
DISCRETE PROBABILITY

Discrete Probability



Ω is a finite or countable set – called the Probability Space

P : Ω → R+.

∑

ω∈Ω P(ω) = 1.

If ω ∈ Ω then P(ω) is the probability of ω.
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Fair Coin
Ω = {H,T},P(H) = P(T ) = 1/2.

Dice
Ω = {1, 2, . . . , 6},P(i) = 1/6, 1 ≤ i ≤ 6.

Both are examples of a uniform distribution:

P(ω) =
1
|Ω| ∀ω ∈ Ω.
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Geometric or number of Bernouilli trials until
success

Ω = {1, 2, . . . , },P(k) = (1 − p)k−1p, k ∈ Ω.

Repeat "experiment" until success – k is the total number of
trials.
p is the probability of success S and 1 − p is the probability of
failure F .

P(S) = p,P(FS) = p(1 − p),
P(FFS) = (1 − p)2p,P(FFFS) = (1 − p)3p . . . ,.

Note that
∞
∑

k=1

(1 − p)k−1p =
p

1 − (1 − p)
= 1.
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Roll Two Dice

Probability Space 1 :
Ω = [6]2 = {(x1, x2) : 1 ≤ x1, x2 ≤ 6}
P(x1, x2) = 1/36 for all x1, x2.

Probability Space 2 :
Ω = {2, 3, 4, , . . . , 12}
P(2) = 1/36, P(3) = 2/36, P(4) = 3/36, . . . ,P(12) = 1/36.
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Events

A ⊆ Ω is called an event.

P(A) =
∑

ω∈A

P(ω).

(i) Two Dice
A = {x1 + x2 = 7}
where xi is the value of dice i .
A = {(1, 6), (2, 5), . . . , (6, 1)} and so

P(A) = 1/6.
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(ii) Pennsylvania Lottery
Choose 7 numbers I from[80]. Then the state randomly
chooses J ⊆ [80], |J| = 11.

WIN = {J : J ⊇ I}.

Ω = {11 element subsets of [80]} with uniform distribution.
|WIN| = number of subsets which contain I –

(73
4

)

.

P(WIN) =

(73
4

)

(80
11

)
=

(11
7

)

(80
7

)

=
9

86637720
≈ 1

9, 626, 413
.
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Poker

Choose 5 cards at random. |Ω| =
(52

5

)

, uniform distribution.

(i) Triple – 3 cards of same value e.g. Q,Q,Q,7,5.
P(Triple) = (13 × 4 × 48 × 44/(2

(52
5

)

) ≈ .021.

(ii) Full House – triple plus pair e.g. J,J,J,7,7.
P(FullHouse) = (13 × 4 × 12 × 6)/

(52
5

)

≈ .007.

(iii) Four of kind – e.g. 9,9,9,9,J.
P(Four of Kind) = (13 × 48)/

(52
5

)

= 1/16660 ≈ .00006.
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Birthday Paradox

Ω = [n]k – uniform distribution, |Ω| = nk .
D = {ω ∈ Ω; symbols are distinct}.

P(D) =
n(n − 1)(n − 2) . . . (n − k + 1)

nk .

n = 365, k = 26 – birthdays of 26 randomly chosen people.

P(D) < .5 i.e. probability 26 randomly chosen people have
distinct birthdays is <.5. (Assumes people are born on random
days).
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Balls in Boxes

m distinguishable balls in n distinguishable boxes.
Ω = [n]m = {(b1, b2, . . . , bm)} where bi denotes the box
containing ball i .
Uniform distribution.

E = {Box 1 is empty}.

P(E) =
(n − 1)m

nm

=

(

1 − 1
n

)m

→ e−c as n → ∞

if m = cn where c > 0 is constant.
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Explanation of limit

: (1 − 1/n)cn → e−c .

1 + x ≤ ex for all x ;

1 x ≥ 0: 1 + x ≤ 1 + x + x2/2! + x3/3! + · · · = ex .

2 x < −1: 1 + x < 0 ≤ ex .

3 x = −y , 0 ≤ y ≤ 1:
1−y ≤ 1−y+(y2/2!−y3/3!)+(y4/4!−y5/5!)+ · · · = e−y .

4 So (1 − 1/n)cn ≤ (e−1/n)cn = e−c .
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e−x−x2 ≤ 1 − x if 0 ≤ x ≤ 1/100. (1)

loge(1 − x) = −x − x2

2
− x3

3
− x4

4
− · · ·

≥ −x − x2

2
− x2

(

x
3
+

x2

3
− · · ·

)

= −x − x2

2
− x3

3(1 − x)

≥ −x − x2.

This proves (1). So, for large n,

(1 − 1/n)cn ≥ exp{−cn(1/n + 1/n2)}
= exp{−c − c/n}
→ ǫ−c .
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Random Walk

A particle starts at 0 on the real line and each second makes a
random move left of size 1, (probability 1/2) or right of size 1
(probability 1/2).
Consider n moves. Ω = {L,R}n.
For example if n = 4 then LLRL stands for move left, move left,
move right, move left.
Each sequence ω is given an equal probability 2−n.
Let Xn = Xn(ω) denote the position of the particle after n
moves.
Suppose n = 2m. What is the probability Xn = 0?

(n
m

)

2n ≈
√

2
πn

.

Stirling’s Formula: n! ≈
√

2πn(n/e)n.
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Boole’s Inequality

A,B ⊆ Ω.

