SOME EXTREMAL PROBLEMS

[Some extremal problems](#page-34-0)

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ - ' 큰' - K 9 Q @

Let $P_n = \{A : A \subseteq [n]\}$ denote the *power set* of $[n]$.

 $A \subseteq \mathcal{P}_n$ is a *Sperner* family if $A, B \in \mathcal{A}$ implies that $A \nsubseteq B$ and $B \nsubseteq A$

Theorem

If $A \subseteq \mathcal{P}_n$ *is a Sperner family* $|A| \leq {n \choose \lfloor n/2 \rfloor}$.

Proof We will show that

$$
\sum_{A \in \mathcal{A}} \frac{1}{\binom{n}{|A|}} \le 1. \tag{1}
$$

KOD KAP KED KED E LORO

Now $\binom{n}{k}$ $\binom{n}{k} \leq \left(\frac{n}{2}\right)^n$ for all k and so

$$
1\geq \sum_{A\in\mathcal{A}}\frac{1}{\binom{n}{\lfloor n/2\rfloor}}=\frac{|\mathcal{A}|}{\binom{n}{\lfloor n/2\rfloor}}.
$$

Proof of [\(1\)](#page-1-0): Let π be a random permutation of $[n]$.

For a set $A \in \mathcal{A}$ let \mathcal{E}_A be the event $\{\pi(1), \pi(2), \ldots, \pi(|A|)\} = A.$

If $A, B \in \mathcal{A}$ then the events $\mathcal{E}_A, \mathcal{E}_B$ are disjoint.

So

$$
\sum_{A\in\mathcal{A}}\text{Pr}(\mathcal{E}_A)\leq 1.
$$

On the other hand, if $A \in \mathcal{A}$ then

$$
Pr(\mathcal{E}_A) = \frac{|A|!(n-|A|)!}{n!} = \frac{1}{\binom{n}{|A|}}
$$

and [\(1\)](#page-1-0) follows.

The set of all sets of size $n/2$ is a Sperner family and so the bound in the above theorem is best possible.

Inequality [\(1\)](#page-1-0) can be generalised as follows: Let *s* ≥ 1 be fixed. Let A be a family of subsets of [*n*] such that **there do not exist** distinct $A_1, A_2, \ldots, A_{s+1} \in A$ such that $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_{s+1}$.

Proof Let π be a random permutation of $[n]$.

Let $\mathcal{E}(A)$ be the event $\{\pi(1), \pi(2), \ldots, \pi(|A|) = A\}\}.$

イロト イ押 トイヨ トイヨ トーヨー

 QQ

Let

$$
Z_i = \begin{cases} 1 & \mathcal{E}(A_i) \text{ occurs.} \\ 0 & \text{otherwise.} \end{cases}
$$

and let $Z = \sum_i Z_i$ be the number of events $\mathcal{E}(\mathcal{A}_i)$ that occur.

Now our family is such that $Z \leq s$ for all π and so

$$
E(Z) = \sum_i E(Z_i) = \sum_i \text{Pr}(\mathcal{E}(A_i)) \leq s.
$$

On the other hand, $A \in \mathcal{A}$ implies that $\mathsf{Pr}(\mathcal{E}(A)) = \frac{1}{\binom{n}{|A|}}$ and the required inequality follows.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ⊙ Q @

Intersecting Families

A family $A \subseteq P_n$ is an *intersecting* family if $A, B \in \mathcal{A}$ implies $A \cap B \neq \emptyset$.

Theorem

If A *is an intersecting family then* $|A| \leq 2^{n-1}$.

Proof Pair up each $A \in \mathcal{P}_n$ with its complement $A^{c} = [n] \setminus A$. This gives us 2^{n-1} pairs altogether. Since $\mathcal A$ is intersecting it can contain at most one member of each pair.

If $A = \{A \subseteq [n]: 1 \in A\}$ then A is intersecting and $|A| = 2^{n-1}$ and so the above theorem is best possible.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 2990 ÷.

Theorem

If A *is an intersecting family and A* ∈ A *implies that* $|A| = k \leq |n/2|$ *then*

$$
|\mathcal{A}| \leq {n-1 \choose k-1}
$$

Proof If π is a permutation of $[n]$ and $A \subseteq [n]$ let

 $\theta(\pi, A) = \begin{cases} 1 & \exists s: \ \{\pi(s), \pi(s+1), \ldots, \pi(s+k-1)\} = A \end{cases}$ 0 *otherwise* where $\pi(i) = \pi(i - n)$ if $i > n$.

