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A network consists of a loopless digraph D = (V ,A) plus a
function c : A→ R+. Here c(x , y) for (x , y) ∈ A is the capacity
of the edge (x , y).

We use the following notation: if φ : A→ R and S,T are (not
necessarily disjoint) subsets of V then

φ(S,T ) =
∑
x∈S
y∈T

φ(x , y).

Let s, t be distinct vertices. An s − t flow is a function f : A→ R
such that

f (v ,V \ {v}) = f (V \ {v}, v) for all v 6= s, t .

In words: flow into v equals flow out of v .
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An s − t flow is feasible if

0 ≤ f (x , y) ≤ c(x , y) for all (x , y) ∈ A.

An s − t cut is a partition of V into two sets S, S̄ such that
s ∈ S and t ∈ S̄.

The value vf of the flow f is given by

vf = f (s,V \ {s})− f (V \ {s}, s).

Thus vf is the net flow leaving s.

The capacity of the cut S : S̄ is equal to c(S, S̄).
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Max-Flow Min-Cut Theorem

Theorem

max vf = min c(S, S̄)

where the maximum is over feasible s − t flows and the
minimum is over s − t cuts.

Proof We observe first that

f (S, S̄)− f (S̄,S) = (f (S,V )− f (S,S))− (f (V ,S)− f (S,S))

= f (S,V )− f (V ,S)

= vf +
∑

v∈S\{s}

(f (v ,V )− f (V , v))

= vf .

So,
vf ≤ f (S, S̄) ≤ c(S, S̄).

�
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This implies that
max vf ≤ min c(S, S̄). (1)

Given a flow f we define a flow augmenting path P to be a
sequence of distinct vertices x0 = s, x1, x2, . . . , xk = t such that
for all i , either

F1 (xi , xi+1) ∈ A and f (xi , xi+1) < c(xi , xi+1), or
F2 (xi+1, xi) ∈ A and f (xi+1, xi) > 0.

If P is such a sequence, then we define θP > 0 to be the
minimum over i of c(xi , xi+1)− f (xi , xi+1) (Case (F1)) and
f (xi+1, xi) (Case (F2)).
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Claim 1: f is a maximum value flow, iff there are no flow
augmenting paths.
Proof If P is flow augmenting then define a new flow f ′ as
follows:

1 f ′(xi , xi+1) = f (xi , xi+1) + θP or
2 f ′(xi+1, xi) = f (xi+1, xi)− θP

3 For all other edges, (x , y), we have f ′(x , y) = f (x , y).

xi

−θP +θP

+θP −θP

+θP +θP

−θP −θP

We can see
that the flow

stays balanced at xi .
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We can see then that if there is a flow augmenting path then
the new flow satisfies

vf ′ = vf + θP > vf .

Let Sf denote the set of vertices v for which there is a
sequence x0 = s, x1, x2, . . . , xk = v which satisfies F1, F2 of the
definition of flow augmenting paths.

If t ∈ Sf then the associated sequence defines a flow
augmenting path. So, assume that t /∈ Sf . Then we have,

1 s ∈ Sf .
2 If x ∈ Sf , y ∈ S̄f , (x , y) ∈ A then f (x , y) = c(x , y), else we

would have y ∈ Sf .
3 If x ∈ Sf , y ∈ S̄f , (y , x) ∈ A then f (y , x) = 0, else we would

have y ∈ Sf .
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We therefore have

vf = f (Sf , S̄f )− f (S̄f ,S)

= c(S, S̄f ).

We see from this and (1) that f is a flow of maximum value and
that the cut Sf : S̄f is of minimum capacity.

This finishes the proof of Claim 1 and the Max-Flow Min-Cut
theorem.

Note also that we can construct Sf by beginning with Sf = {s}
and then repeatedly adding any vertex y /∈ Sf for which there is
x ∈ Sf such that F1 or F2 holds. (A simple inductive argument
based on sequence length shows that all of Sf is constructed in
this way.)
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Note also that we can construct Sf by beginning with Sf = {s}
and then repeatedly adding any vertex y /∈ Sf for which there is
x ∈ Sf such that F1 or F2 holds.

This defines an algorithm for finding a maximum flow. The
construction either finishes with t ∈ Sf and we can augment the
flow.

Or, we find that t /∈ Sf and we have a maximum flow.

Note, that if all the capacities c(x , y) are integers and we start
with the all zero flow then we find that θf is always a positive
integer (formally one can use induction to verify this).

It follows that in this case, there is always a maximum flow that
only takes integer values on the edges.
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Hall’s Theorem.

Let G = (A,B,E) be a bipartite graph with A = {a1, . . . ,an} and
B = {b1, . . . ,bn}. A matching M is a set of edges that meets
each vertex at most once. A matching is perfect if it meets each
vertex.
Hall’s theorem:

Theorem
G contains a perfect matching iff |N(S)| ≥ |S| for all S ⊆ A.