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

≤ P(A) + P(B) (2)

If A,B are disjoint events i.e. A ∩ B = ∅ then

P(A ∪ B) = P(A) + P(B)

.
Example: Two Dice. A = {x1 ≥ 3} and B = {x2 ≥ 3}.
Then P(A) = P(B) = 2/3 and

P(A ∪ B) = 8/9 < P(A) + P(B).
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More generally,

P

(

n
⋃

i=1

Ai

)

≤
n
∑

i=1

P(Ai). (3)

Inductive proof
Base case: n = 1

Inductive step: assume (3) is true.

P

(

n+1
⋃

i=1

Ai

)

≤ P

(

n
⋃

i=1

Ai

)

+ P(An+1) by (2)

≤
n
∑

i=1

P(Ai) + P(An+1) by (3)
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Colouring Problem

Theorem Let A1,A2, . . . ,An be subsets of A and |Ai | = k for
1 ≤ i ≤ n. If n < 2k−1 then there exists a partition A = R ∪ B
such that

Ai ∩ R 6= ∅ and Ai ∩ B 6= ∅ 1 ≤ i ≤ n.

[R = Red elements and B= Blue elements.]
Proof Randomly colour A.
Ω = {R,B}A = {f : A → {R,B}}, uniform distribution.

BAD = {∃i : Ai ⊆ R or Ai ⊆ B}.

Claim: P(BAD) < 1.
Thus Ω \ BAD 6= ∅ and this proves the theorem.
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BAD(i) = {Ai ⊆ R or Ai ⊆ B}

BAD =
n
⋃

i=1

BAD(i).

P(BAD) ≤
n
∑

i=1

P(BAD(i))

=

n
∑

i=1

(

1
2

)k−1

= n/2k−1

< 1.
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Example of system which is not 2-colorable.

Let n =
(2k−1

k

)

and A = [2k − 1] and

{A1,A2, . . . ,An} =

(

[2k − 1]
k

)

.

Then in any 2-coloring of A1,A2, . . . ,An there is a set Ai all of
whose elements are of one color.

Suppose A is partitioned into 2 sets R,B. At least one of these
two sets is of size at least k (since (k − 1) + (k − 1) < 2k − 1).
Suppose then that R ≥ k and let S be any k -subset of R. Then
there exists i such that Ai = S ⊆ R.
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Tournaments

n players in a tournament each play each other i.e. there are
(n

2

)

games.

Fix some k . Is it possible that for every set S of k players there
is a person wS who beats everyone in S?
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Suppose that the results of the tournament are decided by a
random coin toss.

Fix S, |S| = k and let ES be the event that nobody beats
everyone in S.

The event
E =

⋃

S

ES

is that there is a set S for which wS does not exist.

We only have to show that Pr(E) < 1.
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Pr(E) ≤
∑

|S|=k

Pr(ES)

=

(

n
k

)

(1 − 2−k )n−k

< nke−(n−k)2−k

= exp{k ln n − (n − k)2−k}
→ 0

since we are assuming here that k is fixed independent of n.
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Random Binary Search Trees

A binary tree consists of a set of nodes, one of which is the root.
Each node is connected to 0,1 or 2 nodes below it and every
node other than the root is connected to exactly one node
above it. The root is the highest node.
The depth of a node is the number of edges in its path to the
root.
The depth of a tree is the maximum over the depths of its
nodes.
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Starting with a tree T0 consisting of a single root r , we grow a
tree Tn as follows:

The n’th particle starts at r and flips a fair coin. It goes left (L)
with probability 1/2 and right (R) with probability 1/2.

It tries to move along the tree in the chosen direction. If there is
a node below it in this direction then it goes there and continues
its random moves. Otherwise it creates a new node where it
wanted to move and stops.
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Let Dn be the depth of this tree.
Claim: for any t ≥ 0,

P(Dn ≥ t) ≤ (n2−(t−1)/2)t .

Proof The process requires at most n2 coin flips and so we let
Ω = {L,R}n2

– most coin flips will not be needed most of the
time.

DEEP = {Dn ≥ t}.
For P ∈ {L,R}t and S ⊆ [n], |S| = t let

DEEP(P,S) = {the particles S = {s1, s2, . . . , st} follow P in the
tree i.e. the first i moves of si are along P, 1 ≤ i ≤ t}.

DEEP =
⋃

P

⋃

S

DEEP(P,S).
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4

8

17

11

13

t=5 and DEEP(P,S) occurs if 

17 goes LRR...
11 goes LRRL...
13 goes LRRLR...

4   goes L...
8   goes LR...

                    S={4,8,11,13,17}
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P(DEEP) ≤
∑

P

∑

S

P(DEEP(P,S))

=
∑

P

∑

S

2−(1+2+···+t)

=
∑

P

∑

S

2−t(t+1)/2

= 2t
(

n
t

)

2−t(t+1)/2

≤ 2tnt2−t(t+1)/2

= (n2−(t−1)/2)t .

So if we put t = A log2 n then

P(Dn ≥ A log2 n) ≤ (2n1−A/2)A log2 n

which is very small, for A > 2.
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Conditional Probability

Suppose A ⊆ Ω. We define an induced probability PA by

PA(ω) =
P(ω)
P(A)

for ω ∈ A.

Usually write P(B | A) for PA(B).
If B is an arbitrary subset of Ω we write

P(B | A) = PA(A ∩ B) =
P(A ∩ B)

P(A)
.
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Two fair dice are thrown. Given that the first shows 3, what is
the probability that the total exceeds 6? The answer is
obviously 1

2 since the second must show 4,5 or 6.
In detail: Ω = [6]2 with uniform mesaure. Let

A = {(i , j) ∈ [6]2 : i = 3}.
B = {(i , j) ∈ [6]2 : i + j > 6}

A ∩ B = {(i , j) ∈ [6]2 : i = 3, j > 3}.

