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Linear algebraic methods



Oddtown

In order to cut down the number of committees a town of n
people has instituted the following rules:

(a) Each club shall have an odd number of members.
(b) Each pair of clubs shall share an even number of

members.

Theorem
With these rules, there are at most n clubs.
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Oddtown

Proof Suppose that the clubs are C1,C2, . . . ,Cm ⊆ [n].

Let vi = (vi,1, vi,2, . . . , vi,n) denote the incidence vector of Ci for
1 ≤ i ≤ m i.e. vi,j = 1 iff j ∈ Ci . We treat these vectors as being
over the two element field F2.

We claim that v1,v2, . . . ,vm are linearly independent and the
theorem will follow.

The rules imply that (i) vi · vi = 1 and (ii) vi · vj = 0 for
1 ≤ i 6= j ≤ m.
(Remember that we are working over F2.)
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Oddtown

Suppose then that

c1v1 + c2v2 + · · ·+ cmvm = 0.

We show that c1 = c2 = · · · = cm = 0.

Indeed, we have

0 = vj · (c1v1 + c2v2 + · · ·+ cmvm)

= c1v1 · vj + c2v2 · vj + · · ·+ cmvm · vj

= cj ,

for j = 1,2, . . . ,m. 2
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Point sets in Rn with only two distances

Let A = {a1,a2, . . . ,am} ⊆ Rn.

Suppose that the pair-wise distance between elements of A
only take two values. How large can A be?

Denote the maximum size of A by m(n).

Theorem

n(n + 1)
2

≤ m(n) ≤ (n + 1)(n + 4)
2

.

Proof For the lower bound we let
A =

{
ei + ej : 1 ≤ i < j ≤ n

}
where ei is the i th coordinate

vector.
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Point sets in Rn with only two distances

There are only two distances between elements of A viz. 21/2

and 2.

|A| = n(n−1)
2 , but it lies in the (n − 1)-dimensional space

x1 + x2 + · · ·+ xn = 2.

For the upper bound, assume that the two distances in A are
d1,d2. Then consider the multivariate polynomial with 2n
variables,

F (x,y) = (||x− y||2 − d2
1 )(||x− y||2 − d2

2 ).

Thus our two-distance condition can be expressed:

F (ai ,aj) =

{
(d1d2)

2 i = j
0 i 6= j
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Point sets in Rn with only two distances

Next let
fi(x) = F (x,ai) for i = 1,2, . . . ,m.

We claim that f1, f2, . . . , fm are linearly independent over R.
Suppose that for some λ1, λ2, . . . , λm

λ1f1(x) + λ2f2(x) + · · ·+ λmfm(x) = 0 for all x ∈ Rn.

But if x = aj then fi(x) = 0 for i 6= j and fj(x) = (d1d2)
2 6= 0.

It follows that λj fj(aj) = 0 and the independence claim follows.
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Point sets in Rn with only two distances

On the other hand, all polynomials fi can be expressed as
linear combinations of the following:(

n∑
k=1

x2
k

)2

,

(
n∑

k=1

x2
k

)
xj , xixj , xi ,1.

The number of polynomials listed is

1 + n + n(n + 1)/2 + n + 1 = (n + 1)(n + 4)/2.

Thus the fi belong to a space of dimension at most
(n + 1)(n + 4)/2. 2
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Decomposing Kn into bipartite subgraphs

Here we show

Theorem
If Gk , k = 1,2, . . . ,m is a collection of complete bipartite graphs
with vertex partitions Ak ,Bk , such that every edge of Kn is in
exactly one subgraph, then m ≥ n − 1. (Note that Ak ∩ Bk = ∅
here.)

Proof This is tight since we can take
Ak = {k} ,Bk = {k + 1, . . . ,n} for k = 1,2, . . . ,n − 1.

Define n × n matrices Mk where Mk (i , j) = 1 if i ∈ Ak , j ∈ Bk
and Mk (i , j) = 0 otherwise.

