Graph Theory




Graph G = (V,E).
V ={vertices}, E={edges}.

a b

Vv={ab,c,d,e,f,g,h k}
E={ (ab).(a.g).( ah),.(ak),(b,c),(b,K),....(h,K)} |E[=16.




Digraph D = (V,A).
V ={vertices}, E={edges}.

a b

f

V={ab,c,d,ef,g,hk}
E={(ab).(a,9).( h,a),.(k,a),(b,0),(k,b),....(h,K)} [El=16.




Eulerian Graphs

Can you draw the diagram below without taking your pen off the
paper or going over the same line twice?




Bipartite Graphs

G is bipartite if V. = X UY where X and Y are disjoint and every edge
is of the form (x,y) where x ¢ X andy € Y.

In the diagram below, A,B,C,D are women and a,b,c,d are men.
There is an edge joining x and y iff x and y like each other. The thick
edges form a “perfect matching” enabling everybody to be paired with
someone they like. Not all graphs will have perfect matching!

A a
B —_ b
C C

D( d




Vertex Colouring

Colours{R,B,G}

B

Let C = {colours}. A vertex colouringof Gisamapf :V — C.

We say that v € V gets coloured with f(v).

The colouring is proper iff (a,b) € E = f(a) # f(b).

The Chromatic Number x(G) is the minimum number of colours
in a proper colouring.



Subgraphs

G’ = (V',E’)isasubgraphof G = (V,E)ifV' CV andE’' CE.
G’ is a spanning subgraph if V/ = V.

a f




If V' CV then
G[V1= (V' {(u,v) €E: uveV

is the subgraph of G induced by V’.
a

b d € Gl{ab,c,de]




Similarly, if E; C E then G[E1] = (V1, E1) where
Vi ={veV;: JecE;suchthatv € e}

is also induced (by E,).

E, ={(ab), (ad)}

a

b/\ d GlE]




Isomorphism

G; = (V1,E1) and G, = (Va, E,) are isomorphic if there exists a
bijection f : V; — V; such that

(V,w) € E1 < (f(v),f(w)) € Ea.

f(2)=A etc.




Complete Graphs
Kn=([n].{(i,7): 1<i<j<n})
is the complete graph on n vertices.
Kmn = ([mJU[n], {(i,j) : i € [m],j € [n]})
is the complete bipartite graph on m + n vertices.
(The notation is a little imprecise but hopefully clear.)

AN

Kg




Vertex Degrees

ds(v) = degree of vertexv in G

= number of edges incident with v
(G) = mvin dg (V)
A(G) = max da(v)




Matrices and Graphs

Incidence matrix M: V x E matrix.
1 vee

M(v,e):{o vde

e, e ez ey, €es €eg €7 eg
1 1 1
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Adjacency matrix A: V x V matrix.

v,w adjacent

1
Alv, w) = { 0 otherwise

abcd

Do oW
[
[E
N
=
[ = SN}




> da(v) = 2[E|

vev

Proof Consider the incidence matrix M. Row v has dg (V)
1's. So
# 1'sin matrix M is > dg (V).
vev
Column e has 2 1's. So

# 1's in matrix M is 2|E|.




In any graph, the number of vertices of odd degree, is even.

Proof Let ODD = {odd degree vertices} and
EVEN =V \ ODD.

Y dW)=2[E[- Y d(v)

veODD VEEVEN

is even.
So |ODD| is even. O




Paths and Walks

W = (v1,Vo,...,vg)isawalkin G if (vi,viy1) € E forl <i < k.
A path is a walk in which the vertices are distinct.
W, is a path, but W,, W3 are not.

b d
a & e
g T
Wy = a,b,c,e,d
W =a,b,a,c,e

W3 =g.,f,c,e,f




A walk is closed if v; = vi. A cycle is a closed walk in which the
vertices are distinct except for vy, vi.

b,c,e,d,bis acycle.

b,c,a,b,d,e,c,bis nota cycle.

b d




Let A be the adjacency matrix of the graph G = (V,E) and let
My = Ak for k > 1. Then for v,w € V, My (v, w) is the number
of distinct walks of length k from v to w.

Proof We prove this by induction on k. The base case
k =1 is immediate.