Thus

P(A) =
1
6
, P(A ∩ B) =

3
36

=
1
12

and so

P(A | B) =
1/12
1/6

=
1
2
.
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Suppose that a family has two children and that each child is
equally likely to be a Boy or a Girl. What is the probability that
the family has two boys, given that it has at least one Boy.
Probability Space: {BB,BG,GB,GG}
with uniform measure, where GB means that the first child is a
Girl and the second child is a Boy etc..
A = {At least one child is a Boy}={BG,GB,BB}. So

P(A) = 3/4.

and

P({BB} | A) =
P({BB} ∩ A)

P(A)
=

P({BB})
P(A)

=
1
3
.

Discrete Probability



Monty Hall Paradox

Suppose you’re on a game show, and you’re given the choice of
three doors: Behind one door is a car; behind the others, goats.
You pick a door, say Number a, and the host, who knows what’s
behind the other doors, opens another door b which has a goat.
He then says to you, ’Do you want to pick door Number
c 6= a, b?’ Is it to your advantage to take the switch?
The door hiding the car has been chosen randomly, if door a
hides the car then the host chooses b randomly and there is an
implicit assumption that you prefer a car to a goat.
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Incorrect Analysis:

Probability space is {1, 2, 3} where i denotes that the car is
behind door i and P(i) = 1

3 for i = 1, 2, 3.

Answer: Assume for example that a = 1. Then for b = 2, 3,

P(1 | not b) =
P(1)

P(not b)
=

P(1)
P(1) + P(5 − b)

=
1
2
.

So there is no advantage to be gained from switching.
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Correct Analysis:

Assume that a = 1.
Probability space is {12, 13, 23, 32} where ij denotes that the
car is behind door i and the host opens door j .

P(12) = P(13) = 1
6 and P(23) = P(32) = 1

3 . So,

P(1) = P(12) + P(13) =
1
3
.

So there is an advantage to be gained from switching.
Look at it this way: The probability the car is not behind door a
is 2/3 and switching causes you to win whenever this happens!
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Binomial

n coin tosses.
p = P(Heads) for each toss.
Ω = {H,T}n.

P(ω) = pk (1 − p)n−k

where k is the number of H ’s in ω.

E.g. P(HHTTHTHHTHHTHT ) = p8(1 − p)6.

Fix k . A = {ω : H appears k times}
P(A) =

(n
k

)

pk (1 − p)n−k . If ω ∈ A then

PA(ω) =
pk (1 − p)n−k
(n

k

)

pk (1 − p)n−k
=

1
(n

k

)

i.e. conditional on there being k heads, each sequence with k
heads is equally likely.
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Balls in boxes

m distinguishable balls in n distinguishable boxes.
Let

Ei = {Box i is empty}.

Pr(E1) = Pr(E2) =

(

1 − 1
n

)m

and

Pr(E1 ∩ E2) =

(

1 − 2
n

)m

< Pr(E1)Pr(E2).

So
Pr(E1 | E2) < Pr(E1).

We say that the two events are negatively correlated.
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Law of Total Probability

Let B1,B2, . . . ,Bn be pairwise disjoint events which partition Ω.
For any other event A,

P(A) =
n
∑

i=1

P(A | Bi)P(Bi).

Proof
n
∑

i=1

P(A | Bi)P(Bi) =
n
∑

i=1

P(Bi ∩ A)

= P(
n
⋃

i=1

(Bi ∩ A)) (4)

= P(A).

There is equality in (4) because the events Bi ∩ A are pairwise
disjoint.
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We are given two urns, each containing a collection of colored
balls. Urn 1 contains 2 Red and 3 Blue balls. Urn 2 contains 3
Red and 4 Blue balls. A ball b1 is drawn at random from Urn 1
and placed in Urn 2 and then a ball b2 is chosen at random from
Urn 2 and examined. What is the probability that b2 is Blue?
Let

A = {b2 is Blue}
B1 = {b1 is Blue}
B2 = {b1 is Red}

Then

P(B1) =
3
5
, P(B2) =

2
5
, P(A | B1) =

5
8
, P(A | B2) =

1
2
.

So,

P(A) =
5
8
× 3

5
+

1
2
× 2

5
=

23
40

.
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Secretary Problem

There are n applicants for a secretarial position and CEO Pat
will interview them in random order. The rule is that Pat must
decide on the spot whether to hire the current applicant or
interview the next one. Pat is an excellent judge of quality, but
she does not know the set of applicants a priori. She wants to
give herself a good chance of hiring the best.

Here is her strategy: She chooses a number m < n, interviews
the first m and then hires the first person in m + 1, . . . , n who is
the best so far. (There is a chance that she will not hire
anyone).
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Let S be the event that Pat chooses the best person and let Pi

be the event that the best person is the i th applicant. Then

Pr(S) =
n
∑

i=1

Pr(S | Pi)Pr(Pi) =
1
n

n
∑

i=1

Pr(S | Pi).

Now Pat’s strategy implies that Pr(S | Pi) = 0 for 1 ≤ i ≤ m. If
Pi occurs for i > m then Pat will succeed iff the best of the first
i − 1 applicants (j say) is one of the first m, otherwise Pat will
mistakenly hire j . Thus, for i > m, Pr(S | Pi) =

m
i−1 and hence

Pr(S) =
m
n

n
∑

i=m+1

1
i − 1

.
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Now assume that n is large and that m = αn. Then

Pr(S) ∼ α(ln n − lnαn) = α ln 1/α.

