Graph Theory

Graph G = (V, E). $V = \{ \text{vertices} \}, E = \{ \text{edges} \}.$

$$\begin{aligned} V &= \{a,b,c,d,e,f,g,h,k\} \\ E &= \{(a,b),(a,g),(a,h),(a,k),(b,c),(b,k),...,(h,k)\} \end{aligned} \quad |E| = 16.$$

Digraph D = (V, A). $V = \{ \text{vertices} \}, E = \{ \text{edges} \}.$

$$V = \{a,b,c,d,e,f,g,h,k\}$$

$$E = \{(a,b),(a,g),(h,a),(b,c),(k,b),...,(h,k)\} \qquad |E| = 16.$$

Eulerian Graphs

Can you draw the diagram below without taking your pen off the paper or going over the same line twice?

Bipartite Graphs

G is bipartite if $V = X \cup Y$ where X and Y are disjoint and every edge is of the form (x, y) where $x \in X$ and $y \in Y$.

In the diagram below, A,B,C,D are women and a,b,c,d are men.

There is an edge joining x and y iff x and y like each other. The thick edges form a "perfect matching" enabling everybody to be paired with someone they like. Not all graphs will have perfect matching!

Vertex Colouring

Colours {R,B,G}

Let $C = \{colours\}$. A vertex colouring of G is a map $f: V \to C$. We say that $v \in V$ gets coloured with f(v).

The colouring is *proper* iff $(a, b) \in E \Rightarrow f(a) \neq f(b)$.

The *Chromatic Number* $\chi(G)$ is the minimum number of colours in a proper colouring.

Subgraphs

G' = (V', E') is a subgraph of G = (V, E) if $V' \subseteq V$ and $E' \subseteq E$. G' is a spanning subgraph if V' = V.

$$G[V'] = (V', \{(u, v) \in E : u, v \in V'\})$$

is the subgraph of G induced by V'.

Similarly, if $E_1 \subseteq E$ then $G[E_1] = (V_1, E_1)$ where

$$V_1 = \{ v \in V_1 : \exists e \in E_1 \text{ such that } v \in e \}$$

is also induced (by E_1).

$$E_1 = \{(a,b), (a,d)\}$$

 $G[E_1]$

Isomorphism

 $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are *isomorphic* if there exists a bijection $f: V_1 \to V_2$ such that

$$(v, w) \in E_1 \leftrightarrow (f(v), f(w)) \in E_2.$$

$$f(a)=A$$
 etc.

Complete Graphs

$$K_n = ([n], \{(i,j): 1 \le i < j \le n\})$$

is the complete graph on *n* vertices.

$$K_{m,n} = ([m] \cup [n], \{(i,j) : i \in [m], j \in [n]\})$$

is the complete bipartite graph on m + n vertices. (The notation is a little imprecise but hopefully clear.)

 K_5

Vertex Degrees

$$d_G(v) = \text{degree of vertex } v \text{ in } G$$

= number of edges incident with v

$$\delta(G) = \min_{v} d_{G}(v)$$

$$\Delta(G) = \max_{v} d_{G}(v)$$

G

$$d_{G}(a)=2$$
, $d_{G}(g)=4$ etc.

$$\delta(G)=2$$
, $\Delta(G)=4$.

Matrices and Graphs

Incidence matrix *M*: $V \times E$ matrix.

$$M(v,e) = \left\{ egin{array}{ll} 1 & v \in e \\ 0 & v \notin e \end{array}
ight.$$

Adjacency matrix A: $V \times V$ matrix.

Theorem

$$\sum_{v \in V} d_G(v) = 2|E|$$

Proof Consider the incidence matrix M. Row v has $d_G(v)$ 1's. So

1's in matrix
$$M$$
 is $\sum_{v \in V} d_{G}(v)$.

Column e has 2 1's. So

1's in matrix M is 2|E|.

Corollary

In any graph, the number of vertices of odd degree, is even.

Proof Let $ODD = \{ \text{odd degree vertices} \}$ and $EVEN = V \setminus ODD$.

$$\sum_{v \in ODD} d(v) = 2|E| - \sum_{v \in EVEN} d(v)$$

is even.

