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Hereditary Families

Given a Ground Set E , a Hereditary Family A on E is collection
of subsets I = {I1, I2, . . . , Im} (the independent sets) such that

I ∈ I and J ⊆ I implies that J ∈ I.

1 The setM of matchings of a graph G = (V ,E).
2 The set of (edge-sets of) forests of a graph G = (V ,E).
3 The set of stable sets of a graph G = (V ,E). We say that

S is stable if it contains no edges.
4 If G = (A,B,E) is a bipartite graph and
I = {S ⊆ B : ∃ a matching M that covers S} .

5 Let c1,c2, . . . ,cn be the columns of an m × n matrix A.
Then E = [n] and
I = {S ⊆ [n] : {ci , i ∈ S} are linearly independent}.
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Matroids

An independence system is a matroid if whenever I, J ∈ I with
|J| = |I|+ 1 there exists e ∈ J \ I such that I ∪ {e} ∈ I. We call
this the Independent Augmentation Axiom – IAA.

Matroid independence is a generalisation of linear
independence in vector spaces. Only Examples 2,4 and 5
above are matroids.

To check Example 5, let AI be the m × |I| sub-matrix of A
consisting of the columns in I. If there is no e ∈ J \ I such that
I ∪ {e} ∈ I then AJ = AIM for some |I| × |J| matrix M.

Matrix M has more columns than rows and so there exists
x 6= 0 such that Mx = 0. But then AJx = 0, implying that the
columns of AJ are linearly dependent. Contradiction.

These are called Representable Matroids.
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Cycle Matroids/Graphic Matroids

To check Example 2 we define the vertex-edge incidence
matrix AG of graph G = (V ,E) over GF2.

AG has a row for each vertex v ∈ V and a column for each
edge e ∈ E . There is a 1 in row v , column e iff v ∈ e.

We verify that a set of columns ci , i ∈ I are linearly dependent
iff the corresponding edges contain a cycle.

If the edges contain a cycle (v1, v2, . . . , vk , v1) then the sum of
the columns corresponding to the vertices of the cycle is 0.

To show that a forest F defines a linearly independent set of
columns IF , we use induction on the number of edges in the
forest. This is trivial if |E(F )| = 1.
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Cycle Matroids/Graphic Matroids

Let AF denote the submatrix of A made up of the columns
corresponding F .

Now a forest F must contain a vertex v of degree one. This
means that the row corresponding to v in AF has a single one,
in column e say.

Consider the forest F ′ = F \ {e}. Its corresponding columns IF ′

are linearly independent, by induction. Adding back e adds a
row with a single one and preserves independence. Let B
denote AF ′ minus row e.

AF =

[
1 0

B

]
.
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Transversal Matroids

We now check Example 4. These are called Transversal
Matroids. If M1,M2 are two matchings in a graph G then
M1 ⊕M2 = (M1 \M2) ∪ (M2 \M1) consists of alternating paths
and cycles.

M1 M1M2

Suppose now that we have two matchings M1,M2 in bipartite
graph G = (A,B,E). Let Ij , j = 1,2 be the vertices in B covered
by Mj . Suppose that |I1| > |I2|.

Then M1 ⊕M2 must contain an alternating path P with end
points b ∈ I1 \ I2,a ∈ A. Let E1 be the M1 edges in P and let E2
be the M2 edges of P. Then (M1 ∪ E1) \ E2 is a matching that
covers I1 ∪ {b}.
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Representable Matroids

A matroid is binary if is representable by a matrix over GF2.

So a graphic matroid is binary.

A matroid is regular if it can be represented by a matrix of
elements in {0,±1} for which every square sub-matrix has
determinant 0,±1. These are called totally unimodular matrices

A matrix with 2 non-zeros in each column, one equal to +1 and
the other equal to -1 is totally unimodular. This implies that
graphic matroids are regular. (Take the vertex-edge incidence
matrix and replace one of the ones in each column by a -1.)
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Partition Matroids

Given a partition E1,E2, . . . ,Em of E and non-negative integers
k1, k2, . . . , km we define the associated partition matroid as
follows:

I ∈ I iff |I ∩ Ei | ≤ ki , i = 1,2, . . . ,m.

Partition matroids are representable.
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Bases

A matroid basis is a maximal independent set i.e. B is a basis if
there does not exist an independent set I 6= B such that I ⊃ B.

So the bases of the cycle matroid of a graph G consist of the
spanning trees of G.

Lemma
If B1,B2 are bases of a matroidM, then |B1| = |B2|.

Proof: If |B1| > |B2| then there exists e ∈ B1 \ B2 such that
B2 ∪ {e} is independent. Contradicting the fact that B2 is
maximal. �
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Bases

Theorem
A collection B = {B1,B2, . . . ,Bm} of subsets of E form the
bases of a matroid on E iff for all i , j and e ∈ Bi \ Bj there exists
f ∈ Bj \ Bi such that (Bi ∪ {f}) \ {e} ∈ B.