We will show that for any permutation π ,

$$
\sum_{A\in\mathcal{A}}\theta(\pi,A)\leq k.\tag{2}
$$

Assume [\(2\)](#page-6-0). We first observe that if π is a random permutation then

$$
\mathsf{E}(\theta(\pi,A)) = n \frac{k! (n-k)!}{n!} = \frac{k}{\binom{n-1}{k-1}}
$$

and so, from [\(2\)](#page-6-0),

$$
k \geq \mathbf{E}(\sum_{A \in \mathcal{A}} \theta(\pi, A)) = \sum_{A \in \mathcal{A}} \frac{k}{\binom{n-1}{|A|-1}}
$$

Hence

$$
|\mathcal{A}| \leq {n-1 \choose k-1}
$$

イロト イ部 トイモト イモトー

 $E = \Omega Q$

Assume w.l.o.g. that π is the identity permutation.

Let $A_t = \{t, t+1, \ldots, t+k-1\}$ and suppose that $A_s \in \mathcal{A}$.

All of the other sets A_t that intersect A_s can be partitioned into pairs *As*−*ⁱ* , *As*+*k*−*ⁱ* , 1 ≤ *i* ≤ *k* − 1 and the members of each pair are disjoint. Thus $\mathcal A$ can contain at most one from each pair. This verifies [\(2\)](#page-6-0).

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

重し $2Q$

Kraft's Inequality

Let x_1, x_2, \ldots, x_m be a collection of sequences over an alphabet Σ of size *s*. Let *xⁱ* have length *nⁱ* and let $n = \max\{n_1, n_2, \ldots, n_m\}.$

Assume next that no sequence is a prefix of any other sequence: Sequence *xⁱ* = *a*1*a*² · · · *anⁱ* is a prefix of $x_j = b_1 b_2 \cdots b_{n_j}$ if $a_i = b_i$ for $i = 1, 2, \ldots, n_i$.

Theorem X*m i*=1 $r^{-n_i} \leq 1$.

イロト イ押 トイヨ トイヨ トーヨー

 QQ

Proof: Let x be a random sequence of length *n*. Let \mathcal{E}_i be the event *xⁱ* is a prefix of *x*. Then

> (a) $Pr(\mathcal{E}_i) = r^{-n_i}$. (b) The event \mathcal{E}_i , $i = 1, 2, \ldots, m$ are disjoint. (If \mathcal{E}_i and \mathcal{E}_j both occur and $n_i \leq n_j$ then x_i is a prefix of *x^j* .

Property (b) implies that

$$
\mathbf{Pr}\left(\bigcup_{i=1}^m \mathcal{E}_i\right) = \mathbf{Pr}(\mathcal{E}_1) + \mathbf{Pr}(\mathcal{E}_2) + \cdots + \mathbf{Pr}(\mathcal{E}_m) \leq 1.
$$

The theorem now follows from Property (a).

イロト イ押 トイヨ トイヨ トー

÷. QQ

The trace of a set system

Let X be a set and suppose that $\mathcal{F} \subseteq 2^X$.

For $Y \subseteq X$ we let $\mathcal{F} \cap Y = \{F \cap Y : F \in \mathcal{F}\}.$

Then for positive integer *k* we let

$$
f_{\mathcal{F}}(k) = \max \left\{ |\mathcal{F} \cap Y| : Y \in \binom{X}{k} \right\}.
$$

We define the trace number of the system $\mathcal F$ by

$$
tr(\mathcal{F}) = \max \{m : f_{\mathcal{F}}(m) = 2^m\}.
$$

 QQ

Theorem

Suppose that $|X| = n$ *and* $\mathcal{F} \subseteq 2^X$ *and* $|\mathcal{F}| > \sum_{i=0}^{k-1} {n \choose i}$ *i . Then tr*(\mathcal{F}) \geq *k*.

Proof For *x* ∈ *X* set

$$
\mathcal{F}_X=\mathcal{F}\cap(X\setminus\{x\})=\{A\setminus\{x\}:A\in\mathcal{F}\}\,.
$$

Let $\phi_x : \mathcal{F} \to \mathcal{F}_x$ be given by $\phi_x(A) = A \setminus \{x\}.$

 ϕ_{x} is onto and if $|\phi^{-1}(\mathit{B})| \geq 2$ then $\phi^{-1}(\mathit{B}) = \{\mathit{B}, \mathit{B} \cup \{\mathsf{x}\}\}$ and $x \notin B$.

