
Graph Theory



Graph G = (V ,E).
V={vertices}, E={edges}.
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V={a,b,c,d,e,f,g,h,k}

E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}        |E|=16.



Digraph D = (V ,A).
V={vertices}, E={edges}.
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V={a,b,c,d,e,f,g,h,k}

E={(a,b),(a,g),( h,a),(k,a),(b,c),(k,b),...,(h,k)}        |E|=16.



Eulerian Graphs

Can you draw the diagram below without taking your pen off the
paper or going over the same line twice?



Bipartite Graphs

G is bipartite if V = X ∪Y where X and Y are disjoint and every edge
is of the form (x , y) where x ∈ X and y ∈ Y .
In the diagram below, A,B,C,D are women and a,b,c,d are men.
There is an edge joining x and y iff x and y like each other. The thick
edges form a “perfect matching” enabling everybody to be paired with
someone they like. Not all graphs will have perfect matching!
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Vertex Colouring
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Colours {R,B,G}

Let C = {colours}. A vertex colouring of G is a map f : V → C.
We say that v ∈ V gets coloured with f (v).
The colouring is proper iff (a, b) ∈ E ⇒ f (a) 6= f (b).
The Chromatic Number χ(G) is the minimum number of colours
in a proper colouring.



Subgraphs

G′ = (V ′,E ′) is a subgraph of G = (V ,E) if V ′ ⊆ V and E ′ ⊆ E .
G′ is a spanning subgraph if V ′ = V .
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If V ′ ⊆ V then

G[V ′] = (V ′, {(u, v) ∈ E : u, v ∈ V ′})

is the subgraph of G induced by V ′.
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d e G[{a,b,c,d,e}]



Similarly, if E1 ⊆ E then G[E1] = (V1,E1) where

V1 = {v ∈ V1 : ∃e ∈ E1 such that v ∈ e}

is also induced (by E1).

E 1 = {(a,b), (a,d)}

b

a

d G[E 1 ]



Isomorphism

G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there exists a
bijection f : V1 → V2 such that

(v ,w) ∈ E1 ↔ (f (v), f (w)) ∈ E2.
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f(a)=A etc.



Complete Graphs

Kn = ([n], {(i , j) : 1 ≤ i < j ≤ n})

is the complete graph on n vertices.

Km,n = ([m] ∪ [n], {(i , j) : i ∈ [m], j ∈ [n]})

is the complete bipartite graph on m + n vertices.
(The notation is a little imprecise but hopefully clear.)

K5



Vertex Degrees

dG(v) = degree of vertex v in G

= number of edges incident with v

δ(G) = min
v

dG(v)

∆(G) = max
v

dG(v)
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G dG(a)=2, d G(g)=4 etc.

δ( G)=2, ∆ (G)=4.



Matrices and Graphs

Incidence matrix M: V × E matrix.

M(v , e) =
{

1 v ∈ e
0 v /∈ e

e1 e2 e3 e4 e5 e6 e7 e8

a 1 1 1
b 1 1 1
c 1 1 1
d 1 1 1
e 1 1 1 1
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Adjacency matrix A: V × V matrix.

A(v ,w) =

{

1 v ,w adjacent
0 otherwise

a b c d e
a 1 1 1
b 1 1 1
c 1 1 1
d 1 1 1
e 1 1 1 1
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Theorem
∑

v∈V

dG(v) = 2|E |

Proof Consider the incidence matrix M. Row v has dG(v)
1’s. So

# 1’s in matrix M is
∑

v∈V

dG(v).

Column e has 2 1’s. So

# 1’s in matrix M is 2|E |.

�



Corollary

In any graph, the number of vertices of odd degree, is even.

Proof Let ODD = {odd degree vertices} and
EVEN = V \ODD.

∑

v∈ODD

d(v) = 2|E | −
∑

v∈EVEN

d(v)

is even.
So |ODD| is even. �



Paths and Walks

W = (v1, v2, . . . , vk ) is a walk in G if (vi , vi+1) ∈ E for 1 ≤ i < k .
A path is a walk in which the vertices are distinct.
W1 is a path, but W2,W3 are not.
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fg

= a,b,c,e,d

=a,b,a,c,e
=g,f,c,e,f

W1

W2

W3



A walk is closed if v1 = vk . A cycle is a closed walk in which the
vertices are distinct except for v1, vk .
b, c, e, d , b is a cycle.
b, c, a, b, d , e, c, b is not a cycle.
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Theorem

Let A be the adjacency matrix of the graph G = (V ,E) and let
Mk = Ak for k ≥ 1. Then for v ,w ∈ V, Mk (v ,w) is the number
of distinct walks of length k from v to w.