So |ODD| is even.

Paths and Walks

 $W = (v_1, v_2, \dots, v_k)$ is a walk in G if $(v_i, v_{i+1}) \in E$ for $1 \le i < k$. A path is a walk in which the vertices are distinct. W_1 is a path, but W_2 , W_3 are not.

$$W_1 = a,b,c,e,d$$

 $W_2 = a,b,a,c,e$
 $W_3 = g,f,c,e,f$

A walk is *closed* if $v_1 = v_k$. A *cycle* is a closed walk in which the vertices are distinct except for v_1, v_k .

b, c, e, d, b is a cycle.

b, *c*, *a*, *b*, *d*, *e*, *c*, *b* is not a cycle.

Theorem

Let A be the adjacency matrix of the graph G = (V, E) and let $M_k = A^k$ for $k \ge 1$. Then for $v, w \in V$, $M_k(v, w)$ is the number of distinct walks of length k from v to w.

Proof We prove this by induction on k. The base case k = 1 is immediate.

Assume the truth of the theorem for some $k \ge 1$. For $\ell \ge 0$, let $\mathcal{P}_{\ell}(x,y)$ denote the set of walks of length ℓ from x to y. Let $\mathcal{P}_{k+1}(v,w;x)$ be the set of walks from v to w whose penultimate vertex is x. Note that

$$\mathcal{P}_{k+1}(v, w; x) \cap \mathcal{P}_{k+1}(v, w; x') = \emptyset$$
 for $x \neq x'$

and

$$\mathcal{P}_{k+1}(v,w) = \bigcup_{x \in V} \mathcal{P}_{k+1}(v,w;x)$$

So,

$$\begin{aligned} |\mathcal{P}_{k+1}(v,w)| &= \sum_{x \in V} |\mathcal{P}_{k+1}(v,w;x)| \\ &= \sum_{x \in V} |\mathcal{P}_{k}(v,x)| A(x,w) \\ &= \sum_{x \in V} M_{k}(v,x) A(x,w) \quad \text{induction} \\ &= M_{k+1}(v,w) \quad \text{matrix multiplication} \end{aligned}$$

Connected components

We define a relation \sim on V. $a \sim b$ iff there is a walk from a to b.

 $a \sim b$ but $a \not\sim d$.

Claim: \sim is an equivalence relation.

reflexivity $v \sim v$ as v is a (trivial) walk from v to v.

Symmetry $u \sim v$ implies $v \sim u$.

 $(u = u_1, u_2 \dots, u_k = v)$ is a walk from u to v implies $(u_k, u_{k-1}, \dots, u_1)$ is a walk from v to u.

Transitivity $u \sim v$ and $v \sim w$ implies $u \sim w$. $W_1 = (u = u_1, u_2 \dots, u_k = v)$ is a walk from u to v and $W_2 = (v_1 = v, v_2, v_3, \dots, v_\ell = w)$ is a walk from v to w imples that $(W_1, W_2) = (u_1, u_2 \dots, u_k, v_2, v_3, \dots, v_\ell)$ is a walk from u to w.

The equivalence classes of \sim are called *connected* components.

In general $V = C_1 \cup V_2 \cup \cdots \cup C_r$ where C_1, C_2, \ldots, C_r are the connected comonents.

We let comp(G)(=r) be the number of components of G. G is connected iff comp(G) = 1 i.e. there is a walk between every pair of vertices.

Thus C_1, C_2, \ldots, C_r induce connected subgraphs $G[C_1], \ldots, G[C_r]$ of G

For a walk W we let $\ell(W)$ = no. of edges in W.

Lemma

Suppose W is a walk from vertex a to vertex b and that W minimises ℓ over all walks from a to b. Then W is a path.

Proof Suppose $W = (a = a_0, a_1, \dots, a_k = b)$ and $a_i = a_j$ where $0 \le i < j \le k$. Then $W' = (a_0, a_1, \dots, a_i, a_{j+1}, \dots, a_k)$ is also a walk from a to b and $\ell(W') = \ell(W) - (j-i) < \ell(W) -$ contradiction.