Assume the truth of the theorem for some k > 1. For ¢ > 0, let
Pi(x,y) denote the set of walks of length ¢ from x toy. Let
Pyr1(v,w; x) be the set of walks from v to w whose
penultimate vertex is x. Note that

P (V,W;X) N Pyaa(v,w;x") =0 for x # x’

and
Prya(V,w) = [ Pesa(v,wix)
xeV



So,

[Prra(v,w)l

Z |Pk+1(V,W; X)|

xeVv

D 1PV, x) AKX, w)

xeVv

> M(v,x)A(x,w)  induction
xeV
Mir1(v,w) matrix multiplication




Connected components

We define a relation ~ on V.
a ~ b iff there is a walk from a to b.

b d e

a~bbuta-d.

Claim: ~ is an equivalence relation.
reflexivity v ~ v as v is a (trivial) walk from v to v.

Symmetry u ~ v impliesv ~ u.
(Uu=ug,Uy...,ux =V)isawalk fromutov
implies (uy,uk_1,...,u;) is awalk from v to u.




Transitivity u ~ v andv ~ w impliesu ~ w.
Wi = (Uu=ug,Up...,ux =V)isawalk fromutov

and W, = (v =V, Vo, V3,...,vy = W) is a walk
from v to w imples that

(W1, W5) = (Ug, Uz ..., Uk, V2, Vs,...,Vp) is awalk
from u to w.

The equivalence classes of ~ are called connected
components.

Ingeneral V =C, UV, U---UC, where C,C,, ...,

C, are the connected comonents.

We let comp(G)(= r) be the number of components of G.
G is connected iff comp(G) = 1 i.e. there is a walk between
every pair of vertices.

Thus C4,C,, ..., C, induce connected subgraphs
G[C4],...,G[C/] of G



For a walk W we let /(W) = no. of edges in W.

Suppose W is a walk from vertex a to vertex b and that W
minimises ¢ over all walks from a to b. Then W is a path.

Proof Suppose W = (a = ap,ay,...,ax = b) and a; = a
where 0 <i <j <k.Then W’ = (ap,as,...,a,aj1,...,8)Is
also awalk fromatob and (W') =¢(W) —(j —1) < {(W) —
contradiction. O



If a ~ b then there is a path from a to b.

So G is connected <« Va,b € V there is a path from a to b.




Breadth First Search — BFS
FixveV.Forw eV let
d(v,w) = length of shortest path from v to w.

Fort =0,1,2,...,let

Ar={w eV : d(v,w)=t}.

Ag={v}andv ~w < d(v,w) < oo.




In BFS we construct Ag, A1,Ao, ..., by

Air = {(WEAJUALU---UA;: Jan edge
(u,w) such that u € A¢}.

Note : no edges (a,b) between Ax and A,
for{ —k > 2, elsew € A1 # Ay

(1)

In this way we can find all vertices in the same component C as
V.
By repeating for v/ ¢ C we find another component etc.




Characterisation of bipartite graphs

G is bipartite +» G has no cycles of odd length.

Proof —:G=(XUY,E).

Y X
%S Y Typical Cycle
Y X
Suppose C = (ug, uy,..., Uk, U7) is a cycle. Suppose u; € X.
Thenu, € Y,uz € X,...,u €Y implies k is even.



+ Assume G is connected, else apply following argument to
each component.
Choose v € V and construct Ag, A1, Ao, ..., by BFS.

X=AgUAUA4U---and¥ =A;UA3UA5U---

We need only show that X and Y contain no edges and then
all edges must join X and Y. Suppose X contains edge (a,b)
where a € A and b € Ay.

(i) If k # ¢ then |k — ¢| > 2 which contradicts (1)




k =1¢
a
Vv
v b

There exist paths (v = vp,V1,Va, ...,V = a) and
(V =Wg,W1,Ws,...,Wx =b).
Letj = max{t: vi = w}.

(Vjvvj-i-la" <y Vi, Wi, W1, - . 7W])
is an odd cycle — length 2(k — j) + 1 — contradiction. O



Trees

A tree is a graph which is

(a) Connected and
(b) has no cycles (acyclic).