Proof We prove this by induction on k . The base case
k = 1 is immediate.

Assume the truth of the theorem for some k ≥ 1. For ℓ ≥ 0, let
Pℓ(x , y) denote the set of walks of length ℓ from x to y . Let
Pk+1(v ,w ; x) be the set of walks from v to w whose
penultimate vertex is x . Note that

Pk+1(v ,w ; x) ∩ Pk+1(v ,w ; x ′) = ∅ for x 6= x ′

and
Pk+1(v ,w) =

⋃

x∈V

Pk+1(v ,w ; x)



So,

|Pk+1(v ,w)| =
∑

x∈V

|Pk+1(v ,w ; x)|

=
∑

x∈V

|Pk (v , x)|A(x ,w)

=
∑

x∈V

Mk (v , x)A(x ,w) induction

= Mk+1(v ,w) matrix multiplication

�



Connected components

We define a relation ∼ on V .
a ∼ b iff there is a walk from a to b.

a

b

c

d e

f
g

a ∼ b but a 6∼ d .
Claim: ∼ is an equivalence relation.

reflexivity v ∼ v as v is a (trivial) walk from v to v .

Symmetry u ∼ v implies v ∼ u.
(u = u1, u2 . . . , uk = v) is a walk from u to v
implies (uk , uk−1, . . . , u1) is a walk from v to u.



Transitivity u ∼ v and v ∼ w implies u ∼ w .
W1 = (u = u1, u2 . . . , uk = v) is a walk from u to v
and W2 = (v1 = v , v2, v3, . . . , vℓ = w) is a walk
from v to w imples that
(W1,W2) = (u1, u2 . . . , uk , v2, v3, . . . , vℓ) is a walk
from u to w .

The equivalence classes of ∼ are called connected
components.
In general V = C1 ∪ V2 ∪ · · · ∪ Cr where C1,C2, . . . ,
Cr are the connected comonents.
We let comp(G)(= r) be the number of components of G.
G is connected iff comp(G) = 1 i.e. there is a walk between
every pair of vertices.
Thus C1,C2, . . . ,Cr induce connected subgraphs
G[C1], . . . ,G[Cr ] of G



For a walk W we let ℓ(W ) = no. of edges in W .

l(W)=6

Lemma

Suppose W is a walk from vertex a to vertex b and that W
minimises ℓ over all walks from a to b. Then W is a path.

Proof Suppose W = (a = a0, a1, . . . , ak = b) and ai = aj

where 0 ≤ i < j ≤ k . Then W ′ = (a0, a1, . . . , ai , aj+1, . . . , ak ) is
also a walk from a to b and ℓ(W ′) = ℓ(W )− (j − i) < ℓ(W ) –
contradiction. �



Corollary

If a ∼ b then there is a path from a to b.

So G is connected↔ ∀a, b ∈ V there is a path from a to b.



Breadth First Search – BFS

Fix v ∈ V . For w ∈ V let

d(v ,w) = length of shortest path from v to w .

For t = 0, 1, 2, . . . , let

At = {w ∈ V : d(v ,w) = t}.

v

A1

A1
A2

A2

A2 A3

A3

A3

A4

A4

A4

A0 = {v} and v ∼ w ↔ d(v ,w) <∞.



In BFS we construct A0,A1,A2, . . . , by

At+1 = {w /∈ A0 ∪ A1 ∪ · · · ∪ At : ∃ an edge

(u,w) such that u ∈ At}.

Note : no edges (a, b) between Ak and Aℓ

for ℓ− k ≥ 2, else w ∈ Ak+1 6= Aℓ.

(1)

In this way we can find all vertices in the same component C as
v .
By repeating for v ′ /∈ C we find another component etc.



Characterisation of bipartite graphs

Theorem

G is bipartite↔ G has no cycles of odd length.

Proof →: G = (X ∪ Y ,E).

