SOME EXTREMAL PROBLEMS

Some extremal problems



Let P, = {A: A C [n]} denote the power set of [n].

A C Ppis a Sperner family if A, B € A implies that A Z B and
BZA

If A C Py is a Sperner family | A| < (| 5]2))-

Proof We will show that

1
2 =t M

AcA

Now (}) < (Lnr/72j) for all k and so

| Al
1> el
Aze,% ({n)2)) (Ln/ZJ)
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Proof of (1): Let 7 be a random permutation of [n].

For a set A € A let £4 be the event
{(x(1),7(2),...,7(|A])} = A

If A, B € Athen the events £4, £ are disjoint.

So
> Pr(Ea) < 1.

AcA

On the other hand, if A € A then
_AR(n— A T
n! (1)
and (1) follows. O

Pr(€a)




The set of all sets of size [n/2] is a Sperner family and so the
bound in the above theorem is best possible.

Inequality (1) can be generalised as follows: Let s > 1 be fixed.
Let A be a family of subsets of [n] such that there do not exist
distinct Ay, Ao, ..., Asy1 € Asuchthat Ay C Ay C -+ C Agyg.

AcA (IAI)

Proof Let = be a random permutation of [n].

Let £(A) be the event {r(1),7(2),...,x(|A]) = A}}.
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Let

7 _ 1 E(A;) occurs.
"7 10 otherwise.

and let Z = ), Z; be the number of events £(A;) that occur.
Now our family is such that Z < s for all = and so

E(Z)=) E(Z)=> PrE(A)) <s.

On the other hand, A € A implies that Pr(£(A)) = (17) and the
A

required inequality follows. O
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Intersecting Families

A family A C P, is an intersecting family if A, B € A implies
ANB#10.

If A is an intersecting family then |A| < 21,

Proof Pair up each A € P, with its complement

A° = [n] \ A. This gives us 2"~ pairs altogether.

Since A is intersecting it can contain at most one member of
each pair. O

If A={AC[n]: 1€ A}then Ais intersecting and |A| = 2"~
and so the above theorem is best possible.
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Theorem
If A is an intersecting family and A € A implies that

|A| =k < |n/2] then
n—1
A= (3 2])

Proof If = is a permutation of [n] and A C [n] let

0(x. A) — 1 3s: {n(s),n(s+1),...,m(s+k—-1)} =A
N0 otherwise

where 7w(i) = n(i — n) if i > n.

We will show that for any permutation ,

> 0(m,A) < k. )

AcA
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Assume (2). We first observe that if 7 is a random permutation
then

E(o(r. A)) — nK( =Rk

n (k1)

and so, from (2),

k>E(D 0(mA) =Y (n’;)

AcA AcA

n—1
FE

Hence
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Assume w.l.o.g. that = is the identity permutation.
Let A ={t,t+1,...,t+ k — 1} and suppose that As € A.

All of the other sets A; that intersect As can be partitioned into
pairs As_j, Asik_i, 1 <i < k—1 and the members of each pair
are disjoint. Thus A can contain at most one from each pair.
This verifies (2).
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Kraft’s Inequality

Let x1, X2, ..., Xm be a collection of sequences over an alphabet
Y of size s. Let x; have length n; and let
n=max{Nny, Ng,...,Nm}.

Assume next that no sequence is a prefix of any other
sequence: Sequence Xx; = aaz - - - @, is a prefix of
Xj=Dbiba--- by ifai=bifori=1,2,....n.
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Proof: Let x be a random sequence of length n. Let &; be the
event x; is a prefix of x. Then

(@) Pr(&)=r—".

(b) Theevent&;, i=1,2,..., mare disjoint.
(If & and &; both occur and n; < n; then X; is a
prefix of x;.

Property (b) implies that
m
Pr <U 5,‘) = Pr(51) + Pr(Sg) + -+ Pr(Sm) <1.

i=1

The theorem now follows from Property (a). O
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The trace of a set system

Let X be a set and suppose that F C 2%,
ForYC Xwelet FnY={FnY:FeF}

Then for positive integer k we let

fr(k) = max{\]—"ﬂ Y| Ye (f)}

We define the trace number of the system F by

tr(F) = max{m: fr(m)=2"}.
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Suppose that|X| = nand F C 2¥ and |F| > Sk (7). Then
tr(F) > k.

Proof For x € X set
Fx=FNn(X\{x})={A\{x}: Ae F}.