Proof: Suppose first that B are the bases of a matroid with
independent sets I and that e ∈ Bi and e /∈ Bj . Then
B′i = Bi \ {e} ∈ I and |B′i | < |Bj |. So there exists f ∈ Bj \ B′i
such that B′′i = B′i ∪ {f} ∈ I. Now f 6= e since e /∈ Bj and
|B′′i | = |Bi |. So B′′i must be a basis.

Conversely, suppose that B satisfies the conditions of the
theorem and that I = {S : ∃i s.t . S ⊆ Bi}. Clearly I is
hereditary.
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Bases

We first argue that all the sets in B are of the same size.

Suppose that A = {i : |Bi | = max{|B| : B ∈ B}} and suppose
that A 6= [m]. Suppose that

min{|Bi − Bj | : i ∈ A, j /∈ A} = |B1 \ B2|.

Let x ∈ B1 \ B2 and let y ∈ B2 \ B1 be such that
B′ = ((B1 ∪ y) \ {x}) ∈ B.

Then we have B′ ∈ A and |B′ \ B2| < |B1 \ B2|, contradiction.
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Bases

Suppose now that I1, I2 ∈ I with |I2| > |I1| and there does not
exist e ∈ I2 \ I1 for which I1 ∪ {e} ∈ I.

Choose Bj ⊇ Ij , j = 1,2 such that |B2 \ (I2 ∪ B1)| is minimal.

We must have I2 \ B1 = I2 \ I1. If x ∈ I2 ∩ B1 and x /∈ I1 then
I1 ∪ {x} ⊆ B1 and so I1 ∪ {x} ∈ I.

Suppose there exists x ∈ B2 \ (I2 ∪ B1). Then by assumption
there is y ∈ B1 \ B2 such that B′ = (B2 ∪ {y}) \ {x} ∈ B. But
then B′ \ (I2 ∪ B1) = (B2 \ (I2 ∪ B1)) \ {x}, contradicting the
definition of B2.
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Bases

So B2 ⊆ (I2 ∪B1) = (I2 \B1)∪ (B1 \ I2) = (I2 \ I1)∪ (B1 \ I2) and
so

B2 \ B1 = I2 \ I1. (1)

We show next that B1 ⊆ (I1 ∪ B2). If there exists
x ∈ B1 \ (I1 ∪ B2) then there exists y ∈ B2 \ B1 such that
B′ = (B1 ∪ {y}) \ {x} ∈ B. But (I1 ∪ {x}) ⊆ B′, contradiction.

So, B1 \B2 = I1 \B2 ⊆ I1 \ I2. Since |B1 \B2| = |B2 \B1| we see
from this and (1) that |I1 \ I2| ≥ |I2 \ I1| and so |I1| ≥ |I2|,
contradiction.
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Rank

If S ⊆ E then its rank

r(S) = max |{I ∈ I : I ⊆ S}| .

So S ∈ I iff r(S) = |S|. We show next that r is submodular.

Theorem
If S,T ⊆ E then r(S ∪ T ) + r(S ∩ T ) ≤ r(S) + r(T ).

Proof: Let I1 be a maximal independent subset of S ∩ T and let
I2 be a maximal independent subset of S ∪ T that contains I2.
(Such a set exists because of the IAA.)

But then

r(S∩T )+ r(S∪T ) = |I1|+ |I2| = |I2∩S|+ |I2∩T | ≤ r(S)+ r(T ).

�
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Rank

For representable matroids this coresponds to the usual
definition of rank.

For the cycle matroid of graph G = (V ,E), if S ⊆ E is a set of
edges and GS is the graph (V ,S) then r(S) = |V | − κ(GS),
where κ(GS) is the number of components of GS.

This clearly true for connected graphs and so if C1,C2, . . . ,Cs
are the components of GS then r(S) =

∑s
i=1 |Ci | − 1 = |V | − s.

For a partition matroid as defined above,

r(S) =
m∑

i=1

min{ki , |S ∩ Ei |}.
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Circuits

A circuit of a matroidM is a minimal dependent set. If a set
S ⊆ E ,S /∈ I then S contains a circuit.

So the circuits of the cycle matroid of a graph G are the cycles.

Theorem
If C1,C2 are circuits ofM and e ∈ C1 ∩ C2 then there is a
circuit C ⊆ (C1 ∪ C2) \ {e}.

Proof: We have r(Ci) = |Ci | − 1, i = 1,2. Also,
r(C1∩C2) = |C1∩C2| since C1∩C2 is a proper subgraph of C1.