Corollary

If $a \sim b$ then there is a path from a to b.

So *G* is connected $\leftrightarrow \forall a, b \in V$ there is a path from *a* to *b*.

Breadth First Search - BFS

Fix $v \in V$. For $w \in V$ let

d(v, w) =length of shortest path from v to w.

For t = 0, 1, 2, ..., let

$$A_t = \{ w \in V : d(v, w) = t \}.$$

In BFS we construct A_0, A_1, A_2, \ldots , by

$$A_{t+1} = \{ w \notin A_0 \cup A_1 \cup \cdots \cup A_t : \exists \text{ an edge } (u, w) \text{ such that } u \in A_t \}.$$

Note : no edges
$$(a,b)$$
 between A_k and A_ℓ for $\ell-k\geq 2, \ \text{else} \ w\in A_{k+1}\neq A_\ell.$ (1)

In this way we can find all vertices in the same component C as v.

By repeating for $v' \notin C$ we find another component etc.

Characterisation of bipartite graphs

Theorem

G is bipartite \leftrightarrow **G** has no cycles of odd length.

Proof \rightarrow : $G = (X \cup Y, E)$.

Typical Cycle

Suppose $C = (u_1, u_2, ..., u_k, u_1)$ is a cycle. Suppose $u_1 \in X$. Then $u_2 \in Y, u_3 \in X, ..., u_k \in Y$ implies k is even.

← Assume G is connected, else apply following argument to each component.

Choose $v \in V$ and construct A_0, A_1, A_2, \ldots , by BFS.

$$X = A_0 \cup A_2 \cup A_4 \cup \cdots$$
 and $Y = A_1 \cup A_3 \cup A_5 \cup \cdots$

We need only show that X and Y contain no edges and then all edges must join X and Y. Suppose X contains edge (a,b) where $a \in A_k$ and $b \in A_\ell$.

(i) If $k \neq \ell$ then $|k - \ell| \ge 2$ which contradicts (1)

(ii)

 $\mathbf{k} = \ell$:

There exist paths $(v = v_0, v_1, v_2, ..., v_k = a)$ and $(v = w_0, w_1, w_2, ..., w_k = b)$. Let $j = \max\{t : v_t = w_t\}$.

$$(v_j, v_{j+1}, \ldots, v_k, w_k, w_{k-1}, \ldots, w_j)$$

is an odd cycle – length 2(k - j) + 1 – contradiction.

Trees

A tree is a graph which is

- (a) Connected and
- (b) has no cycles (acyclic).

Lemma

Let the components of G be

$$C_1, C_2, \ldots, C_r$$
, Suppose $e = (u, v) \notin E$, $u \in C_i$, $v \in C_j$.

- (a) $i = j \Rightarrow comp(G + e) = comp(G)$.
- (b) $i \neq j \Rightarrow comp(G + e) = comp(G) 1$.

(a)

(b)

Proof Every path P in G + e which is not in G must contain e. Also,

$$comp(G + e) \leq comp(G)$$
.

Suppose

$$(x = u_0, u_1, \ldots, u_k = u, u_{k+1} = v, \ldots, u_\ell = y)$$

is a path in G + e that uses e. Then clearly $x \in C_i$ and $y \in C_j$. (a) follows as now no new relations $x \sim y$ are added.

(b) Only possible new relations $x \sim y$ are for $x \in C_i$ and $y \in C_j$. But $u \sim v$ in G + e and so $C_i \cup C_j$ becomes (only) new component.

Lemma

G = (V, E) is acyclic (forest) with (tree) components

$$C_1, C_2, \dots, C_k$$
. $|V| = n$. $e = (u, v) \notin E$, $u \in C_i$, $v \in C_j$.

- (a) $i = j \Rightarrow G + e$ contains a cycle.
- (b) $i \neq j \Rightarrow G + e$ is acyclic and has one less component.
- (c) G has n k edges.

(a) $u, v \in C_i$ implies there exists a path $(u = u_0, u_1, \dots, u_\ell = v)$ in G. So G + e contains the cycle $u_0, u_1, \dots, u_\ell, u_0$.