Pat will want to choose the value of α that maximises
f (α) = α ln 1/α. But f ′(α) = ln 1/α− 1 and so the optimum
choice for α is 1/e. In which case,

Pr(S) ∼ e−1.
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2 sets S,T ⊆ [n] are chosen (i) independently and (ii) uniformly
at random from all possible sets. (Ω = {0, 1}2n). Let

A = {|S| = |T | and S ∩ T = ∅}.

For each X ⊆ [n] we let BX = {S = X} = {(X ,T ) : T ⊆ [n]}.
Thus for each X , P(BX ) = 2−n. So,

P(A) =
∑

X

P(A | BX )P(BX )

= 2−n
∑

X

(

n − |X |
|X |

)

2−n (5)

= 4−n
n
∑

k=0

(

n
k

)(

n − k
k

)

.

(5) follows from the fact that there are
(n−|X |

|X |

)

subsets of the
same size as X which are disjoint from X .
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Independence

Two events A,B are said to be independent if

P(A ∩ B) = P(A)P(B),

or equivalently
P(A | B) = P(A).

(i) Two Dice
A = {ω : x1 is odd}, B = {ω : x1 = x2}.
|A|=18, |B|=6, |A ∩ B|=3.
P(A) = 1/2, P(B) = 1/6, P(A ∩ B) = 1/12. A,B are
independent.
(ii) A = {x1 ≥ 3}, B = {x1 ≥ x2}.
|A|=24, |B|=21, |A ∩ B|=18.
P(A) = 2/3, P(B) = 7/12, P(A ∩ B) = 1/2. A,B are not
independent.
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Random Bits

Suppose Ω = {0, 1}n = {(x1, x2, . . . , xn) : xj = 0/1} with
uniform distribution.
Suppose event A is determined by the values of xi , i ∈ ∆A

e.g. if A = {x1 = x2 = · · · = x10 = 0} then ∆A = {1, 2, . . . , 10}.
More Precisely : for S ⊆ [n] and x ∈ Ω let xS ∈ {0, 1}S be
defined by (xS)i = xi , i ∈ S.
Ex. n = 10, S = {2, 5, 8} and
x = (0, 0, 1, 0, 0, 1, 1, 1, 1, 0}. xS = {0, 0, 1}.
A is determined by ∆A if ∃SA ⊆ {0, 1}∆A such that x ∈ A iff
x∆A ∈ SA. Furthermore, no subset of ∆A has this property.
In our example above,
SA = {(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)} – (|SA| = 1 here.)
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Claim:

if events A,B are such that ∆A ∩∆B = ∅ then A and B are
independent.

P(A) =
|SA|
2|∆A|

and P(B) =
|SB|
2|∆B |

.

P(A ∩ B) =
1
2n

∑

x∈{0,1}n

1{x∆A
∈SA,x∆B

∈SB}

=
1
2n |SA| |SB|2n−|IA|−|IB |

= P(A)P(B).
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Random Variables

A function ζ : Ω → R is called a random variable.
Two Dice
ζ(x1, x2) = x1 + x2.
pk = P(ζ = k) = P({ω : ζ(ω) = k}).

k 2 3 4 5 6 7 8 9 10 11 12
pk

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36
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Coloured Balls

Ω = {m indistinguishable balls, n colours }. Uniform distribution.
ζ = no. colours used.

pk =

(n
k

)(m−1
k−1

)

(n+m−1
m

)
.

If m = 10, n = 5 then
p1 = 5

1001 , p2 = 90
1001 , p3 = 360

1001 , p4 = 420
1001 ,

p5 = 126
1001 .
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Binomial Random Variable Bn,p.

n coin tosses. p = P(Heads) for each toss.
Ω = {H,T}n.

P(ω) = pk (1 − p)n−k

where k is the number of H ’s in ω.
Bn,p(ω) = no. of occurrences of H in ω.

P(Bn,p = k) =
(

n
k

)

pk (1 − p)n−k .

If n = 8 and p = 1/3 then
p0 = 28

38 , p1 = 8 × 27

38 , p2 = 28 × 26

38 ,

p3 = 56 × 25

38 , p4 = 70 × 24

38 , p5 = 56 × 23

38 ,

p6 = 28 × 22

38 , p7 = 8 × 2
38 , p8 = 1

38
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Poisson Random Variable Po(λ).

Ω = {0, 1, 2, . . . , } and

P(Po(λ) = k) =
λke−λ

k !
for all k ≥ 0.

This is a limiting case of Bn,λ/n where n → ∞.
Po(λ) is the number of occurrences of an event which is
individually rare, but has constant expectation in a large
population.
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Fix k , then

lim
n→∞

P(Bn,λ/n = k) = lim
n→∞

(

n
k

)(

λ

n

)k (

1 − λ

n

)n−k

=
λke−λ

k !

Explanation of
(n

k

)

≈ nk/k ! for fixed k .

nk

k !
≥

(

n
k

)

=
nk

k !

(

1 − 1
n

)(

1 − 2
n

)

· · ·
(

1 − k − 1
n

)

≥ nk

k !

(

1 − k(k − 1)
2n

)
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Expectation (Average)

Z is a random variable. Its expected value is given by

E(Z) =
∑

ω∈Ω

ζ(ω)P(ω)

=
∑

k

kP(ζ = k).

Ex: Two Dice
ζ = x1 + x2.