If C′ = (C1 ∪ C2) \ {e} contains no circuit then
r(C1 ∪ C2) ≥ r(C′) = |C1 ∪ C2| − 1. But then

|C1 ∪ C2| − 1 ≤ r(C1 ∪ C2) ≤ r(C1) + r(C2)− r(C1 ∩ C2)

= (|C1| − 1) + (|C2| − 1)− |C1 ∩ C2|.

Contradiction. �
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Circuits

Theorem
If B is a basis ofM and e ∈ E \ B then B′ = B ∪ {e} contains a
unique circuit C(e,B). Furthermore, if f ∈ C(e,B) then
(B ∪ {e}) \ {f} is also a basis ofM.

Proof: B′ /∈ I because B is maximal. So B′ must contain at
least one circuit.

Suppose it contains distinct circuits C1,C2. Then e ∈ C1 ∩ C2
and so B′ contains a circuit C3 ⊆ (C1 ∪ C2) \ {e}.

But then C3 ⊆ B, contradiction. �
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Dual Matroid

Theorem
If B denotes the set of bases of a matroidM on ground set E
then B∗ = {E \ B : B ∈ B} is the set of bases of a matroidM∗,
the dual matroid.

Proof: Suppose that B∗1,B
∗
2 ∈ B∗ and e ∈ B∗1 \ B∗2.

Let Bi = E \ B∗i , i = 1,2. Then e ∈ B2 \ B1.

So there exists f ∈ B1 \ B2 such that (B2 ∪ {e}) \ {f} ∈ B.

This implies that (B∗2 ∪ {f}) \ {e} ∈ B∗. �
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Greedy Algorithm

Suppose that each e ∈ E is given a weight we and that the
weight w(I) of an independent set I is given by w(I) =

∑
e∈I ce.

The problem we discuss is

Maximize w(I) subject to I ∈ I.

Greedy Algorithm:
begin

Sort E = {e1,e2, . . . ,em} so w(ei) ≥ w(ei+1) for 1 ≤ i < m;
S ← ∅;
for i = 1,2, . . . ,m;
begin

if S ∪ {ei} ∈ I then;
begin;

S ← S ∪ {ei};
end;

end;
end
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Greedy Algorithm

Theorem
The greedy algorithm finds a maximum weight independent set
for all choices of w if and only if it is a matroid.

Suppose first that the Greedy Algorithm always finds a
maximum weight independent set. Suppose that ∅ 6= I, J ∈ I
with |J| = |I|+ 1. Define

w(e) =


1 + 1

2|I| e ∈ I.

1 e ∈ J \ I.
0 e /∈ I ∪ J.

If there does not exist e ∈ J \ I such that I ∪ {e} ∈ I then the
Greedy Algorithm will choose the elements of I and stop. But I
does not have maximum weight. Its weight is |I|+ 1/2 < |J|. So
if Greedy succeeds, then the IAA holds.
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Greedy Algorithm

Conversely, suppose that our independence system is a
matroid. We can assume that w(e) > 0 for all e ∈ E . Otherwise
we can restrict ourselves to the matroid defined by
I ′ = {I ⊆ E+} where E+ = {e ∈ E : w(e) > 0}.

Suppose now that Greedy chooses IG = ei1 ,ei2 , . . . ,eik where
it < it+1 for 1 ≤ t < k . Let I = ej1 ,ej2 , . . . ,ej` be any other
independent set and assume that jt < jt+1 for 1 ≤ t < `. We
can assume that ` ≥ k , for otherwise we can add something
from IG to I to give it larger weight.

We show next that k = ` and that it ≤ jt for 1 ≤ t ≤ k . This
implies that w(IG) ≥ w(I).
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Greedy Algorithm

Suppose then that there exists t such that it > jt and let t be as
small as possible for this to be true.

Now consider I = {eis : s = 1,2, . . . , t − 1} and
J = {ejs : s = 1,2, . . . , t}. Now there exists ejs ∈ J \ I such that
I ∪ {ejs} ∈ I.

But js ≤ jt < it and Greedy should have chosen ejs before
choosing eit+1 .

Also, ik ≤ jk implies that k = `. Otherwise Greedy can find
another element from I \ IG to add.
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Minors

Given a graph G = (V ,E) and an edge e we can get new
graphs by deleting e or contracting e.

We describe a corresponding notion for matroids. Suppose that
F ⊆ E then we define the matroidM\F with independent sets
I\F obtained by deleting F : I ∈ I\F if I ∈ I, I ∩ F = ∅.

It is clear that the IAA holds forM\F and so it is a matroid.

For contraction we will assume that F ∈ I. Then contracting F
definesM.Fwith independent sets
I.F = {I ∈ I : I ∩ F = ∅, I ∪ F ∈ I}.

We argue next thatM.F is also a matroid.
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Minors

Lemma
M.F = (M∗\F )

∗ andM\F = (M∗.F )∗ .