(b) Suppose G + e contains the cycle C. $e \in C$ else C is a cycle of G.

$$C = (u = u_0, u_1, \dots, u_\ell = v, u_0).$$

But then **G** contains the path $(u_0, u_1, \dots, u_\ell)$ from u to v – contradiction.

Drop in number of components follows from previous Lemma.

The rest follows from

(c) Suppose
$$\boldsymbol{E} = \{\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_r\}$$
 and

$$G_i = (V, \{e_1, e_2, \dots, e_i\}) \text{ for } 0 \le i \le r.$$

Claim: G_i has n - i components.

Induction on i.

i = 0: G_0 has no edges.

i > 0: G_{i-1} is acyclic and so is G_i . It follows from part (a) that e_i joins vertices in distinct components of G_{i-1} . It follows from (b) that G_i has one less component than G_{i-1} .

End of proof of claim

Thus
$$r = n - k$$
 (we assumed G had k components).

Corollary

If a tree T has n vertices then

- (a) It has n-1 edges.
- (b) It has at least 2 vertices of degree 1, $(n \ge 2)$.

Proof (a) is part (c) of previous lemma. k = 1 since T is connnected.

(b) Let s be the number of vertices of degree 1 in T. There are no vertices of degree 0 – these would form separate components. Thus

$$2n-2=\sum_{v\in V}d_T(v)\geq 2(n-s)+s.$$

So
$$s \geq 2$$
.

Theorem

Suppose |V| = n and |E| = n - 1. The following three statements become equivalent.

- (a) G is connected.
- (b) G is acyclic.
- (c) G is a tree.

Let
$$E = \{e_1, e_2, \dots, e_{n-1}\}$$
 and $G_i = (V, \{e_1, e_2, \dots, e_i\})$ for $0 \le i \le n-1$.

- (a) \Rightarrow (b): G_0 has n components and G_{n-1} has 1 component. Addition of each edge e_i must reduce the number of components by 1. Thus G_{i-1} acyclic implies G_i is acyclic. (b) follows as G_0 is acyclic.
- $(b)\Rightarrow (c)$: We need to show that G is connected. Since G_{n-1} is acyclic, $comp(G_i)=comp(G_{i-1})-1$ for each i. Thus $comp(G_{n-1})=1$.
- $(c) \Rightarrow (a)$: trivial.

Corollary

If v is a vertex of degree 1 in a tree T then T - v is also a tree.

Proof Suppose T has n vertices and n-1 edges. Then T-v has n-1 vertices and n-2 edges. It acyclic and so must be a tree.

How many trees? - Cayley's Formula

Prüfer's Correspondence

There is a 1-1 correspondence ϕ_V between spanning trees of K_V (the complete graph with vertex set V) and sequences V^{n-2} . Thus for $n \ge 2$

$$\tau(K_n) = n^{n-2}$$
 Cayley's Formula.

```
Assume some arbitrary ordering V = \{v_1 < v_2 < \cdots < v_n\}. \phi_V(T): begin T_1 := T; for i = 1 to n - 2 do begin s_i := \text{neighbour of least leaf } \ell_i \text{ of } T_i. T_{i+1} = T_i - \ell_i. end \phi_V(T) = s_1 s_2 \dots s_{n-2} end
```


6,4,5,14,2,6,11,14,8,5,11,4,2

Lemma

 $v \in V(T)$ appears exactly $d_T(v) - 1$ times in $\phi_V(T)$.

Proof Assume $n = |V(T)| \ge 2$. By induction on n. n = 2: $\phi_V(T) = \Lambda$ = empty string.

Assume $n \ge 3$:

 $\phi_V(T) = s_1 \phi_{V_1}(T_1)$ where $V_1 = V - \{s_1\}$. s_1 appears $d_{T_1}(s_1) - 1 + 1 = d_T(s_1) - 1$ times – induction. $v \neq s_1$ appears $d_{T_1}(v) - 1 = d_T(v) - 1$ times – induction.