Let ¢x : F — Fx be given by ¢x(A) = A\ {x}.

o is onto and if |¢p~1(B)| > 2 then ¢~ '(B) = {B,BU {x}} and
x ¢ B.
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Let
Ax={Ac F:xec A A\ {x} e F}.

Bx={BeF:x¢ B BU{x}eF}.

Then
|F| - |FX‘ = ’Ax‘ = ’Bx|- (3)

Note that if {r(Bx) > k — 1 then tr(F) > k. Indeed, suppose
BxnY =2Y where |Y| =k —1.Set Z = YU {x}. Then

FNZ>(AUBy)NZ =2%.

Becauseif x e UC Zthen U\ {x} =BnY = BnZ for some
B € By by assumption. So U = AnZ where A= BU {x} € Ax.
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To complete the proof we use induction on n+ k. Forn+ k = 1
there is nothing to prove.

Suppose that n+ k > 2 and the result is true for smaller values
of n+ k.

Let x € X. If | Fy| > ZJIZJ (”71) then tr(Fx) > k by induction
and so tr(Fx) > k. Otherwise, by (3),

Bxl = |F| - |5 >Z< ) Z<n;1>

Jj=0
_Z<n—1> < 2<n—1)
1) =N
Hence, by induction, ir(Bx) > k — 1 and so tr(B) > k. O
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If F is a family of subsets of an infinite set S then either
fr(k) = 2K for every k or else there exists ¢ such that
f=(n) < n’ for every n > /.

Proof Suppose that fr(k) # 2 for some ¢. Then by the

theorem,
-1

fr(n) < Z (7) < nforn>¢.

/=
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Sunflowers

A sunflower of size r is a family of sets Ay, Ao, ..., Ar such that
every element that belongs to more than one of the sets
belongs to all of them.

Let f(k, r) be the maximum size of a family of k-sets without a
sunflower of size r.

f(k,r) < (r — 1)kk!.

Proof Let F be a family of k-sets without a sunflower of
size r. Let Ay, Ao, ..., A; be a maximum subfamily of pairwise
disjoint subsets in F.

Since a family of pairwise disjoint is a sunflower, we must have
t<r.
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Now let A = Uf:1 A;. For every a € A consider the family
Fa=1{S\{a}:Sec F,ac S}.

Now the size of Ais at most (r — 1)k.

The size of each F,is at most f(k — 1, r). This is because a
sunflower in F; is a sunflower in F.

So,
f(k,r) < (r—1Dkxf(k—1,r) < (r—1)kx (r— D" (k= 1)1,

by induction. O
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Distinct Distances

Suppose that Xi, X», ..., X, are n points in the plane. We put
bounds on the number of distinct distances among | X;.Xj|.

Let f(n) denote the minimum among all sets of n points.
Lower bound: f(n) > (n—3/4)'/2 —1/2.

Assume that X is a vertex of the least (in y value) convex
polygon contained in the points. Let K be the number of distinct
values among {| X1 Xj| : i > 2}.

If N is the maximum number of times the same distance occurs
then KN > n—1.
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If r is a distance that occurs N times then there are N points on
the circle with center X; and radius r. They all lie on a
semi-circle.

Going round the circle, let these points be Qy, Q», ..., Qn. Then
‘01 Qz’ < ‘01 03‘ e << ‘01 QN’.

Thus f(n) > max{(n—1)/N,N —1}. N(N — 1) minimises this
lower bound and gives us what we claim.

Upper bound: we consider the integer points {(x, y)} where
0 < x,y < n'/2. These have distance of the form (u? + v?)'/2
and cn/ log'/2 nis a bound on the number of integers of the
form 0 < u? + v2 < 2n.
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Matchings

A matching M of a graph G = (V, E) is a set of edges, no two
of which are incident to a common vertex.

M-saturated

M=p— )

M-unsaturated
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M-alternating path

M not M M not N M

(a,b,c.d,e.f) is an

£ M-alternating path

An M-alternating path joining 2 M-unsaturated vertices is called
an M-augmenting path.
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M is a maximum matching of G if no matching M’ has more
edges.

M is a maximum matching iff M admits no M-augmenting paths. \

Proof Suppose M has an augmenting path
P= (ao, b1 ,at,...,dk, bk+1) where
e=(a_1,b))¢M 1<i<k+1and
fi=(bj,a)e M, 1<i<k.

a; a,

M’:M—{f1,f2,...,fk}+{e1,e2,...7ek+1}.
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o M| =|M|+1.
@ M'is a matching

For x € V let dy(x) denote the degree of x in matching M, So
du(x) x ¢ {ao, b1, bky1}

du(x)is0or 1. dy(x) =< du(x) x €{by,...,ak}
du(x) +1 x € {ao, brt1}

So if M has an augmenting path it is not maximum.
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Suppose M is not a maximum matching and |M'| > |M].
Consider H = GIMVM’'] where MVM' = (M\ M")u (M'\ M) is
the set of edges in exactly one of M, M'.