KOD KAP KED KED E YA G

Let

$$
A_x = \{A \in \mathcal{F} : x \in A, A \setminus \{x\} \in \mathcal{F}\}.
$$

$$
\mathcal{B}_x = \{B \in \mathcal{F} : x \notin B, B \cup \{x\} \in \mathcal{F}\}.
$$

Then

$$
|\mathcal{F}| - |\mathcal{F}_x| = |\mathcal{A}_x| = |\mathcal{B}_x|.
$$
 (3)

Note that if $tr(B_x) \geq k - 1$ then $tr(\mathcal{F}) \geq k$. Indeed, suppose $\mathcal{B}_x \cap Y = 2^Y$ where $|Y| = k - 1$. Set $Z = Y \cup \{x\}$. Then

 $\mathcal{F} \cap Z \supset (\mathcal{A}_X \cup \mathcal{B}_X) \cap Z = 2^Z.$

Because if $x \in U \subset Z$ then $U \setminus \{x\} = B \cap Y = B \cap Z$ for some *B* ∈ B_x by assumption. So *U* = *A* ∩ *Z* where $A = B \cup \{x\} \in A_x$.

イロト イ押 トイヨ トイヨ トー

÷.

 $2Q$

To complete the proof we use induction on $n + k$. For $n + k = 1$ there is nothing to prove.

Suppose that $n + k > 2$ and the result is true for smaller values of $n + k$.

Let $x \in X$. If $|\mathcal{F}_x| > \sum_{j=0}^{k-1} \binom{n-1}{j}$ \int_j^{-1}) then $tr(\mathcal{F}_{\pmb{\chi}}) \geq k$ by induction and so $tr(\mathcal{F}_X) \geq k$. Otherwise, by [\(3\)](#page-13-0),

$$
|\mathcal{B}_x| = |\mathcal{F}| - |\mathcal{F}_x| > \sum_{j=0}^{k-1} {n \choose j} - \sum_{j=0}^{k-1} {n-1 \choose j} \\ = \sum_{j=1}^{k-1} {n-1 \choose j-1} = \sum_{j=0}^{k-2} {n-1 \choose j}.
$$

Hence, by induction, $tr(B_x) \geq k - 1$ and so $tr(B) \geq k$.

 QQ

Corollary

If F *is a family of subsets of an infinite set S then either* $f_{\mathcal{F}}(k) = 2^k$ for every k or else there exists ℓ such that $f_{\mathcal{F}}(n) \leq n^{\ell}$ for every $n \geq \ell$.

Proof Suppose that $f_{\mathcal{F}}(k) \neq 2^{\ell}$ for some ℓ . Then by the theorem,

$$
f_{\mathcal{F}}(n) \leq \sum_{j=0}^{\ell-1} {n \choose j} \leq n^{\ell} \text{ for } n > \ell.
$$

 \Box

÷. QQ

 $\left\{ \bigoplus_{i=1}^{n} \mathbb{P} \left[\bigoplus_{i$

Sunflowers

A sunflower of size *r* is a family of sets A_1, A_2, \ldots, A_r such that every element that belongs to more than one of the sets belongs to all of them.

Let *f*(*k*, *r*) be the maximum size of a family of *k*-sets without a sunflower of size *r*.

Theorem *f*(*k*, *r*) \leq $(r - 1)^{k}k!$

Proof Let $\mathcal F$ be a family of k -sets without a sunflower of size *r*. Let A_1, A_2, \ldots, A_t be a maximum subfamily of pairwise disjoint subsets in \mathcal{F} .

Since a family of pairwise disjoint is a sunflower, we must have *t* < *r*. イロト 不優 トイモト 不思 トー ÷.

 2990

Now let $A = \bigcup_{i=1}^{t} A_i$. For every $a \in A$ consider the family $\mathcal{F}_a = \{ S \setminus \{a\} : S \in \mathcal{F}, a \in S \}.$

Now the size of *A* is at most $(r - 1)k$.

The size of each \mathcal{F}_a is at most $f(k-1, r)$. This is because a sunflower in \mathcal{F}_a is a sunflower in \mathcal{F}_a .

So,

f(*k*, *r*) ≤ (*r* − 1)*k* × *f*(*k* − 1, *r*) ≤ (*r* − 1)*k* × (*r* − 1)^{*k*−1}(*k* − 1)!,

by induction.