X

Y X

Y

XY

Typical Cycle

Suppose C = (u1, u2, . . . , uk , u1) is a cycle. Suppose u1 ∈ X .
Then u2 ∈ Y , u3 ∈ X , . . . , uk ∈ Y implies k is even.



← Assume G is connected, else apply following argument to
each component.
Choose v ∈ V and construct A0,A1,A2, . . . , by BFS.

X = A0 ∪ A2 ∪ A4 ∪ · · · and Y = A1 ∪ A3 ∪ A5 ∪ · · ·

We need only show that X and Y contain no edges and then
all edges must join X and Y . Suppose X contains edge (a, b)
where a ∈ Ak and b ∈ Aℓ.
(i) If k 6= ℓ then |k − ℓ| ≥ 2 which contradicts (1)



(ii)

k = ℓ:

v
v

a

bj

There exist paths (v = v0, v1, v2, . . . , vk = a) and
(v = w0,w1,w2, . . . ,wk = b).
Let j = max{t : vt = wt}.

(vj , vj+1, . . . , vk ,wk ,wk−1, . . . ,wj)

is an odd cycle – length 2(k − j) + 1 – contradiction. �



Trees

A tree is a graph which is

(a) Connected and

(b) has no cycles (acyclic).



Lemma

Let the components of G be
C1,C2, . . . ,Cr , Suppose e = (u, v) /∈ E, u ∈ Ci , v ∈ Cj .

(a) i = j ⇒ comp(G + e) = comp(G).

(b) i 6= j ⇒ comp(G + e) = comp(G)− 1.

(a)

u

v

(b)

u v



Proof Every path P in G + e which is not in G must contain
e. Also,

comp(G + e) ≤ comp(G).

Suppose

(x = u0, u1, . . . , uk = u, uk+1 = v , . . . , uℓ = y)

is a path in G + e that uses e. Then clearly x ∈ Ci and y ∈ Cj .
(a) follows as now no new relations x ∼ y are added.
(b) Only possible new relations x ∼ y are for x ∈ Ci and y ∈ Cj .
But u ∼ v in G + e and so Ci ∪ Cj becomes (only) new
component. �



Lemma

G = (V ,E) is acyclic (forest) with (tree) components
C1,C2, . . . ,Ck . |V | = n. e = (u, v) /∈ E, u ∈ Ci , v ∈ Cj .

(a) i = j ⇒ G + e contains a cycle.

(b) i 6= j ⇒ G + e is acyclic and has one less
component.

(c) G has n − k edges.



(a) u, v ∈ Ci implies there exists a path
(u = u0, u1, . . . , uℓ = v) in G.
So G + e contains the cycle u0, u1, . . . , uℓ, u0.

u
v



u
v

(b) Suppose G + e contains the cycle C. e ∈ C else C is a
cycle of G.

C = (u = u0, u1, . . . , uℓ = v , u0).

But then G contains the path (u0, u1, . . . , uℓ) from u to v –
contradiction.

u v

u1

u2

uℓ−1

Drop in number of components follows from previous Lemma.



The rest follows from
(c) Suppose E = {e1, e2, . . . , er} and
Gi = (V , {e1, e2, . . . , ei}) for 0 ≤ i ≤ r .
Claim: Gi has n − i components.
Induction on i .
i = 0: G0 has no edges.
i > 0: Gi−1 is acyclic and so is Gi . It follows from part (a) that ei

joins vertices in distinct components of Gi−1. It follows from (b)
that Gi has one less component than Gi−1.
End of proof of claim
Thus r = n − k (we assumed G had k components). �



Corollary

If a tree T has n vertices then

(a) It has n − 1 edges.

(b) It has at least 2 vertices of degree 1, (n ≥ 2).

Proof (a) is part (c) of previous lemma. k = 1 since T is
connnected.
(b) Let s be the number of vertices of degree 1 in T . There are
no vertices of degree 0 – these would form separate
components. Thus

2n − 2 =
∑

v∈V

dT (v) ≥ 2(n − s) + s.

So s ≥ 2. �



Theorem

Suppose |V | = n and |E | = n − 1. The following three
statements become equivalent.

(a) G is connected.

(b) G is acyclic.

(c) G is a tree.

Let E = {e1, e2, . . . , en−1} and
Gi = (V , {e1, e2, . . . , ei}) for 0 ≤ i ≤ n − 1.