Proof:

I ∈ I.F ↔ ∃B ∈ B\F , I ⊆ B

↔ ∃B∗ ∈ B∗\F , I ∩ B∗ = ∅

↔ I ∈ (I∗\F )
∗.

For the second claim we use

M∗.F = (M∗∗\F )
∗ = (M\F )∗.

�
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Matroid Intersection

Suppose we are given two matroidsM1,M2 on the same
ground set E with I1, I2 and r1, r2 etc. having there obvious
meaning.

An intersection is a set I ∈ I1 ∩ I2. We give a min-max relation
for the size of the largest independent intersection. Let J
denote the set of intersections.

Theorem (Edmonds)

max{J ∈ J } = min{r1(A) + r2(E \ A) : A ⊆ E}.
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Matroid Intersection

Before proving the theorem let us see a couple of applications:

Hall’s Theorem: suppose we are given a bipartite graph
G = (A,B,E). LetMA,MB be the following two partition
matroids.

ForMA we define the partition Ea = {e ∈ x : a ∈ e}, a ∈ A. We
let ka = 1 for a ∈ A. We defineMB similarly.

Intersections correspond to matchings and r1(A) is the number
of vertices in A that are incident with an edge of A. Similarly
r2(E \ A) is the number of vertices in B that are incident with an
edge not in A.
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Matroid Intersection

For X ⊆ A, let

AX = {v ∈ A : v ∈ e for some e ∈ X}.

Define BX similarly.

So
max{|M|} = min{|AX |+ |BE\X | : X ⊆ E}.

Now we can assume that if e ∈ E \ X then e ∩ AX = ∅,
otherwise moving e to X does not increase the RHS of the
above.

Let S = A \ AX . Then |BE\X | = |N(A)| and so

max{|M|} = min{|A| − |S|+ |N(S)| : S ⊆ A}.
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Matroid Intersection

Rainbow Spanning Trees: we are given a connected graph
G = (V ,E) where each edge e ∈ E is given a color c(e) ∈ [m]
where m ≥ n − 1. Let Ei = {e : c(e) = i} for i ∈ [m].

A set of edges S is said to be rainbow colored if e, f ∈ S implies
that c(e) 6= c(f ).

For a set A ⊆ E , we let

r1(A) = c(A) = |{i ∈ [m] : ∃e ∈ A s.t . c(e) = i}|
r2(E \ A) = n − κ(G \ A).

So, G contains a rainbow spanning tree iff

c(A) + (n − κ(G \ A)) ≥ n − 1 for all A ⊆ E . (2)
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Matroid Intersection

We simplify (2) to obtain

c(A) + 1 ≥ κ(G \ A). (3)

We can then further simplify (3) as follows: if we add to A all
edges that use a color used by some edge of A then we do not
change c(A) but we do not decrease κ(G \ A).

Thus we can restrict our sets A to EI =
⋃

i∈I Ei for some
I ⊆ [m]. Then (3) becomes

κ(E[m]\I) ≤ |I|+ 1 for all I ⊆ [m]

or
κ(EI) ≤ m − |I|+ 1 for all I ⊆ [m]

If you think for a moment, you will see that this is obviously
necessary.

MATROIDS



Matroid Intersection

Proof of the matroid intersection theorem.

For the upper bound consider J ∈ J and A ⊆ E . Then

|J| = |J ∩ A|+ |J \ A| ≤ r1(A) + r2(E \ A).

We assume that e ∈ J for all e ∈ E . (Loops can be “ignored”.)

We proceed by induction on |E |. Let

k = min{r1(A) + r2(E \ A) : A ⊆ E}.

Suppose that |J| < k for all J ∈ J .
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Matroid Intersection

Then (M1)\{e} and (M2)\{e} have no common independent
set of size k . This implies that if F = E \ {e} then

r1(A) + r2(F \ A) ≤ k − 1 for some A ⊆ F .

Similarly,M1.{e} andM2.{e} have no common independent
set of size k − 1. This implies that

r1(B)− 1 + r2(E \ (B \ {e}))− 1 ≤ k − 2 for some e ∈ B ⊆ E .

This gives

r1(A) + r2(E \ (A ∪ {e})) + r1(B) + r2(E \ (B \ {e})) ≤ 2k − 1.
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Matroid Intersection

So, using submodularity and

(E \ (A ∪ {e})) ∪ (E \ (B \ {e})) = E \ (A ∩ B)

and

(E \ (A ∪ {e})) ∩ (E \ (B \ {e})) = E \ (A ∪ B).

We have used e /∈ A and e ∈ B here. So,

r1(A ∪ B) + r2(E \ (A ∪ B)) + r1(A ∩ B) + r2(E \ (A ∩ B))

≤ 2k − 1.

But, by assumption,

r1(A∪B) + r2(E \ (A∪B)) ≥ k , r1(A∩B) + r2(E \ (A∩B)) ≥ k ,

contradiction. �
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