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

Distinct Distances

Suppose that X_1, X_2, \ldots, X_n are *n* points in the plane. We put bounds on the number of distinct distances among |*XiX^j* |.

Let *f*(*n*) denote the minimum among all sets of *n* points.

Lower bound: $f(n)$ ≥ $(n-3/4)^{1/2} - 1/2$.

Assume that X_1 is a vertex of the least (in γ value) convex polygon contained in the points. Let *K* be the number of distinct values among $\{|X_1X_i|: i\geq 2\}$.

If *N* is the maximum number of times the same distance occurs then $KN > n - 1$.

イロト イ伊 トイヨ トイヨ トー

重。 QQ

If *r* is a distance that occurs *N* times then there are *N* points on the circle with center X_1 and radius *r*. They all lie on a semi-circle.

Going round the circle, let these points be Q_1, Q_2, \ldots, Q_N . Then $|Q_1 Q_2| < |Q_1 Q_3| \cdots < |Q_1 Q_N|$.

Thus $f(n) \ge \max\{(n-1)/N, N-1\}$. $N(N-1)$ minimises this lower bound and gives us what we claim.

Upper bound: we consider the integer points $\{(x, y)\}$ where $0 \leq x, y \leq n^{1/2}$ These have distance of the form $(u^2 + v^2)^{1/2}$ and $cn/\log^{1/2} n$ is a bound on the number of integers of the form $0 \le u^2 + v^2 \le 2n$.

モニー・モン イミン イヨン エミ

 QQ

Matchings

A *matching* M of a graph $G = (V, E)$ is a set of edges, no two of which are incident to a common vertex. $M=\longleftarrow$ M-unsaturated M-saturated

4 0 8

 \equiv

 $\langle \oplus \rangle$ > $\langle \oplus \rangle$ > $\langle \oplus \rangle$

 2990

An *M*-alternating path joining 2 *M*-unsaturated vertices is called an *M*-augmenting path.

イロメ 不優 トメ ヨ メ ス ヨ メー

÷.

 299

M is a *maximum* matching of *G* if no matching *M'* has more edges.

Theorem

M is a maximum matching iff M admits no M-augmenting paths.

Proof Suppose *M* has an augmenting path $P = (a_0, b_1, a_1, \ldots, a_k, b_{k+1})$ where $e_i = (a_{i-1}, b_i) \notin M$, 1 < *i* < *k* + 1 and $f_i = (b_i, a_i) \in M, 1 \le i \le k.$

 $M' = M - \{f_1, f_2, \ldots, f_k\} + \{e_1, e_2, \ldots, e_{k+1}\}.$

(御) (重) (重)

÷. QQ

- $|M'| = |M| + 1$.
- M' is a matching

For $x \in V$ let $d_M(x)$ denote the degree of x in matching M, So $d_M(x)$ is 0 or 1. $d_{M'}(x) =$ $\sqrt{ }$ \overline{I} \mathcal{L} *d*_{*M*}(*x*) $x \notin \{a_0, b_1, \ldots, b_{k+1}\}$ *d*_{*M*}(*x*) $x \in \{b_1, ..., a_k\}$ *d*_{*M*}(*x*) + 1 *x* ∈ {*a*₀, *b*_{*k*+1}}

So if *M* has an augmenting path it is not maximum.

B

∢ 何 ▶ ((臣) ((臣) …

 $2Q$

Suppose *M* is not a maximum matching and $|M'| > |M|$. $\mathsf{Consider}\ \mathsf{H}=\mathsf{G}[\mathsf{M}\nabla\mathsf{M}']$ where $\mathsf{M}\nabla\mathsf{M}'=(\mathsf{M}\setminus \mathsf{M}')\cup (\mathsf{M}'\setminus \mathsf{M})$ is the set of edges in *exactly* one of M, M'. Maximum degree of H is 2 – \leq 1 edge from M or M' . So H is a

collection of vertex disjoint alternating paths and cycles.

 $2Q$

Bipartite Graphs

Let $G = (A \cup B, E)$ be a bipartite graph with bipartition A, B. $For S \subseteq A$ let $N(S) = \{b \in B : \exists a \in S, (a, b) \in E\}.$

 $N({a_2, a_3}) = {b_1b_3b_4}$

Clearly, $|M| \leq |A|$, $|B|$ for any matching *M* of *G*.

 299

÷. ヨト

Systems of Distinct Representatives

Let S_1, S_2, \ldots, S_m be arbitrary sets. A set s_1, s_2, \ldots, s_m of *m* disitinct elements is a system of distinct representatives if $s_i \in S_i$ for $i = 1, 2, \ldots, m$.