Maximum degree of His 2 — < 1 edge from M or M'. So His a
collection of vertex disjoint alternating paths and cycles.

—
¢
’ N \ ' .
’ s \
\ \ \
4 \

\ \
\ \
\

(a) (b)
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Bipartite Graphs

Let G = (AU B, E) be a bipartite graph with bipartition A, B.
For SC Alet N(S)={be B: Jac S,(a,b) € E}.

a g bl
a2 b2
a3 b3
a, b4

N({a,.a, })={b b,b,}
Clearly, [M| < |A|,|B| for any matching M of G.



Systems of Distinct Representatives

Let S¢,Ss, ..., Sy be arbitrary sets. A set s1,5,...,55,0fm
disitinct elements is a system of distinct representatives if
sie Sjfori=1,2,...,m.

For example {1,2,4} is a system of distinct representatives for
{1,2,3},{2,5,6},{2,4,5}.

Now define the bipartite graph G with vertex bipartition [m], S
where S = J, S; and an edge (i, s) iff s € S;.

Then S, Ss, ..., Sy has a system of distinct representatives iff
G has a matching of size m.
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Hall’s Theorem

G contains a matching of size |A| iff

IN(S)| > |S] VSC A (4)
aj b,
a, by
aj bs
a by

N({ai, as,as}) = {bq, b2} and so at most 2 of a4, a,, az can be
saturated by a matching.
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Only if: Suppose M = {(a,¢(a)) : a € A} saturates A.

1 0 (2) € N(S)
2
o +non-matching
S
edges
3 ¢ (1) e N(S)
4 6(3) € N(S)

IN(S)I = [{é(s): s€ S}

S|

and so (4) holds.

If: Let M = {(a,¢(a)): ac A’} (A C A)isamaximum
matching. Suppose ay € A is M-unsaturated. We show that (4)
fails.
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Let

Ay ={a € A:such that ais reachable from ay by an
M-alternating path.}

By = {b € B : such that b is reachable from gy by an
M-alternating path.}

B, B B, B,

ag A A A, A

No A1-B\B |
edges
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e By is M-saturated else there exists an M-augmenting path.
olfac A\ {ap} then ¢(a) € By.

0 ¢(&) :

o lf bc Bythen ¢~ '(b) € A\ {ap}-
SO’B1| :‘A1|—1.0N(A1)§ B1

0_0/0—0\0*0_.
0 b :

So [N(A;)| = |A| — 1 and (4) fails to hold.



Marriage Theorem

Suppose G = (AU B, E) is k-regular. (k > 1) i.e. dg(v) = k for
allv e Au B. Then G has a perfect matching.

Proof k|A| = |E| = k|B| and so |A| = |B].

Suppose S C A. Let m be the number of edges incident with S.
Then k|S| = m < k|N(S)|. So (4) holds and there is a matching
of size |A| i.e. a perfect matching.
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Edge Covers

A set of vertices X C V' is a covering of G = (V, E) if every
edge of E contains at least one endpoint in X.

{® } is a covering

If X is a covering and M is a matching then | X| > |M)|.

Proof Let M = {(ay,b;) : 1 <i<k}. Then |X]| > |M| since
gicXorbeXfor1<i<kanday,...,bg are distinct. O
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Konig’s Theorem

Let 1(G) be the maximum size of a matching.
Let 5(G) be the minimum size of a covering.
Then u(G) < 5(G).

If G is bipartite then u(G) = (G).

Proof Let M be a maximum matching.

Let Sy be the M-unsaturated vertices of A.

Let S O Sy be the A-vertices which are reachable from Sy by
M-alternating paths.

Let T be the M-neighbours of S\ Sp.
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So So S, S S s S

Let X =(A\S)UT.

o | X|=|M|.

|T| =[S\ Sp|. The remaining edges of M cover A\ S exactly
once.

e X is a cover.

There are no edges (x,y) where x € Sand y € B\ T.
Otherwise, since y is M-saturated (no M-augmenting paths) the
M-neightbour of y would have to be in S, contradicting y ¢ T. O
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