Construction of ϕ_V^{-1}

Inductively assume that for all |X| < n there is an inverse function ϕ_X^{-1} . (True for n=2).

Now define ϕ_V^{-1} by

$$\phi_V^{-1}(s_1s_2\dots s_{n-2}) = \phi_{V_1}^{-1}(s_2\dots s_{n-2})$$
 plus edge $s_1\ell_1$,

where $\ell_1 = \min\{s \in V : s \notin \{s_1, s_2, \dots s_{n-2}\}\}$ and $V_1 = V - \{\ell_1\}$. Then

$$\phi_V(\phi_V^{-1}(s_1s_2...s_{n-2})) = s_1\phi_{V_1}(\phi_{V_1}^{-1}(s_2...s_{n-2}))$$

= $s_1s_2...s_{n-2}$.

Thus ϕ_V has an inverse and the correspondence is established.

n = 10s = 5, 3, 7, 4, 4, 3, 2, 6.

Number of trees with a given degree sequence

Corollary

If $d_1 + d_2 + \cdots + d_n = 2n - 2$ then the number of spanning trees of K_n with degree sequence d_1, d_2, \ldots, d_n is

$$\binom{n-2}{d_1-1,\,d_2-1,\ldots,\,d_n-1}=\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}.$$

Proof From Prüfer's correspondence this is the number of sequences of length n-2 in which 1 appears d_1-1 times, 2 appears d_2-1 times and so on.

Eulerian Graphs

An *Eulerian cycle* of a graph G = (V, E) ia closed walk which uses each edge $e \in E$ exactly once.

The walk using edges a, b, c, d, e, f, g, h, j, k in this order is an Eulerian cycle.

Theorem

A connected graph is Eulerian i.e. has an Eulerian cycle, iff it has no vertex of odd degree.

Proof Suppose $W = (v_1, v_2, \dots, v_m, v_1)$ (m = |E|) is an Eulerian cycle. Fix $v \in V$. Whenever W visits v it enters through a new edge and leaves through a new edge. Thus each visit requires 2 new edges. Thus the degree of v is even.

The converse is proved by induction on |E|. The result is true for |E| = 3. The only possible graph is a triangle. Assume |E| > 4. G is not a tree, since it has no vertex of degree 1. Therefore it contains a cycle C. Delete the edges of C. The remaining graph has components K_1, K_2, \ldots, K_r . Each K_i is connected and is of even degree – deleting C removes 0 or 2 edges incident with a given $v \in V$. Also, each K_i has strictly less than |E| edges. So, by induction, each K_i has an Eulerian cycle, C_i say. We create an Eulerian cycle of G as follows: let $C = (v_1, v_2, \dots, v_s, v_1)$. Let v_{i_t} be the first vertex of C which is in K_t . Assume w.l.o.g. that $i_1 < i_2 < \cdots < i_r$. W = $(v_1, v_2, \ldots, v_{i_1}, C_1, v_{i_1}, \ldots, v_{i_p}, C_2, v_{i_p}, \ldots, v_{i_r}, C_r, v_{i_r}, \ldots, v_1)$

is an Eulerian cycle of G.

Independent sets and cliques

 $S \subseteq V$ is *independent* if no edge of G has both of its endpoints in S.

 $\alpha(G)$ =maximum size of an independent set of G.

Theorem

If graph G has n vertices and m edges then

$$\alpha(G) \geq \frac{n^2}{2m+n}.$$

Note that this says that $\alpha(G)$ is at least $\frac{n}{d+1}$ where d is the average degree of G.

Proof Let $\pi(1), \pi(2), \dots, \pi(\nu)$ be an arbitrary permutation of V. Let N(v) denote the set of neighbours of vertex v and let

$$I(\pi) = \{v : \pi(w) > \pi(v) \text{ for all } w \in N(v)\}.$$

Claim

I is an independent set.