Let S = M1 + M2 + · · ·+ Mm. Then S + ST = Jn − In where In is
the identity matrix and Jn is the all ones matrix.
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Decomposing Kn into bipartite subgraphs

We show next that rank(S) ≥ n − 1 and then the theorem
follows from

rank(S) ≤ rank(M1) + rank(M2) + · · ·+ rank(Mm) ≤ m.

Suppose then that rank(S) ≤ n − 2 so that there exists a
non-zero solution x = (x1, x2, . . . , xn)

T to the system of
equations

Sx = 0,
n∑

i=1

xi = 0.

But then, Jnx = 0 and ST x = −x and −|x|2 = −xT ST x = 0,
contradiction. 2
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Nonuniform Fisher Inequality

Theorem
Let C1,C2, . . . ,Cm be distinct subsets of [n] such that for every
i 6= j we have |Ci ∩ Cj | = s where 1 ≤ s < n. Then m ≤ n.

Proof If |C1| = s then Ci ⊃ C1, i = 2,3, . . . ,m and the sets
Ci \ C1 are pairwise disjoint for i ≥ 2.

It follows in this case that m ≤ 1 + n − s ≤ n.

Assume from now on that ci = |Ci | − s > 0 for i ∈ [m].
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Nonuniform Fisher Inequality

Let M be the m × n 0/1 matrix where M(i , j) = 1 iff j ∈ Ci .

Let
A = MMT = sJ + D

where J is the m ×m all 1’s matrix and D is the diagonal
matrix, where D(i , i) = ci .

We show that A and hence M has rank m, implying that m ≤ n
as claimed.

We will in fact show that xT Ax > 0 for all 0 6= x ∈ Rm. This
means that Ax 6= 0 when x 6= 0.
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Nonuniform Fisher Inequality

If x = (x1, x2, . . . , xm)
T then

xT Ax = s(x1 + x2 + · · ·+ xm)
2 +

m∑
i=1

cix2
i > 0.

2
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Lighting problem

Let G = (V ,E) be an arbitrary graph. Suppose that each vertex
contains a light bulb and `(v) = 1 indicates that the light bulb
on v is on and `(v) = 0 indicates that it is off.

Suppose that for v ∈ V , the transformation T (v) flips the values
at v and all of its neighbors. I.e. T (v) switches on a
neighboring light bulb if it is off and turns it off if it is on.

Suppose that initially, `(v) = 0 for all v ∈ V , i.e. all light bulbs
are off. We show that there exists a set S ⊆ V such that
applying T (v), v ∈ S in any order makes `(v) = 1 for v ∈ V .
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Lighting problem

Observe first that applying T (v) and then T (w) achieves the
same effect as applying T (w) and then T (v) i.e. the order of
application of the transformations does not matter.
(The value of `(u) is flipped by the two transformations iff it is
adjacent to exactly one of {v ,w}.)

Let A be the 0-1 adjacency matrix of G i.e. let A(v ,w) = 1 iff
w ∈ N(v). In addition put A(v , v) = 1 for v ∈ V .

The set of transformations corresponding to S will turn on all of
the lights iff A1S = 1V where 1S is the 0-1 vector indexed by V
such that there is a 1 in component v iff v ∈ S.
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Lighting problem

Our claim amounts to saying that there exists S such that
A1S = 1V where calculations are done in the binary field.

If there is no such 1S then basic linear algebra theory tells us
that there exists x such that xT A = 0 and xT 1V 6= 0.

Since A is symmetric, this means that Ax = 0 as well. Let
x = 1S. Then S has the following properties:

(a) |S ∩ N(v)| is odd for all v ∈ V . This is a consequence of
Ax = 0.

(b) |S| is odd. This is a consequence of xT 1V 6= 0.
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Lighting problem

Now consider the sub-graph of G induced by S.

Every vertex has odd degree by (a). But in any graph, the
number of odd vertices is even. Contradiction.
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