200 matrix A(i, j) where A(i, j) = 1 iff sector *j* lies on top of a sector with the same colour when in position *i*. Row *i* of *A* has q_i 1's and column *j* of *A* has 100 1's. The LHS of (1) counts the number of 1's by adding rows and the RHS counts the number of 1's by adding columns. Alternative solution: Place Disk 2 randomly on Disk 1 so that the sectors align. For i = 1, 2, ..., 200 let

 $X_i = \begin{cases} 1 & \text{sector } i \text{ of disk 2 is on sector of disk 1 of same color} \\ 0 & \text{otherwise} \end{cases}$

We have

$$E(X_i) = 1/2$$
 for $i = 1, 2, ..., 200$.

So if $X = X_1 + \cdots + X_{200}$ is the number of sectors sitting above sectors of the same color, then E(X) = 100 and there must exist at least one way to achieve 100.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem

(Erdős-Szekeres) An arbitrary sequence of integers $(a_1, a_2, ..., a_{k^2+1})$ contains a monotone subsequence of length k + 1.

Proof. Let $(a_i, a_i^1, a_i^2, ..., a_i^{\ell-1})$ be the longest *monotone increasing* subsequence of $(a_1, ..., a_{k^2+1})$ that starts with $a_i, (1 \le i \le k^2 + 1)$, and let $\ell(a_i)$ be its length.

If for some $1 \le i \le k^2 + 1$, $\ell(a_i) \ge k + 1$, then $(a_i, a_i^1, a_i^2, \dots, a_i^{l-1})$ is a monotone increasing subsequence of length $\ge k + 1$.

So assume that $\ell(a_i) \leq k$ holds for every $1 \leq i \leq k^2 + 1$.

<ロ> (四) (四) (三) (三) (三)

Consider *k* holes 1, 2, ..., *k* and place *i* into hole $\ell(a_i)$.

There are $k^2 + 1$ subsequences and $\leq k$ non-empty holes (different lengths), so by the pigeon-hole principle there will exist ℓ^* such that there are (at least) k + 1 indices $i_1 < i_2 < \cdots < i_{k+1}$ such that $\ell(a_{i_k}) = \ell^*$ for $1 \leq t \leq k + 1$.

Then we must have $a_{i_1} \ge a_{i_2} \ge \cdots \ge a_{i_{k+1}}$.

Indeed, assume to the contrary that $a_{i_m} < a_{i_n}$ for some $1 \le m < n \le k + 1$. Then $a_{i_m} \le a_{i_n} \le a_{i_n}^1 \le a_{i_n}^2 \le \cdots \le a_{i_n}^{\ell^* - 1}$, i.e., $\ell(a_{i_m}) \ge \ell^* + 1$, a contradiction.

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● ④ ● ●

The sequence

$$n, n-1, \ldots, 1, 2n, 2n-1, \ldots, n+1, \ldots, n^2, n^2-1, \ldots, n^2-n+1$$

has no monotone subsequence of length n + 1 and so the Erdős-Szekerés result is best possible.

Pigeon Hole Principle

ヘロト ヘアト ヘビト ヘビト

3

Let $P_1, P_2, ..., P_n$ be *n* points in the unit square $[0, 1]^2$. We will show that there exist $i, j, k \in [n]$ such that the triangle $P_i P_j P_k$ has area

$$\leq rac{1}{2(\lfloor \sqrt{(n-1)/2}
floor)^2} \sim rac{1}{n}$$

for large n.

Pigeon Hole Principle

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Let $m = \lfloor \sqrt{(n-1)/2} \rfloor$ and divide the square up into $m^2 < \frac{n}{2}$ subsquares. By the pigeonhole principle, there must be a square containing ≥ 3 points. Let 3 of these points be $P_i P_j P_k$. The area of the corresponding triangle is at most one half of the area of an individual square.

イロト イポト イヨト イヨト 三日