Proof of Claim 1

```
Suppose w_1, w_2 \in I(\pi) and w_1 w_2 \in E. Suppose \pi(w_1) < \pi(w_2). Then w_2 \notin I(\pi) — contradiction.
```


Claim

If π is a random permutation then

$$\mathbf{E}(|I|) = \sum_{v \in V} \frac{1}{d(v) + 1}.$$

Proof: Let
$$\delta(v) = \begin{cases} 1 & v \in I \\ 0 & v \notin I \end{cases}$$

Thus

$$|I| = \sum_{v \in V} \delta(v)$$

$$\mathbf{E}(|I|) = \sum_{v \in V} \mathbf{E}(\delta(v))$$

$$= \sum_{v \in V} \mathbf{Pr}(\delta(v) = 1).$$

Now $\delta(v)=1$ iff v comes before all of its neighbours in the order π . Thus

$$\mathbf{Pr}(\delta(v) = 1) = \frac{1}{d(v) + 1}$$

and the claim follows.

Thus there exists a π such that

$$|I(\pi)| \geq \sum_{v \in V} \frac{1}{d(v) + 1}$$

and so

$$\alpha(G) \geq \sum_{v \in V} \frac{1}{d(v) + 1}.$$

We finish the proof of the theorem by showing that

$$\sum_{v\in V}\frac{1}{d(v)+1}\geq \frac{n^2}{2m+n}.$$

This follows from the following claim by putting $x_v = d(v) + 1$ for $v \in V$.

Claim

If $x_1, x_2, ... x_k > 0$ then

$$\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_k} \ge \frac{k^2}{x_1 + x_2 + \dots + x_k}.$$
 (2)

Proof

Multiplying (2) by $x_1 + x_2 + \cdots + x_k$ and subtracting k from both sides we see that (2) is equivalent to

$$\sum_{1 \le i < j \le k} \left(\frac{x_i}{x_j} + \frac{x_j}{x_i} \right) \ge k(k-1). \tag{3}$$

But for all x, y > 0

$$\frac{x}{y} + \frac{y}{x} \ge 2$$

and (3) follows.

Corollary

If G contains no clique of size k then

$$m\leq \frac{(k-2)n^2}{2(k-1)}$$

For example, if G contains no triangle then $m \le n^2/4$.

Proof Let \bar{G} be the *complement* of G i.e. $G + \bar{G} = K_n$.

By assumption

$$k-1\geq \alpha(\bar{G})\geq \frac{n^2}{n(n-1)-2m+n}.$$

(□) <□) < =) < =) < 0</p>

Parallel searching for the maximum – Valiant

We have n processors and n numbers x_1, x_2, \ldots, x_n . In each round we choose n pairs i, j and compare the values of x_i, x_j . The set of pairs chosen in a round can depend on the results of previous comparisons.

Aim: find i^* such that $x_{i^*} = \max_i x_i$.

Claim

For any algorithm there exists an input which requires at least $\frac{1}{2} \log_2 \log_2 n$ rounds.

Suppose that the first round of comparisons involves comparing x_i , x_j for edge ij of the above graph and that the arrows point to the larger of the two values. Consider the independent set $\{1, 2, 5, 8, 9\}$. These are the indices of the 5 largest elements, but their relative order can be arbitrary since there is no implied relation between their values.

Let C(a, b) be the maximum number of rounds needed for a processors to compute the maximum of b values in this way.

Lemma

$$C(a,b) \geq 1 + C\left(a, \left\lceil \frac{b^2}{2a+b} \right\rceil \right).$$

Proof The set of b comparisons defines a b-edge graph G on a vertices where comparison of x_i, x_j produces an edge ij of G. Now,

$$\alpha(G) \geq \left\lceil \frac{b}{\frac{2a}{b} + 1} \right\rceil = \left\lceil \frac{b^2}{2a + b} \right\rceil.$$

For any independent set I it is always possible to define values for x_1, x_2, \ldots, x_a such I is the index set of the |I| largest values and so that the comparisons do not yield any information about the ordering of the elements $x_i, i \in I$.

Thus after one round one has the problem of finding the maximum among $\alpha(G)$ elements.

Now define the sequence c_0, c_1, \ldots by $c_0 = n$ and

$$c_{i+1} = \left| \frac{c_i^2}{2n + c_i} \right|.$$

It follows from the previous lemma that

$$c_k \ge 2$$
 implies $C(n, n) \ge k + 1$.