E(ζ) = 2 × 1
36

+ 3 × 2
36

+ · · ·+ 12 × 1
36

= 7.
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10 indistinguishable balls, 5 colours. Z is the number of colours
actually used.

E(Z ) =
5

1001
+ 2 × 90

1001
+ 3 × 360

1001
+ 4 × 420

1001
+ 5 × 126

1001
.
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In general: n colours, m balls.

E(ζ) =
n
∑

k=1

k
(n

k

)(m−1
k−1

)

(n+m−1
m

)

= n
n
∑

k=1

(n−1
k−1

)(m−1
k−1

)

(n+m−1
m

)

= n
n−1
∑

k−1=0

(n−1
k−1

)(m−1
m−k

)

(n+m−1
m

)

=
n
(n+m−2

m−1

)

(n+m−1
m

)

=
mn

n + m − 1
.
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Geometric

Ω = {1, 2, . . . , }
P(k) = (1 − p)k−1p, ζ(k) = k .

E(ζ) =
∞
∑

k=1

k(1 − p)k−1p

=
p

(1 − (1 − p))2

=
1
p

= expected number of trials until success.

Discrete Probability



Binomial

Bn,p.

E(Bn,p) =
n
∑

k=0

k
(

n
k

)

pk (1 − p)n−k

=
n
∑

k=1

n
(

n − 1
k − 1

)

pk (1 − p)n−k

= np
n
∑

k=1

(

n − 1
k − 1

)

pk−1(1 − p)n−k

= np(p + (1 − p))n−1

= np.
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Poisson

Po(λ).

E(Po(λ)) =
∞
∑

k=0

k
λke−λ

k !

= λ
∞
∑

k=1

λk−1e−λ

(k − 1)!

= λ.
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Suppose X,Y are random variables on the same probability
space Ω.
Claim: E(X + Y) = E(X) + E(Y).
Proof:

E(X + Y) =
∑

α

∑

β

(α + β)P(X = α, Y = β)

=
∑

α

∑

β

αP(X = α, Y = β) +
∑

α

∑

β

βP(X = α, Y = β)

=
∑

α

α
∑

β

P(X = α, Y = β) +
∑

β

β
∑

α

P(X = α, Y = β)

=
∑

α

αP(X = α) +
∑

β

βP(Y = β)

= E(X) + E(Y).

In general if X1,X2, . . . ,Xn are random variables on Ω then

E(X1 + X2 + · · ·+ Xn) = E(X1) + E(X2) + · · ·+ E(Xn)
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Binomial

Write Bn,p = X1 + X2 + · · ·+ Xn where Xi = 1 if the i th coin
comes up heads.

E(Bn,p) = E(X1) + E(X2) + · · ·+ E(Xn) = np

since E(Xi) = p × 1 + (1 − p)× 0.
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Same probability space. ζ(ω) denotes the number of
occurrences of the sequence H,T ,H in ω.
ζ = X1 + X2 + · · ·+ Xn−2 where Xi = 1 if coin tosses
i , i + 1, i + 2 come up H,T ,H respectively. So

E(ζ) = E(X1) + E(X2) + · · ·+ E(Xn−2) = (n − 2)p2(1 − p),

since P(xi = 1) = p2(1 − p).
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m indistinguishable balls, n colours. Z is the number of
colours actually used.
Zi = 1 ↔ colour i is used.
Z = Z1 + · · ·+ Zn= number of colours actually used.

E(Z ) = E(Z1) + · · ·+ E(Zn)

= nE(Z1)

= nPr(Z1 6= 0)

= n

(

1 −
(n+m−2

m

)

(n+m−1
m

)

)

.

= n
(

1 − n − 1
n + m − 1

)

=
mn

n + m − 1
.
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m distinguishable balls, n boxes

ζ = number of non-empty boxes.

= ζ1 + ζ2 + · · ·+ ζn

where ζi = 1 if box i is non-empty and = 0 otherwise. Hence,

E(ζ) = n
(

1 −
(

1 − 1
n

)m)

,

since E(ζi) = P( box i is non-empty) =
(

1 −
(

1 − 1
n

)m
)

.

Discrete Probability



Why is this different from the previous frame?
The answer is that the indistinguishable balls space is obtained
by partitioning the distinguishable balls space and then giving
each set of the partition equal probability as opposed to a
probability proportional to its size.

For example, if the balls are indistinguishable then the

probability of exactly one non-empty box is n ×
(m+n−1

n−1

)−1

whereas, if the balls are distinguishable, this probability
becomes
n × n−m.
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A problem with hats

There are n people standing a circle. They are blind-folded and
someone places a hat on each person’s head. The hat has
been randomly colored Red or Blue.

They take off their blind-folds and everyone can see everyone
else’s hat. Each person then simultaneously declares (i) my hat
is red or (ii) my hat is blue or (iii) or I pass.

They win a big prize if the people who opt for (i) or (ii) are all
correct. They pay a big penalty if there is a person who
incorrectly guesses the color of their hat.

Is there a strategy which means they will win with probability
better than 1/2?
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Suppose that we partition Qn = {0, 1}n into 2 sets W , L which
have the property that L is a cover i.e. if
x = x1x2 · · · xn ∈ W = Qn \ L then there is y1y2 · · · yn ∈ L such
that h(x , y) = 1 where

h(x , y) = |{j : xj 6= yj}|.

Hamming distance between x and y .

Assume that 0 ≡ Red and 1 ≡ Blue. Person i knows xj for j 6= i
(color of hat j) and if there is a unique value of xi which places
x in W then person i will declare that their hat has color i .

If indeed x ∈ W then there is at least one person who will be in
this situation and any such person will guess correctly.