(a)⇒ (b): G0 has n components and Gn−1 has 1 component.
Addition of each edge ei must reduce the number of
components by 1. Thus Gi−1 acyclic implies Gi is acyclic. (b)
follows as G0 is acyclic.
(b)⇒ (c): We need to show that G is connected. Since Gn−1 is
acyclic, comp(Gi) = comp(Gi−1)− 1 for each i . Thus
comp(Gn−1) = 1.
(c)⇒ (a): trivial.



Corollary

If v is a vertex of degree 1 in a tree T then T − v is also a tree.

v

Proof Suppose T has n vertices and n − 1 edges. Then
T − v has n − 1 vertices and n − 2 edges. It acyclic and so
must be a tree. �



How many trees? – Cayley’s Formula

n=4

4 12

n=5

5 60 60

n=6

6 120 360 90

360
360



Prüfer’s Correspondence

There is a 1-1 correspondence φV between spanning trees of
KV (the complete graph with vertex set V ) and sequences
V n−2. Thus for n ≥ 2

τ(Kn) = nn−2 Cayley’s Formula.

Assume some arbitrary ordering V = {v1 < v2 < · · · < vn}.
φV (T ):
begin

T1 := T ;
for i = 1 to n − 2 do
begin

si := neighbour of least leaf ℓi of Ti .
Ti+1 = Ti − ℓi .

end φV (T ) = s1s2 . . . sn−2

end
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1 1213
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6,4,5,14,2,6,11,14,8,5,11,4,2



Lemma

v ∈ V (T ) appears exactly dT (v)− 1 times in φV (T ).

Proof Assume n = |V (T )| ≥ 2. By induction on n.
n = 2: φV (T ) = Λ = empty string.
Assume n ≥ 3:

T1

s1
ℓ1

φV (T ) = s1φV1(T1) where V1 = V − {s1}.
s1 appears dT1(s1)− 1 + 1 = dT (s1)− 1 times – induction.
v 6= s1 appears dT1(v)− 1 = dT (v)− 1 times – induction. �



Construction of φ−1
V

Inductively assume that for all |X | < n there is an inverse
function φ−1

X . (True for n = 2).
Now define φ−1

V by

φ−1
V (s1s2 . . . sn−2) = φ−1

V1
(s2 . . . sn−2) plus edge s1ℓ1,

where ℓ1 = min{s ∈ V : s /∈ {s1, s2, . . . sn−2}} and
V1 = V − {ℓ1}. Then

φV (φ
−1
V (s1s2 . . . sn−2)) = s1φV1(φ

−1
V1

(s2 . . . sn−2))

= s1s2 . . . sn−2.

Thus φV has an inverse and the correspondence is
established.



n = 10
s = 5, 3, 7, 4, 4, 3, 2, 6.
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Number of trees with a given degree sequence

Corollary

If d1 + d2 + · · ·+ dn = 2n− 2 then the number of spanning trees
of Kn with degree sequence d1, d2, . . . , dn is

(

n − 2
d1 − 1,d2 − 1, . . . ,dn − 1

)

=
(n − 2)!

(d1 − 1)!(d2 − 1)! · · · (dn − 1)!
.

Proof From Prüfer’s correspondence this is the number of
sequences of length n − 2 in which 1 appears d1 − 1 times, 2
appears d2 − 1 times and so on. �



Eulerian Graphs

An Eulerian cycle of a graph G = (V ,E) ia closed walk which
uses each edge e ∈ E exactly once.

a

b c

d

e

f
g

h

j

k
The walk using edges a, b, c, d , e, f , g, h, j , k in this order is an
Eulerian cycle.



Theorem

A connected graph is Eulerian i.e. has an Eulerian cycle, iff it
has no vertex of odd degree.