Claim 4 now follows from

Claim

$$c_i \geq \frac{n}{3^{2^i-1}}.$$

By induction on *i*. Trivial for i = 0. Then

$$c_{i+1} \geq \frac{n^2}{3^{2^{i+1}-2}} \times \frac{1}{2n + \frac{n}{3^{2^{i}-1}}}$$

$$= \frac{n}{3^{2^{i+1}-1}} \times \frac{3}{2 + \frac{1}{3^{2^{i}-1}}}$$

$$\geq \frac{n}{3^{2^{i+1}-1}}.$$

We found an upper bound on the number of edges $m \le n^2/4$ on graphs without triangles. We find a smaller bound if we exclude cycles of length four.

Theorem

If G contains no cycles of length four then $m \le (n^{3/2} + n)/2$.

Proof We count in two ways the number N of paths x, y, z of length two.

For an unordered pair x, z there can be at most one y such that x, y, z forms a path. Otherwise G will contain a C_4 . Thus

$$N \leq \binom{n}{2}$$
.

Let d(y) denote the degree of z for $y \in V$. In which case there are $\binom{d(y)}{2}$ choices of x, z to make a path x, y, z.

Thus

$$N = \sum_{y \in V} {d(y) \choose 2}$$
$$= -m + \frac{1}{2} \sum_{y \in V} d(y)^2$$
$$\geq -m + \frac{n}{2} \left(\frac{2m}{n}\right)^2$$

Thus

$$\frac{n^2-n}{2} \geq -m + \frac{2m^2}{n}$$
.

We re-arrange to give

$$m^2 - \frac{n}{2}m - \frac{n^3 - n^2}{4} \le 0$$

or

$$\left(m-\frac{n}{4}\right)^2-\frac{n^3}{4}-\frac{n^2}{16}\leq 0$$

which implies that

$$m-\frac{n}{4}\leq \frac{n^{3/2}}{2}+\frac{n}{4}.$$

Matchings

A matching M of a graph G = (V, E) is a set of edges, no two of which are incident to a common vertex.

M-alternating path

An *M*-alternating path joining 2 *M*-unsaturated vertices is called an *M*-augmenting path.

M is a maximum matching of G if no matching M' has more edges.

Theorem

M is a maximum matching iff M admits no M-augmenting paths.

Proof Suppose *M* has an augmenting path

$$P = (a_0, b_1, a_1, \dots, a_k, b_{k+1})$$
 where $e_i = (a_{i-1}, b_i) \notin M$, $1 \le i \le k+1$ and

$$f_i = (b_i, a_i) \in M, \ 1 \leq i \leq k.$$

$$M' = M - \{f_1, f_2, \dots, f_k\} + \{e_1, e_2, \dots, e_{k+1}\}.$$

- |M'| = |M| + 1.
- M' is a matching

For $x \in V$ let $d_M(x)$ denote the degree of x in matching M, So

$$d_{M}(x) \text{ is 0 or 1. } d_{M'}(x) = \begin{cases} d_{M}(x) & x \notin \{a_{0}, b_{1}, \dots, b_{k+1}\} \\ d_{M}(x) & x \in \{b_{1}, \dots, a_{k}\} \\ d_{M}(x) + 1 & x \in \{a_{0}, b_{k+1}\} \end{cases}$$

So if *M* has an augmenting path it is not maximum.

Suppose M is not a maximum matching and |M'| > |M|.

Consider $H = G[M \nabla M']$ where $M \nabla M' = (M \setminus M') \cup (M' \setminus M)$ is the set of edges in *exactly* one of M, M'.

Maximum degree of H is $2 - \le 1$ edge from M or M'. So H is a collection of vertex disjoint alternating paths and cycles.

Bipartite Graphs

Let $G = (A \cup B, E)$ be a bipartite graph with bipartition A, B. For $S \subseteq A$ let $N(S) = \{b \in B : \exists a \in S, (a, b) \in E\}$.