For example $\{1, 2, 4\}$ is a system of distinct representatives for $\{1, 2, 3\}$, $\{2, 5, 6\}$, $\{2, 4, 5\}$.

Now define the bipartite graph *G* with vertex bipartition [*m*], *S* where $S = \bigcup_{i=1}^m S_i$ and an edge (i, s) iff $s \in S_i$.

Then S_1, S_2, \ldots, S_m has a system of distinct representatives iff *G* has a matching of size *m*.

KOD KAP KED KED E LORO

Hall's Theorem

 $N({a_1, a_2, a_3}) = {b_1, b_2}$ and so at most 2 of a_1, a_2, a_3 can be saturated by a matching. モニー・モン イミン イヨン エミ

 2990

Only if: Suppose $M = \{(a, \phi(a)) : a \in A\}$ saturates A.

and so [\(4\)](#page-27-0) holds. **If**: Let $M = \{(a, \phi(a)) : a \in A'\}$ ($A' \subseteq A$) is a maximum matching. Suppose $a_0 \in A$ is *M*-unsaturated. We show that [\(4\)](#page-27-0) fails. ◆ 御き * 重き * 重き … 重

 299

Let

 $A_1 = \{a \in A : \text{such that } a \text{ is reachable from } a_0 \text{ by an } a_1 \}$ *M*-alternating path.} $B_1 = \{b \in B : \text{such that } b \text{ is reachable from } a_0 \text{ by an } b\}$

M-alternating path.}

4 0 8

 2990

÷.

 $\langle \oplus \rangle$ > $\langle \oplus \rangle$ > $\langle \oplus \rangle$

• B_1 is *M*-saturated else there exists an *M*-augmenting path. • If $a \in A_1 \setminus \{a_0\}$ then $\phi(a) \in B_1$.

So $|N(A_1)| = |A_1| - 1$ and [\(4\)](#page-27-0) fails to hold.

an

[Some extremal problems](#page-0-0)

^a ^b

 \equiv

 2990

Marriage Theorem

Theorem

Suppose $G = (A \cup B, E)$ *is k-regular.* $(k \ge 1)$ *i.e.* $d_G(v) = k$ *for all v* ∈ *A* ∪ *B. Then G has a perfect matching.*

Proof $k|A| = |E| = k|B|$ and so $|A| = |B|$. Suppose $S \subseteq A$. Let *m* be the number of edges incident with *S*. Then $k|S| = m \leq k(N(S))$. So [\(4\)](#page-27-0) holds and there is a matching of size |*A*| i.e. a perfect matching.

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

÷. QQ

Edge Covers

A set of vertices $X \subseteq V$ is a *covering* of $G = (V, E)$ if every edge of *E* contains at least one endpoint in *X*.

Lemma

If X is a covering and *M* is a matching then $|X| > |M|$.

Proof Let $M = \{(a_1, b_i): 1 \le i \le k\}$. Then $|X| \ge |M|$ since *a*_{*i*} ∈ *X* or *b*_{*i*} ∈ *X* for 1 ≤ *i* ≤ *k* and *a*₁, . . . , *b*_{*k*} are distinct.

イロト イ押 トイヨ トイヨ トー

B

 $2Q$

Konig's Theorem

Let $\mu(G)$ be the maximum size of a matching. Let $\beta(G)$ be the minimum size of a covering. Then $\mu(G) \leq \beta(G)$.

Theorem

If G is bipartite *then* μ (*G*) = β (*G*)*.*

Proof Let *M* be a maximum matching. Let S_0 be the *M*-unsaturated vertices of A. Let $S \supset S_0$ be the *A*-vertices which are reachable from S_0 by *M*-alternating paths.

Let *T* be the *M*-neighbours of $S \setminus S_0$.

イロト イ押 トイヨ トイヨト

÷. QQ

Let $X = (A \setminus S) \cup T$. • $|X| = |M|$. $|T| = |S \setminus S_0|$. The remaining edges of *M* cover $A \setminus S$ exactly once.

• *X* is a cover.

There are no edges (x, y) where $x \in S$ and $y \in B \setminus T$. Otherwise, since *y* is *M*-saturated (no *M*-augmenting paths) the *M*-neightbour of *y* would have to be in *S*, contradicting $y \notin T$. \Box

イロメ イ押 メイヨメ イヨメ

 QQ