Let the components of G be

C1,Cy,...,C;, Suppose e = (u,v) ¢ E,u e Cj,v € Cj.
(@) i =] = comp(G +e) = comp(G).
(b) i #j = comp(G +e) =comp(G) — 1.

€Y




Proof Every path P in G + e which is not in G must contain
e. Also,
comp(G + e) < comp(G).

Suppose

(X =Ug,Ug,...,Ug =U,Ug11 =V,...,Us=Y)

is a path in G + e that uses e. Then clearly x € C; andy < C;.
(a) follows as now no new relations x ~ y are added.

(b) Only possible new relations x ~y are forx € Cj andy € C;.
Butu ~ v in G + e and so C; U Cj becomes (only) new
component. O




G = (V,E) is acyclic (forest) with (tree) components
C1,Co,...,Ck. V|=n.e=(u,v)¢E,ueCj,veC.
(@) i =) = G + e contains a cycle.

(b) i #j = G + e is acyclic and has one less
component.

(c) G has n — k edges.




(a) u,v € C; implies there exists a path
(U = Up,Uz,...,Uy :V) in G.
So G + e contains the cycle ug, uq, ..., Uy, Ug.




(b) Suppose G + e containsthecycle C. e c CelseCisa
cycle of G.

C = (u =ugp,Ug,...,Us =V, Ug).
But then G contains the path (ug, us,...,us) fromutov —

contradiction.
up

uz

Up—1

Drop in number of components follows from previous Lemma.




The rest follows from

(c) Suppose E = {ej,e,,...,e} and

Gi = (V,{e1,e2,...,e})for0<i <r.

Claim: G; has n —i components.

Induction on i.

i = 0: Gg has no edges.

i > 0: Gj_; is acyclic and so is G;j. It follows from part (a) that e;
joins vertices in distinct components of G;_;. It follows from (b)
that G; has one less component than G;_;.

End of proof of claim

Thus r = n — k (we assumed G had k components). O




If atree T has n vertices then

(a) Ithas n — 1 edges.
(b) It has at least 2 vertices of degree 1, (n > 2).

Proof (a) is part (c) of previous lemma. k = 1since T is
connnected.

(b) Let s be the number of vertices of degree 1in T. There are
no vertices of degree 0 — these would form separate
components. Thus

2n—2=) dr(v) >2(n—s)+s.
veVv

Sos > 2. O




Theorem

Suppose |V | =n and |E| = n — 1. The following three
statements become equivalent.

(a) G is connected.
(b) G is acyclic.
(c) Gis atree.

LetE = {es,e,,...,en_1} and
Gi = (V,{es,es...,e})for0<i<n-—1




(a) = (b): Go has n components and G,_; has 1 component.
Addition of each edge e; must reduce the number of
components by 1. Thus Gj_; acyclic implies G; is acyclic. (b)
follows as Gy is acyclic.

(b) = (c): We need to show that G is connected. Since G,,_1 is
acyclic, comp(G;) = comp(G;_;) — 1 for each i. Thus
comp(Gp_1) = 1.

(c) = (a): trivial.




If v is a vertex of degree 1l inatree T then T — v is also a tree.

Proof Suppose T has n vertices and n — 1 edges. Then
T — v has n — 1 vertices and n — 2 edges. It acyclic and so
must be a tree. O



How many trees? — Cayley’s Formula




Prifer's Correspondence

There is a 1-1 correspondence ¢y between spanning trees of
Ky (the complete graph with vertex set V) and sequences
V"2 Thus forn > 2

7(Kn) = n"—2 Cayley’s Formula.

Assume some arbitrary ordering V = {v; <Vvp < --- < Vp}.

¢V(T):

begin
T,:=T;
fori=1ton—-2do
begin
si := neighbour of least leaf ¢; of T;.
Tiy1=Ti — 4.
end dv(T) =51S5...Sn_2
end



is 10

6,4,5,14,2,6,11,14,8,5,1.1.,4,2




v € V(T) appears exactly d(v) — 1 times in ¢y (T).