Is there a small cover L?
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Let p = ln n
n . Choose L1 randomly by placing y ∈ Qn into L1 with

probability p.

Then let L2 be those z ∈ Qn which are not at Hamming
distance ≤ 1 from some member of L1.

Clearly L = L1 ∪ L2 is a cover and
E(|L|) = 2np + 2n(1 − p)n+1 ≤ 2n(p + e−np) ≤ 2n 2 ln n

n .

So there must exist a cover of size at most 2n 2 ln n
n and the

players can win with probability at least 1 − 2 ln n
n .
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Conditional Expectation

Suppose A ⊆ Ω and Z is a a random variable on Ω. Then

E(Z | A) =
∑

ω∈A

Z (ω)P(ω | A) =
∑

k

kP(ζ = k | A).

Ex: Two Dice
ζ = x1 + x2 and A = {x1 ≥ x2 + 4}.
A = {(5, 1), (6, 1), (6, 2)} and so P(A) = 1/12.

E(Z | A) = 6 × 1/36
1/12

+ 7 × 1/36
1/12

+ 8 × 1/36
1/12

= 7.
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Let B1,B2, . . . ,Bn be pairwise disjoint events which partition Ω.
Let Z be a random variable on Ω. Then

E(Z ) =
n
∑

i=1

E(Z | Bi)Pr(Bi).

Proof

n
∑

i=1

E(Z | Bi)P(Bi) =

n
∑

i=1

∑

ω∈Bi

Z (ω)
P(ω)
P(Bi)

P(Bi)

=
n
∑

i=1

∑

ω∈Bi

Z (ω)P(ω)

=
∑

ω∈Ω

Z (ω)P(ω)

= E(Z ).
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First Moment Method

This is really Boole’s inequality in disguise.
Let X be a random variable that takes values in {0, 1, 2, . . .}.
Then

Pr(X ≥ 1) ≤ E(X )

Proof

E(X ) = E(X | X = 0)Pr(X = 0) + E(X | X ≥ 1)Pr(X ≥ 1)

≥ Pr(X ≥ 1).
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Union Distinct Families

Let A be a family of sub-sets of [n]. We say that A is Union
Distinct if for distinct A,B,C,D ∈ A we have A ∪ B 6= C ∪ D. We
use the probabilistic method to show the existence of a union
distinct family of exponential size.
Suppose that A consists of p randomly and independently
chosen sets X1,X2, . . . ,Xp. Let Z denote the number of 4-tples
i , j , k , l such that Xi ∪ Xj = Xk ∪ Xl . Then

E(Z ) = p(p − 1)(p − 2)(p − 3)Pr(Xi ∪ Xj = Xk ∪ Xl) =

p(p − 1)(p − 2)(p − 3)
(

5
8

)n

.

(Observe that Pr(x ∈ (Xi ∪ Xj) \ (Xk ∪ Xl)) = 3/16.)
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So if p ≤ (8/5)n/4 then

Pr(Z ≥ 1) ≤ E(Z ) < p4
(

5
8

)n

≤ 1

implying that there exists a union free family of size p.

There is a small problem here in that we might have repetitions
Xi = Xj for i 6= j . Then our set will not be of size p.

But if Z1 denotes the number of pairs i , j such that Xi = Xj then

Pr(Z1 6= 0) ≤ E(Z1) =

(

p
2

)

2−n

and so we should really choose p so that
Pr(Z + Z1 6= 0) ≤ E(Z ) + E(Z1) < p4

(5
8

)n
+ p2

(1
2

)n ≤ 1.
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Average case of Quicksort

Quicksort is an algorithm for sorting numbers. Given distinct
x1, x2, . . . , xn we

1 Randomly choose an integer p between 1 and and n – the
pivot.

2 Divide the remaining numbers into 2 sets L,R where
L = {xj : xj < xp} and R = {xj : xj > xp}.

3 Recursively sort L,R.

Let Tn be the expected number of comparisons taken by
Quicksort.
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We have T0 = 0 and for n ≥ 1

Tn =
n
∑

i=1

E(No. comparisons | p is i ′th largest)Pr(p is i ′th largest) =

n
∑

i=1

(n − 1 + Ti−1 + Tn−i)×
1
n

= n − 1 +
2
n

n−1
∑

i=0

Ti

or

nTn = n(n − 1) + 2
n−1
∑

i=0

Ti .
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Let T (x) =
∑∞

n=0 Tnxn be the generating function for Tn.

We note that
∞
∑

n=1

nTnxn = xT ′(x).

∞
∑

n=1

n(n − 1)xn =
2x2

(1 − x)3 .

∞
∑

n=1

(

n−1
∑

i=0

Ti

)

xn =
xT (x)
1 − x

.
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Thus,

T ′(x) =
2x

(1 − x)3 +
2T (x)
1 − x

or

(1 − x)2T ′(x)− 2(1 − x)T (x) =
2x

1 − x

or
d
dx

((1 − x)2T (x)) =
2x

1 − x

and so
(1 − x)2T (x) = C − 2x − 2 ln(1 − x).
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(1 − x)2T (x) = C − 2x − 2 ln(1 − x).