Clearly, $|M| \le |A|, |B|$ for any matching M of G.

Systems of Distinct Representatives

Let S_1, S_2, \ldots, S_m be arbitrary sets. A set s_1, s_2, \ldots, s_m of m disitinct elements is a system of distinct representatives if $s_i \in S_i$ for $i = 1, 2, \ldots, m$.

For example $\{1, 2, 4\}$ is a system of distinct representatives for $\{1, 2, 3\}, \{2, 5, 6\}, \{2, 4, 5\}.$

Now define the bipartite graph G with vertex bipartition [m], S where $S = \bigcup_{i=1}^{m} S_i$ and an edge (i, s) iff $s \in S_i$.

Then $S_1, S_2, ..., S_m$ has a system of distinct representatives iff G has a matching of size m.

Hall's Theorem

Theorem

G contains a matching of size |A| iff

$$|N(S)| \ge |S| \qquad \forall S \subseteq A.$$
 (4)

 $N(\{a_1, a_2, a_3\}) = \{b_1, b_2\}$ and so at most 2 of a_1, a_2, a_3 can be saturated by a matching.

: Suppose $M = \{(a, \phi(a)) : a \in A\}$ saturates A.

and so (4) holds.

If: Let $M = \{(a, \phi(a)) : a \in A'\}$ $(A' \subseteq A)$ is a maximum matching. Suppose $a_0 \in A$ is M-unsaturated. We show that (4) fails.

Let

 $A_1 = \{a \in A : \text{ such that } a \text{ is reachable from } a_0 \text{ by an } M\text{-alternating path.}\}$ $B_1 = \{b \in B : \text{ such that } b \text{ is reachable from } a_0 \text{ by an } M\text{-alternating path.}\}$

- B₁ is M-saturated else there exists an M-augmenting path.
- If $a \in A_1 \setminus \{a_0\}$ then $\phi(a) \in B_1$.

• If $b \in B_1$ then $\phi^{-1}(b) \in A_1 \setminus \{a_0\}$. So $|B_1| = |A_1| - 1$. • $N(A_1) \subseteq B_1$

So $|N(A_1)| = |A_1| - 1$ and (4) fails to hold.

Marriage Theorem

Theorem

Suppose $G = (A \cup B, E)$ is k-regular. $(k \ge 1)$ i.e. $d_G(v) = k$ for all $v \in A \cup B$. Then G has a perfect matching.

Proof k|A| = |E| = k|B| and so |A| = |B|. Suppose $S \subseteq A$. Let m be the number of edges incident with S. Then $k|S| = m \le k|N(S)|$. So (4) holds and there is a matching of size |A| i.e. a perfect matching.

Edge Covers

A set of vertices $X \subseteq V$ is a *covering* of G = (V, E) if every edge of E contains at least one endpoint in X.

Lemma

If X is a covering and M is a matching then $|X| \ge |M|$.

Proof Let $M = \{(a_1, b_i) : 1 \le i \le k\}$. Then $|X| \ge |M|$ since $a_i \in X$ or $b_i \in X$ for $1 \le i \le k$ and a_1, \dots, b_k are distinct.

Konig's Theorem

Let $\mu(G)$ be the maximum size of a matching.

Let $\beta(G)$ be the minimum size of a covering.

Then $\mu(G) \leq \beta(G)$.

Theorem

If G is bipartite then $\mu(G) = \beta(G)$.

Proof Let *M* be a maximum matching.

Let S_0 be the *M*-unsaturated vertices of *A*.

Let $S \supseteq S_0$ be the *A*-vertices which are reachable from *S* by *M*-alternating paths.

Let T be the M-neighbours of $S \setminus S_0$.

Let $X = (A \setminus S) \cup T$.

- $\bullet |X| = |M|.$
- $|T| = |S \setminus S_0|$. The remaining edges of M cover $A \setminus S$ exactly once.
- X is a cover.

There are no edges (x, y) where $x \in S$ and $y \in B \setminus T$. Otherwise, since y is M-saturated (no M-augmenting paths) the M-neightbour of y would have to be in S, contradicting $y \notin T$. \square