Here N(S) = {b ∈ B : ∃a ∈ A s.t. {a,b} ∈ E}.

Define a digraph Γ by adding vertices s, t /∈ A ∪ B. Then add
edges (s,ai) and (bi , t) of capacity 1 for i = 1,2, . . . ,n. Orient
the edges E for A to B and give them capacity∞.
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G has a matching of size m iff there is an s − t flow of value m.
An s − t cut X : X̄ has capacity

|A \ X |+ |B ∩ X |+ |{a ∈ X ∩ A,b ∈ B \ X : {a,b} ∈ E}| ×∞.

It follows that to find a minimum cut, we need only consider X
such that

{a ∈ X ∩ A,b ∈ B \ X : {a,b} ∈ E} = ∅. (2)

For such a set, we let S = A ∩ X and T = X ∩ B. Condition (2)
means that T ⊇ N(S). The capacity of X : X̄ is now
(n − |S|) + |T | and for a fixed S this is minimised for T = N(S).

Thus, by the Max-Flow Min-Cut theorem

max{|M|} = min
X
{c(X : X̄ )} = min

S
{n − |S|+ |N(S)}.

This implies Hall’s theorem.
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Graph orientation problem

Let G = (V ,E) be a graph. When is it possible to orient the
edges of G to create a digraph Γ = (V ,A) so that every vertex
has out-degree at least d . We say that G is d-orientable.

Theorem
G is d-orientable iff

|{e ∈ E : e ∩ S 6= ∅}| ≥ d |S| for all S ⊆ V . (3)

Proof If G is d-orientable then

|{e ∈ E : e ∩ S 6= ∅}| ≥ |{(x , y) ∈ A : x ∈ S}| ≥ d |S|.

NETWORK FLOWS



Suppose now that (3) holds. Define a network D as follows; the
vertices are s, t ,V ,E – yes, D has a vertex for each edge of G.

There is an edge of capacity d from s to each v ∈ V and an
edge of capacity one from each e ∈ E to t . There is an edge of
infinite capacity from v ∈ V to each edge e that contains v .

Consider an integer flow f . Suppose that e = {v ,w} ∈ E and
f (e, t) = 1. Then either f (v ,e) = 1 or f (w ,e) = 1. In the former
we interpret this as orienting the edge e from v to w and in the
latter from w to v .

Under this interpretation, G is d-orientable iff D has a flow of
value d |V |.
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Let X : X̄ be an s − t cut in N. Let S = X ∩ V and T = X ∩ E .

To have a finite capacity, there must be no x ∈ S and e ∈ E \ T
such that x ∈ e.

So, the capacity of a finite capacity cut is at least

d(|V | − |S|) + |{e ∈ E : e ∩ S 6= ∅}|

And this is at least d |V | if (3) holds.
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0-1 Matrices

Theorem
Let a1, . . . ,am and b1, . . . ,bn be two sets of non-negative
integers where b1 ≥ · · · ≥ bn. Then there is an m × n 0− 1
matrix M = (Mi,j) satisfying

m∑
i=1

Mi,j = bj , j ∈ [n] and
n∑

j=1

Mi,j ≤ ai , i ∈ [m] (4)

iff
k∑

j=1

bj ≤
∑
i∈Ak

ai + k(m − |Ak |), k = 0, . . . ,n − 1, (5)

where Ak = {i : ai < k}
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Proof Suppose first that the matrix M exists. Fix k and
observe that the number of 1’s in the first k rows is b1 + · · ·+ bk .

On the other hand the number of 1’s in the whole matrix is at
least

∑
i∈Ak

ai + k(m − |Ak |) and so (5) holds.

Now suppose that (5) holds. Define a network N as follows; the
vertices are s, t ,R,C where R = {r1, . . . , rn}, C = {c1, . . . , cn}.

There is an edge of capacity bi from s to ri , i ∈ [n]; an edge of
capacity aj from cj to t , j ∈ [n]; an edge of capacity 1 from ri to
bj .

Then matrix M exists if there is a flow f of value b1 + · · ·+ bn
from s to t . It is defined by Mi,j = f (ri , cj).
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Let X : X̄ be an s − t cut and let S = X ∩ R, T = X ∩ C where
|S| = k . The capacity of X : X̄ is∑

i /∈S

bi +
∑
j∈T

aj + |S|(n − |T |)

≥
n∑

i=k+1

bi +
∑
j∈Ak

aj + k(n − |Ak |)

=
n∑

i=1

bi +

∑
j∈Ak

aj + k(n − |Ak |)−
k∑

i=1

bi


≥

n∑
i=1

bi ,

as we have assume that (5) holds. Applying the Max-Flow
Min-Cut theorem, we see that there is a flow of value
b1 + · · ·+ bn.
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