Proof Suppose W = (v1, v2, . . . , vm, v1)
(m = |E |) is an Eulerian cycle. Fix v ∈ V . Whenever W visits v
it enters through a new edge and leaves through a new edge.
Thus each visit requires 2 new edges. Thus the degree of v is
even.

v
v

v

v

v

i-1

j-1

i+1

j+1



The converse is proved by induction on |E |. The result is true
for |E | = 3. The only possible graph is a triangle.
Assume |E | ≥ 4. G is not a tree, since it has no vertex of
degree 1. Therefore it contains a cycle C. Delete the edges of
C. The remaining graph has components K1,K2, . . . ,Kr .
Each Ki is connected and is of even degree – deleting C
removes 0 or 2 edges incident with a given v ∈ V . Also, each
Ki has strictly less than |E | edges. So, by induction, each Ki

has an Eulerian cycle, Ci say.
We create an Eulerian cycle of G as follows: let
C = (v1, v2, . . . , vs, v1). Let vit be the first vertex of C which is in
Kt . Assume w.l.o.g. that i1 < i2 < · · · < ir .
W =
(v1, v2, . . . , vi1 ,C1, , vi1 , . . . , vi2 ,C2, vi2 , . . . , vir ,Cr , vir , . . . , v1)
is an Eulerian cycle of G. �
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Independent sets and cliques

S ⊆ V is independent if no edge of G has both of its endpoints
in S.

α(G)=maximum size of an independent set of G.



Theorem

If graph G has n vertices and m edges then

α(G) ≥
n2

2m + n
.

Note that this says that α(G) is at least n
d+1 where d is the

average degree of G.
Proof Let π(1), π(2), . . . , π(ν) be an arbitrary permutation
of V . Let N(v) denote the set of neighbours of vertex v and let

I(π) = {v : π(w) > π(v) for all w ∈ N(v)}.



Claim

I is an independent set.

Proof of Claim 1
Suppose w1,w2 ∈ I(π) and w1w2 ∈ E . Suppose π(w1) < π(w2).
Then w2 /∈ I(π) — contradiction. �



a

b

c

d

e

f

g

h

a b c d e f g h I
π1 c b f h a g e d {c, f}
π2 g f h d e a b c {g, a}



Claim

If π is a random permutation then

E(|I|) =
∑

v∈V

1
d(v) + 1

.

Proof: Let δ(v) =
{

1 v ∈ I
0 v /∈ I

Thus

|I| =
∑

v∈V

δ(v)

E(|I|) =
∑

v∈V

E(δ(v))

=
∑

v∈V

Pr(δ(v) = 1).



Now δ(v) = 1 iff v comes before all of its neighbours in the
order π. Thus

Pr(δ(v) = 1) =
1

d(v) + 1

and the claim follows. �

Thus there exists a π such that

|I(π)| ≥
∑

v∈V

1
d(v) + 1

and so

α(G) ≥
∑

v∈V

1
d(v) + 1

.



We finish the proof of the theorem by showing that

∑

v∈V

1
d(v) + 1

≥
n2

2m + n
.

This follows from the following claim by putting xv = d(v) + 1
for v ∈ V .

Claim

If x1, x2, . . . xk > 0 then

1
x1

+
1
x2

+ · · ·+
1
xk
≥

k2

x1 + x2 + · · ·+ xk
. (2)



Proof
Multiplying (2) by x1 + x2 + · · ·+ xk and subtracting k from both
sides we see that (2) is equivalent to

∑

1≤i<j≤k

(

xi

xj
+

xj

xi

)

≥ k(k − 1). (3)

But for all x , y > 0
x
y
+

y
x
≥ 2

and (3) follows. �



Corollary

If G contains no clique of size k then

m ≤
(k − 2)n2

2(k − 1)

For example, if G contains no triangle then m ≤ n2/4.
Proof Let Ḡ be the complement of G i.e. G + Ḡ = Kn.

By assumption

k − 1 ≥ α(Ḡ) ≥
n2

n(n − 1)− 2m + n
.

�



Parallel searching for the maximum – Valiant

We have n processors and n numbers x1, x2, . . . , xn. In each
round we choose n pairs i , j and compare the values of xi , xj .
The set of pairs chosen in a round can depend on the results of
previous comparisons.
Aim: find i∗ such that xi∗ = maxi xi .

Claim

For any algorithm there exists an input which requires at least
1
2 log2 log2 n rounds.



3

8

6

7

5

9

4 10

2
1

Suppose that the first round of comparisons involves comparing
xi , xj for edge ij of the above graph and that the arrows point to
the larger of the two values. Consider the independent set
{1, 2, 5, 8, 9}. These are the indices of the 5 largest elements,
but their relative order can be arbitrary since there is no implied
relation between their values.