Now T (0) = 0 implies that C = 0 and so

T (x) = − 2x
(1 − x)2 − 2 ln(1 − x)

(1 − x)2

= −2
∞
∑

n=0

nxn + 2
∞
∑

n=0

(

n
∑

k=1

n − k + 1
k

)

xn

So

Tn = −4n + 2(n + 1)
n
∑

k=1

1
k

≈ 2n ln n.
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Hashing

Let U = {0, 1, . . . ,N − 1} and H = {0, 1, . . . , n − 1} where n
divides N and N ≫ n. f : U → H, f (u) = u mod n.
(H is a hash table and U is the universe of objects from which a
subset is to be stored in the table.)
Suppose u1, u2, . . . , um, m = αn, are a random subset of U. A
copy of ui is stored in “cell” f (ui) and ui ’s that “hash” to the
same cell are stored as a linked list.
Questions: u is chosen uniformly from U.
(i) What is the expected time T1 to determine whether or not u
is in the table?
(ii) If it is given that u is in the table, what is the expected time
T2 to find where it is placed?
Time = The number of comparisons between elements of U
needed.
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Let M = N/n, the average number of u′s that map to a cell. Let
Xk denote the number of ui for which f (ui) = k . Then

E(T1) =
n
∑

k=1

E(T1 | f (u) = k)P(f (u) = k)

=
1
n

n
∑

k=1

E(T1 | f (u) = k)

≤ 1
n

n
∑

k=1

E(Xk )

=
1
n

E

(

n
∑

k=1

Xk

)

= α.
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Let X denote X1,X2, . . . ,Xn and let X denote the set of possible
values for X . Then

E(T2) =
∑

X∈X

E(T2 | X )P(X )

=
∑

X∈X

n
∑

k=1

E(T2 | f (u) = k ,X )P(f (u) = k)P(X )

=
∑

X∈X

n
∑

k=1

E(T2 | f (u) = k ,X )
Xk

m
P(X )

=
∑

X∈X

n
∑

k=1

(

1 + Xk

2

)

Xk

m
P(X )

=
1

2m

∑

X∈X

n
∑

k=1

Xk (1 + Xk )P(X )
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E(T2) =
1
2
+

1
2M

E(X 2
1 + · · ·+ X 2

n )

=
1
2
+

1
2α

E(X 2
1 )

=
1
2
+

1
2α

m
∑

t=1

t2

(M
t

)(N−M
m−t

)

(N
m

)
.
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If α is small and t is small then we can write
(M

t

)(N−M
m−t

)

(N
m

)
≈ M t

t!
(N − M)m−t

(m − t)!
m!

Nm

≈
(

1 − 1
n

)m mt

t!nt

≈ αte−α

t!
.

Then we can further write

E(T2) ≈
1
2
+

1
2α

∞
∑

t=1

t2α
te−α

t!
= 1 +

α

2
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Random Walk

: Suppose we do n steps of previously described random walk.
Let ζn denote the number of times the walk visits the origin.
Then ζn = Y0 + Y1 + Y2 + · · ·+ Yn where Yi = 1 if Xi = 0 –
recall that Xi is the position of the particle after i moves.
But

E(Yi) =

{

0 i odd
( i

i/2

)

2−i i even

So

E(ζn) =
∑

0≤m≤n
m even

(

m
m/2

)

2−m.

≈
∑

√

2/(πm)

≈ 1
2

∫ n

0

√

2/(πx)dx

=
√

2n/π
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Finding Minimum

Consider the following program which computes the minimum
of the n numbers x1, x2, . . . , xn.
begin
min := ∞;
for i = 1 to n do
begin
if xi < min then min := xi

end
output min
end
If the xi are all different and in random order, what is the
expected number of times that that the statement min := xi is
executed?
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Ω = {permutations of 1, 2, . . . , n} – uniform distribution.
Let X be the number of executions of statement min := xi . Let

Xi =

{

1 statement executed at i .
0 otherwise

Then Xi = 1 iff xi = min{x1, x2, . . . , xi} and so

P(Xi = 1) =
(i − 1)!

i!
=

1
i
.

[The number of permutations of {x1, x2, . . . , xi} in which xi is
the largest is (i − 1)!.]
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So

E(X ) = E

(

n
∑

i=1

Xi

)

=
n
∑

i=1

E(Xi)

=
n
∑

i=1

1
i

(= Hn)

≈ loge n.
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Independent Random Variables

Random variables X,Y defined on the same probability space
are called independent if for all α, β the events {X = α} and
{Y = β} are independent.
Example: if Ω = {0, 1}n and the values of X ,Y depend only on
the values of the bits in disjoint sets ∆X ,∆Y then X ,Y are
independent.
E.g. if X = number of 1’s in first m bits and Y = number of 1’s in
last n − m bits.
The independence of X ,Y follows directly from the disjointness
of ∆{X=α} and ∆{Y=β}.
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If X and Y are independent random variables then

E(XY ) = E(X )E(Y ).

E(XY ) =
∑

α

∑

β

αβP(X = α,Y = β)

=
∑

α

∑

β

αβP(X = α)P(Y = β)

=

[

∑

α

αP(X = α)

]





∑

β

βP(Y = β)





= E(X )E(Y ).

This is not true if X and Y are not independent. E.g. Two Dice:
X = x1 + x2 and Y = x1.
E(X ) = 7, E(Y ) = 7/2 and
E(XY ) = E(x2

1 ) + E(x1x2) = 91/6 + (7/2)2.
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Inequalities

Markov Inequality : let X : Ω → {0, 1, 2, . . . , } be a random
variable. For any t ≥ 1

P(X ≥ t) ≤ E(X )

t
.

Proof

E(X ) =
∞
∑

k=0

kP(X = k)

≥
∞
∑

k=t

kP(X = k)

≥
∞
∑

k=t

tP(X = k)

= tP(X ≥ t).