Proof Assume n = |V (T)| > 2. By induction on n.
n=2: ¢y(T)= A =empty string.
Assume n > 3:

4]

ov(T) = s1v,(T1) where V; =V — {s1}.
s; appears dr,(s1) — 1+ 1 = dy(s1) — 1 times — induction.
v # sq appears dy,(v) — 1 = dr(v) — 1 times — induction. O



Construction of  ¢y*

Inductively assume that for all [ X| < n there is an inverse
function ¢y *. (True for n = 2).
Now define ¢, by

by (5182 - Sn_2) = qb\jll(sz ...Sn_2) plus edge s1/1,

where /1 =min{s €V : s ¢ {s1,S2,...Sh_2}} and
Vi=V — {fl} Then

ov(dyt(s1S2...Sn-2)) = 51¢v1(¢\711(32 ...Sn—2))

= S1S5...Sp_2.

Thus ¢y has an inverse and the correspondence is
established.



n=10
s=5,3,7,4,4,3,2,6.

S




Number of trees with a given degree sequence

Corollary

Ifdy +dy + - - - +dn = 2n — 2 then the number of spanning trees
of K, with degree sequence dq,d,,...,d,is

n—2 _ (n—=2)!
(dll,dzl,...,dn1> ~ (dyg —1)Y(dp — 1)!-- - (dy — 1)V

Proof From Prifer’'s correspondence this is the number of
sequences of length n — 2 in which 1 appears d; — 1 times, 2
appears d, — 1 times and so on. d




Eulerian Graphs

An Eulerian cycle of a graph G = (V, E) ia closed walk which
uses each edge e € E exactly once.

e

b c h

k

The walk using edges a,b,c,d,e,f, g, h,j,k in this order is an
Eulerian cycle.



A connected graph is Eulerian i.e. has an Eulerian cycle, iff it
has no vertex of odd degree.

Proof Suppose W = (V1,Va,...,Vm, V1)

(m = |E|) is an Eulerian cycle. Fix v € V. Whenever W Vvisits v
it enters through a new edge and leaves through a new edge.
Thus each visit requires 2 new edges. Thus the degree of v is
even.




The converse is proved by induction on |E|. The result is true
for |E| = 3. The only possible graph is a triangle.

Assume |E| > 4. G is not a tree, since it has no vertex of
degree 1. Therefore it contains a cycle C. Delete the edges of
C. The remaining graph has components K;,Ks, ... K.

Each K; is connected and is of even degree — deleting C
removes 0 or 2 edges incident with a given v € V. Also, each
Ki has strictly less than |E| edges. So, by induction, each K;
has an Eulerian cycle, C; say.

We create an Eulerian cycle of G as follows: let

C = (v1,V2,...,Vs,V1). Let v, be the first vertex of C which is in
Ki. Assume w.l.o.g. thati; < i, < --- <.

W =

(Vi,V2,...,Vi,, C1,, Vi, -, Viy, Cou Vg, oo, Vi, Gy Vi, o0, V)

is an Eulerian cycle of G. O







Independent sets and cliques

S CV is independent if no edge of G has both of its endpoints
inS.

a(G)=maximum size of an independent set of G.



Theorem

If graph G has n vertices and m edges then

n2

a(G) 2 2m+n’

Note that this says that o(G) is at least 57y where d is the
average degree of G.

Proof Let 7(1),7(2),...,n(v) be an arbitrary permutation
of V. Let N(v) denote the set of neighbours of vertex v and let

I(m) ={v: m(w)>n(v)forallw € N(v)}.




| is an independent set.

Proof of Claim 1
Suppose w1, W, € I(7) and wiw, € E. Suppose m(wy) < m(wz).
Then w, ¢ |(7) — contradiction. O




g h

a b c d e f




If 7 is a random permutation then

1
E(I]) = Z\:/ W

1 vel

Proof: Leté(v):{ 0 vl

Thus

=>4
E(I) = > E(5(v))
= > Pr(5(v)=1).




Now §(v) = 1 iff v. comes before all of its neighbours in the

order 7. Thus 1

):d(v)+1

and the claim follows. O
Thus there exists a 7 such that

1
() > Z W

veVv

Pr(s(v) =1

and so

1
o(G) > ZW'

veV




We finish the proof of the theorem by showing that

Z 1 - n?
Vevd(v)+1—2m+n

This follows from the following claim by putting x, =d(v) + 1
forv e V.

Claim

If X1,X5,...Xc > 0then

1
o dp—dpeeedh — 2 : 2




Proof
Multiplying (2) by x; + x> + - - - + Xk and subtracting k from both
sides we see that (2) is equivalent to

Xj Xj
1§§§k (x,- + Xi) > k(k —1). 3)

Butforall x,y >0

and (3) follows. O




If G contains no clique of size k then

(k —2)n?
M= ok-1)

For example, if G contains no triangle then m < n?/4.
Proof Let G be the complement of G i.e. G + G = K.

By assumption

n2

k—-1>aG)>

n(n—1)—-2m+n’




Parallel searching for the maximum — Valiant

We have n processors and n numbers Xq, Xo, ..., X,. In each
round we choose n pairs i, j and compare the values of x;, x.
The set of pairs chosen in a round can depend on the results of
previous comparisons.

Aim: find i* such that x;- = max; X;.

For any algorithm there exists an input which requires at least
5 log, log, n rounds.




@ @

Suppose that the first round of comparisons involves comparing
Xi,X; for edge ij of the above graph and that the arrows point to
the larger of the two values. Consider the independent set
{1,2,5,8,9}. These are the indices of the 5 largest elements,
but their relative order can be arbitrary since there is no implied
relation between their values.




Let C(a, b) be the maximum number of rounds needed for a
processors to compute the maximum of b values in this way.

2a+b

clab)>1+¢ (a | il 1)

Proof The set of b comparisons defines a b-edge graph G
on a vertices where comparison of x;, x; produces an edge ij of

a(G) 2 {ZbaiJ - ’VZabj-b-"

G. Now,




For any independent set | it is always possible to define values
for X1, X2, ..., Xa such | is the index set of the |I| largest values
and so that the comparisons do not yield any information about
the ordering of the elements x;,i € 1.

Thus after one round one has the problem of finding the
maximum among «(G) elements. O
Now define the sequence cg,Cq,... by cg = n and

S
A T

It follows from the previous lemma that

ck > 2 impliesC(n,n) > k + 1.




Claim 4 now follows from

By induction on i. Trivial fori = 0. Then

C > n2 1
i+1 = 2i+1_o X n
3 2N+ o
n 3
= - X
2i+1_1 1
3 2+ S5
n
=z 32+1-1"




We found an upper bound on the number of edges m < n?/4
on graphs without triangles. We find a smaller bound if we
exclude cycles of length four.

If G contains no cycles of length four then m < (n%/2 +n)/2.

Proof We count in two ways the number N of paths x,y, z
of length two.

For an unordered pair x, z there can be at most one y such that
X,V,z forms a path. Otherwise G will contain a C4. Thus

v (D)




Let d(y) denote the degree of z fory € V. In which case there
are (d(zy)) choices of x, z to make a path x,y, z.

Thus
_ d(y)
v = ()
yev
= m s Yy
2
yev
o ma (2
- 2 n
Thus
nZ —n 2m?2
Z_m—i_T.



We re-arrange to give

3 2
n n°—n
2
ms——m — <0
2 4 -

or

which implies that




Matchings

A matching M of a graph G = (V,E) is a set of edges, no two
of which are incident to a common vertex.

M-saturated

=]

M-unsaturated




M -alternating path

M not M M not p M

e

(ab,c,d,ef) isan
M -alternating path

An M-alternating path joining 2 M-unsaturated vertices is called
an M-augmenting path.



M is a maximum matching of G if no matching M’ has more
edges.

M is a maximum matching iff M admits no M-augmenting paths.

Proof Suppose M has an augmenting path
P = (ao, bl,al, R bk+l) where
ei=(aj_1,b) ¢M,1<i<k+1and
fi=(bi,a)eM,1<i<Kk.

a %

M =M — {fl,fz,. . .,fk} + {61,62,... 7ek+1}.



o M| =|M|+1.
@ M’ is a matching

For x € V let dy(x) denote the degree of x in matching M, So
dm(x) x & {ag,by,...,bxy1}

du(x)is0or 1. dy (x) =< dm(x) x € {by,...,ak}
du(x) +1 x € {ag, bry1}

So if M has an augmenting path it is not maximum.




Suppose M is not a maximum matching and |[M’| > [M|.
Consider H = GIMVM’] where MVYM’' = (M \ M)U (M’ \ M) is
the set of edges in exactly one of M, M’.

Maximum degree of H is 2 — < 1 edge from M or M’. SoH is a
collection of vertex disjoint alternating paths and cycles.

- e = E=w = ’

(@ (b)




Bipartite Graphs

Let G = (AU B, E) be a bipartite graph with bipartition A, B.
ForS CAletN(S)={beB: JacS,(a,b)cE}.

aq bl
a, b
az b3
a4 b4

N({a,.az}) ={ b,bsb,}

Clearly, [IM| < |A|, |B| for any matching M of G.



Systems of Distinct Representatives

LetS,,S,,..., Sy be arbitrary sets. A sets;,S,,...,Sn of m
disitinct elements is a system of distinct representatives if
sieSifori=1,2,...,m.

For example {1,2,4} is a system of distinct representatives for
{1,2,3},{2,5,6},{2,4,5}.

Now define the bipartite graph G with vertex bipartition [m], S
where S = [J, Sj and an edge (i, s) iff s € S;.

Then Sq,S,, ..., Sn has a system of distinct representatives iff
G has a matching of size m.



Hall's Theorem

G contains a matching of size |A| iff

IN(S)| > |S| VS C A. (4)
ay b,
a, bo
as b3
a b4

N({a1,az,as}) = {by,b,} and so at most 2 of a;, a,, a3 can be
saturated by a matching.



: Suppose M = {(a, ¢(a)) : a € A} saturates A.

1 ?(2) & NS
2 ®(4) i
s +non-matching
edges
oD e NS
4 ®(3) € N(S)
IN(S)| = Hé(s): s €S}

S|

and so (4) holds.

If: LetM = {(a,¢(a)): ac A’} (A’ C A)is a maximum
matching. Suppose ag € A is M-unsaturated. We show that (4)
fails.



Let

A; = {a € A : such that a is reachable from ag by an
M-alternating path.}

By = {b € B : such that b is reachable from ay by an
M-alternating path.}

B: B; Bi B;

ad A, A, AL A

NoA1-B\B 1
edges



e B; is M-saturated else there exists an M-augmenting path.
elfac A\ {ap} then ¢(a) € B;.

d) (P(a) :

e If b € By then ¢~ 1(b) € A; \ {ap}-
So ’Bl| = ‘A1| —1. e N(Al) cB;

)
d) )

So IN(A1)| = |A1| — 1 and (4) fails to hold.
D



Marriage Theorem

Suppose G = (AUB,E) is k-regular. (k > 1) i.e. dg(v) =k for
allv € AUB. Then G has a perfect matching.

Proof k|A| = [E| =k|B| and so |A| = |B|.

Suppose S C A. Let m be the number of edges incident with S.
Then k|S| = m < k|N(S)|. So (4) holds and there is a matching
of size |A| i.e. a perfect matching.




Edge Covers

A set of vertices X C V is a covering of G = (V,E) if every
edge of E contains at least one endpoint in X.

{® } isacovering

If X is a covering and M is a matching then |X| > |M]|.

Proof LetM = {(a1,bj) : 1 <i <k}. Then |X]| > |[M| since
aeXorbeXforl<i<kanday,...,by are distinct. O




Konig's Theorem

Let 1(G) be the maximum size of a matching.
Let 5(G) be the minimum size of a covering.
Then 1(G) < 5(G).

If G is bipartite then x(G) = 8(G).

Proof Let M be a maximum matching.

Let Sy be the M-unsaturated vertices of A.

Let S D Sy be the A-vertices which are reachable from S by
M-alternating paths.

Let T be the M-neighbours of S\ Sg.




Sy S S, S S s S

LetX = (A\S)UT.

o |[X| = |M|.

IT| =|S \ So|. The remaining edges of M cover A\ S exactly
once.

e X is a cover.

There are no edges (x,y) wherex e Sandy ¢ B\ T.
Otherwise, since y is M-saturated (no M-augmenting paths) the
M-neightbour of y would have to be in S, contradictingy ¢ T. O