Let C(a, b) be the maximum number of rounds needed for a
processors to compute the maximum of b values in this way.

Lemma

C(a, b) ≥ 1 + C
(

a,
⌈

b2

2a + b

⌉)

.

Proof The set of b comparisons defines a b-edge graph G
on a vertices where comparison of xi , xj produces an edge ij of
G. Now,

α(G) ≥

⌈

b
2a
b + 1

⌉

=

⌈

b2

2a + b

⌉

.



For any independent set I it is always possible to define values
for x1, x2, . . . , xa such I is the index set of the |I| largest values
and so that the comparisons do not yield any information about
the ordering of the elements xi , i ∈ I.
Thus after one round one has the problem of finding the
maximum among α(G) elements. �

Now define the sequence c0, c1, . . . by c0 = n and

ci+1 =

⌈

c2
i

2n + ci

⌉

.

It follows from the previous lemma that

ck ≥ 2 implies C(n, n) ≥ k + 1.



Claim 4 now follows from

Claim

ci ≥
n

32i−1
.

By induction on i . Trivial for i = 0. Then

ci+1 ≥
n2

32i+1−2
×

1
2n + n

32i
−1

=
n

32i+1−1
×

3

2 + 1
32i

−1

≥
n

32i+1−1
.

�



We found an upper bound on the number of edges m ≤ n2/4
on graphs without triangles. We find a smaller bound if we
exclude cycles of length four.

Theorem

If G contains no cycles of length four then m ≤ (n3/2 + n)/2.

Proof We count in two ways the number N of paths x , y , z
of length two.

For an unordered pair x , z there can be at most one y such that
x , y , z forms a path. Otherwise G will contain a C4. Thus

N ≤
(

n
2

)

.



Let d(y) denote the degree of z for y ∈ V . In which case there
are

(d(y)
2

)

choices of x , z to make a path x , y , z.

Thus

N =
∑

y∈V

(

d(y)
2

)

= −m +
1
2

∑

y∈V

d(y)2

≥ −m +
n
2

(

2m
n

)2

Thus
n2 − n

2
≥ −m +

2m2

n
.



We re-arrange to give

m2 −
n
2

m −
n3 − n2

4
≤ 0

or

(

m −
n
4

)2
−

n3

4
−

n2

16
≤ 0

which implies that

m −
n
4
≤

n3/2

2
+

n
4
.

�



Matchings

A matching M of a graph G = (V ,E) is a set of edges, no two
of which are incident to a common vertex.

M={ }

M-unsaturated

M-saturated



M-alternating path

M M M M Mnot not

a

b

c

d

e

f

(a,b,c,d,e,f) is an
M-alternating path

An M-alternating path joining 2 M-unsaturated vertices is called
an M-augmenting path.



M is a maximum matching of G if no matching M ′ has more
edges.

Theorem

M is a maximum matching iff M admits no M-augmenting paths.

Proof Suppose M has an augmenting path
P = (a0, b1, a1, . . . , ak , bk+1) where
ei = (ai−1, bi) /∈ M, 1 ≤ i ≤ k + 1 and
fi = (bi , ai) ∈ M, 1 ≤ i ≤ k .

0

1

1

2

2

a

b

a

b

a

b 3

M ′ = M − {f1, f2, . . . , fk}+ {e1, e2, . . . , ek+1}.



|M ′| = |M|+ 1.

M ′ is a matching

For x ∈ V let dM(x) denote the degree of x in matching M, So

dM(x) is 0 or 1. dM′(x) =







dM(x) x 6∈ {a0, b1, . . . , bk+1}
dM(x) x ∈ {b1, . . . , ak}
dM(x) + 1 x ∈ {a0, bk+1}

So if M has an augmenting path it is not maximum.



Suppose M is not a maximum matching and |M ′| > |M|.
Consider H = G[M∇M ′] where M∇M ′ = (M \M ′) ∪ (M ′ \M) is
the set of edges in exactly one of M,M ′.
Maximum degree of H is 2 – ≤ 1 edge from M or M ′. So H is a
collection of vertex disjoint alternating paths and cycles.

x

(a) (b)

x,y M-unsaturated



Bipartite Graphs

Let G = (A ∪ B,E) be a bipartite graph with bipartition A,B.
For S ⊆ A let N(S) = {b ∈ B : ∃a ∈ S, (a, b) ∈ E}.

a

a

a

a

b

b

b

b

1

2

3

4

1

2

3

4

N({a2 , a 3 }) ={ 1 3 4b b b }

Clearly, |M| ≤ |A|, |B| for any matching M of G.