In particular, if t = 1 then

P(X 6= 0) ≤ E(X ).Discrete Probability



m distinguishable balls, n boxes

Z = number of empty boxes.

m ≥ (1 + ǫ)n loge n.

E(Z ) = n
(

1 − 1
n

)m

≤ ne−m/n

≤ ne−(1+ǫ) loge n

= n−ǫ.

So P(∃ an empty box) ≤ n−ǫ.
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Variance:

Z : Ω → R and E(Z ) = µ.

Var(Z ) = E((Z − µ)2)

= E(Z 2 − 2µZ + µ2)

= E(Z 2)− E(2µZ ) + E(µ2)

= E(Z 2)− 2µE(Z ) + µ2

= E(Z 2)− µ2.

Ex. Two Dice. ζ(x1, x2) = x1 + x2.
Var(ζ) = 22×1

36 + 32×2
36 + 42×3

36 + 52×4
36 + 62×5

36

+72×6
36 + 82×5

36 + 92×4
36 + 102×3

36 + 112×2
36 +

122×1
36 − 72 = 35

6
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Binomial: Z = Bn,p, µ = np.

Var(Bn,p) =
n
∑

k=1

k2
(

n
k

)

pk (1 − p)n−k − µ2

=
n
∑

k=2

k(k − 1)
(

n
k

)

pk (1 − p)n−k + µ− µ2

= n(n − 1)p2
n
∑

k=2

(

n − 2
k − 2

)

pk−2(1 − p)n−k

= n(n − 1)p2(p + (1 − p))n−2 + µ− µ2

= n(n − 1)p2 + µ− µ2

= np(1 − p).
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Chebycheff Inequality

Now let σ =
√

Var(Z ).

P(|Z − µ| ≥ tσ) = P((Z − µ)2 ≥ t2σ2)

≤ E((Z − µ)2)

t2σ2 (6)

=
1
t2 .

(6) comes from the Markov inequality applied to the random
variable (Z − µ)2.
Back to Binomial: σ =

√

np(1 − p).

P(|Bn,p − np| ≥ t
√

np(1 − p)) ≤ 1
t2

which implies

P(|Bn,p − np| ≥ ǫnp) ≤ 1
ǫ2np

[Law of large numbers.]
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Hoeffding’s Inequality – Simple Case

Let X1,X2, . . . ,Xn be independent random variables taking
values such that Pr(Xi = 1) = 1/2 = Pr(Xi = −1) for
i = 1, 2, . . . , n. Let X = X1 + X2 + · · ·+ Xn. Then for any t ≥ 0

Pr(|X | ≥ t) < 2e−t2/2n.

Proof: For any λ > 0 we have

Pr(X ≥ t) = Pr(eλX ≥ eλt)

≤ e−λtE(eλX ).

Now for i = 1, 2, . . . , n we have

E(eλXi ) =
e−λ + eλ

2
= 1 +

λ2

2!
+

λ4

4!
+ · · · < eλ2/2.
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So, by independence,

E(eλX ) = E

(

n
∏

i=1

eλXi

)

=

n
∏

i=1

E(eλXi ) ≤ eλ2n/2.

Hence,
Pr(X ≥ t) ≤ e−λt+λ2n/2.

We choose λ = t/n to minimise −λt + λ2n/2. This yields

Pr(X ≥ t) ≤ e−t2/2n.

Similarly,

Pr(X ≤ −t) = Pr(e−λX ≥ eλt)

≤ e−λtE(e−λX )

≤ e−λt+λ2n/2.
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Discrepancy

Suppose that |X | = n and F ⊆ P(X ). If we color the elements
of X with Red and Blue i.e. partition X in R ∪ B then the
discrepancy disc(F ,R,B) of this coloring is defined

disc(F ,R,B) = max
F∈F

disc(F ,R,B)

where disc(F ,R,B) = ||R ∩ F | − |B ∩ F || i.e. the absolute
difference between the number of elements of F that are
colored Red and the number that are colored Blue.
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Claim:

If |F| = m then there exists a coloring R,B such that
disc(F ,R,B) ≤ (2n loge(2m))1/2.
Proof Fix F ∈ F and let s = |F |. If we color X randomly and let
Z = |R ∩ F | − |B ∩ F | then Z is the sum of s independent ±1
random variables.
So, by the Hoeffding inequality,

Pr(|Z | ≥ (2n loge(2m))1/2) < 2e−n loge(2m)/s ≤ 1
m
.
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Switching Game:

We are given an n × n matrix A where A(i , j) = ±1. We
interpret A(i , j) = 1 as the light at i , j is on.

Now suppose that x , y ∈ {±1}n are switches. The light at i , j is
on if A(i , j)xiyj = 1 and off otherwise.

Let σ(A) = maxx ,y

∣

∣

∣

∑

i,j A(i , j)xiyj

∣

∣

∣
be the maximum absolute

difference between the number of lights which are on and those
that are off, obtaianble by switching.

Claim: There exists A such that σ(A) ≤ cn3/2 where
c = 2(ln 2)1/2.
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Fix x , y ∈ {±1}n and let A be a random ±1 matrix. Consider
the random variable

Zx ,y =
∑

i,j

A(i , j)xiyj .

This is the sum of n2 independent random variables (A(i , j)xiyj )
taking values in ±1.

It follows from the Hoeffding inequality that

|Zx ,y | ≥ cn3/2 < 2e−(cn3/2)2/2n2
= 2−2n

So
Pr(max

x ,y
|Zx ,y | ≥ cn3/2) < 2n × 2n× = 2−2n = 1.

Hence there exists A such that σ(A) ≤ cn3/2.
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