Systems of Distinct Representatives

Let S1,S2, . . . ,Sm be arbitrary sets. A set s1, s2, . . . , sm of m
disitinct elements is a system of distinct representatives if
si ∈ Si for i = 1, 2, . . . ,m.

For example {1, 2, 4} is a system of distinct representatives for
{1, 2, 3}, {2, 5, 6}, {2, 4, 5}.

Now define the bipartite graph G with vertex bipartition [m],S
where S =

⋃m
i=1 Si and an edge (i , s) iff s ∈ Si .

Then S1,S2, . . . ,Sm has a system of distinct representatives iff
G has a matching of size m.



Hall’s Theorem

Theorem

G contains a matching of size |A| iff

|N(S)| ≥ |S| ∀S ⊆ A. (4)

a

a

a

a

b

b

b

b

1

2

3

4

1

2

3

4

N({a1, a2, a3}) = {b1, b2} and so at most 2 of a1, a2, a3 can be
saturated by a matching.



: Suppose M = {(a, φ(a)) : a ∈ A} saturates A.

1

3

4

φ

φ

φ

φ

(2)

(4)

(1)

(3)

ε

ε

ε

N(S)

N(S)

N(S)

S
+non-matching
edges

2

|N(S)| ≥ |{φ(s) : s ∈ S}|

= |S|

and so (4) holds.
If: Let M = {(a, φ(a)) : a ∈ A′} (A′ ⊆ A) is a maximum
matching. Suppose a0 ∈ A is M-unsaturated. We show that (4)
fails.



Let
A1 = {a ∈ A : such that a is reachable from a0 by an
M-alternating path.}
B1 = {b ∈ B : such that b is reachable from a0 by an
M-alternating path.}

No A1 - B\B 1

edges

a A A A A

B B B B

0 1 1 1 1

1 1 1 1



• B1 is M-saturated else there exists an M-augmenting path.
• If a ∈ A1 \ {a0} then φ(a) ∈ B1.

a 0
aφ(a)

• If b ∈ B1 then φ−1(b) ∈ A1 \ {a0}.
So |B1| = |A1| − 1. • N(A1) ⊆ B1

a 0
ab

So |N(A1)| = |A1| − 1 and (4) fails to hold.



Marriage Theorem

Theorem

Suppose G = (A ∪ B,E) is k-regular. (k ≥ 1) i.e. dG(v) = k for
all v ∈ A ∪ B. Then G has a perfect matching.

Proof k |A| = |E | = k |B| and so |A| = |B|.
Suppose S ⊆ A. Let m be the number of edges incident with S.
Then k |S| = m ≤ k |N(S)|. So (4) holds and there is a matching
of size |A| i.e. a perfect matching.



Edge Covers

A set of vertices X ⊆ V is a covering of G = (V ,E) if every
edge of E contains at least one endpoint in X .

{ } is a covering

Lemma

If X is a covering and M is a matching then |X | ≥ |M|.

Proof Let M = {(a1, bi) : 1 ≤ i ≤ k}. Then |X | ≥ |M| since
ai ∈ X or bi ∈ X for 1 ≤ i ≤ k and a1, . . . , bk are distinct. �



Konig’s Theorem

Let µ(G) be the maximum size of a matching.
Let β(G) be the minimum size of a covering.
Then µ(G) ≤ β(G).

Theorem

If G is bipartite then µ(G) = β(G).

Proof Let M be a maximum matching.
Let S0 be the M-unsaturated vertices of A.
Let S ⊇ S0 be the A-vertices which are reachable from S by
M-alternating paths.
Let T be the M-neighbours of S \ S0.



S S S0 0 0 S S S S

T T T T

Let X = (A \ S) ∪ T .
• |X | = |M|.
|T | = |S \ S0|. The remaining edges of M cover A \ S exactly
once.
• X is a cover.
There are no edges (x , y) where x ∈ S and y ∈ B \ T .
Otherwise, since y is M-saturated (no M-augmenting paths) the
M-neightbour of y would have to be in S, contradicting y /∈ T . �


