
SOME EXTREMAL PROBLEMS

Some extremal problems



Let Pn = {A : A ⊆ [n]} denote the power set of [n].

A ⊆ Pn is a Sperner family if A,B ∈ A implies that A 6⊆ B and
B 6⊆ A

Theorem

If A ⊆ Pn is a Sperner family |A| ≤
( n
bn/2c

)
.

Proof We will show that∑
A∈A

1( n
|A|
) ≤ 1. (1)

Now
(n

k

)
≤
( n
bn/2c

)
for all k and so

1 ≥
∑
A∈A

1( n
bn/2c

) =
|A|( n
bn/2c

) .
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Proof of (1): Let π be a random permutation of [n].

For a set A ∈ A let EA be the event

{π(1), π(2), . . . , π(|A|)} = A.

If A,B ∈ A then the events EA, EB are disjoint.

So ∑
A∈A

Pr(EA) ≤ 1.

On the other hand, if A ∈ A then

Pr(EA) =
|A|!(n − |A|)!

n!
=

1( n
|A|
)

and (1) follows. �
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The set of all sets of size bn/2c is a Sperner family and so the
bound in the above theorem is best possible.

Inequality (1) can be generalised as follows: Let s ≥ 1 be fixed.
Let A be a family of subsets of [n] such that there do not exist
distinct A1,A2, . . . ,As+1 ∈ A such that A1 ⊆ A2 ⊆ · · · ⊆ As+1.

Theorem ∑
A∈A

1( n
|A|
) ≤ s.

Proof Let π be a random permutation of [n].

Let E(A) be the event {π(1), π(2), . . . , π(|A|) = A}}.
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Let

Zi =

{
1 E(Ai) occurs.
0 otherwise.

and let Z =
∑

i Zi be the number of events E(Ai) that occur.

Now our family is such that Z ≤ s for all π and so

E(Z ) =
∑

i

E(Zi) =
∑

i

Pr(E(Ai)) ≤ s.

On the other hand, A ∈ A implies that Pr(E(A)) = 1
( n
|A|)

and the

required inequality follows. �
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Intersecting Families

A family A ⊆ Pn is an intersecting family if A,B ∈ A implies
A ∩ B 6= ∅.

Theorem

If A is an intersecting family then |A| ≤ 2n−1.

Proof Pair up each A ∈ Pn with its complement
Ac = [n] \ A. This gives us 2n−1 pairs altogether.
Since A is intersecting it can contain at most one member of
each pair. �

If A = {A ⊆ [n] : 1 ∈ A} then A is intersecting and |A| = 2n−1

and so the above theorem is best possible.
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Theorem
If A is an intersecting family and A ∈ A implies that
|A| = k ≤ bn/2c then

|A| ≤
(

n − 1
k − 1

)

Proof If π is a permutation of [n] and A ⊆ [n] let

θ(π,A) =

{
1 ∃s : {π(s), π(s + 1), . . . , π(s + k − 1)} = A
0 otherwise

where π(i) = π(i − n) if i > n.

We will show that for any permutation π,∑
A∈A

θ(π,A) ≤ k . (2)
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Assume (2). We first observe that if π is a random permutation
then

E(θ(π,A)) = n
k !(n − k)!

n!
=

k(n−1
k−1

)
and so, from (2),

k ≥ E(
∑
A∈A

θ(π,A)) =
∑
A∈A

k( n−1
|A|−1

)
Hence

|A| ≤
(

n − 1
k − 1

)
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Assume w.l.o.g. that π is the identity permutation.

Let At = {t , t + 1, . . . , t + k − 1} and suppose that As ∈ A.

All of the other sets At that intersect As can be partitioned into
pairs As−i ,As+k−i , 1 ≤ i ≤ k − 1 and the members of each pair
are disjoint. Thus A can contain at most one from each pair.
This verifies (2).
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Kraft’s Inequality

Let x1, x2, . . . , xm be a collection of sequences over an alphabet
Σ of size s. Let xi have length ni and let
n = max{n1,n2, . . . ,nm}.

Assume next that no sequence is a prefix of any other
sequence: Sequence xi = a1a2 · · · ani is a prefix of
xj = b1b2 · · · bnj if ai = bi for i = 1,2, . . . ,ni .

Theorem
m∑

i=1

r−ni ≤ 1.
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Proof: Let x be a random sequence of length n. Let Ei be the
event xi is a prefix of x . Then

(a) Pr(Ei) = r−ni .
(b) The event Ei , i = 1,2, . . . ,m are disjoint.

(If Ei and Ej both occur and ni ≤ nj then xi is a
prefix of xj .

Property (b) implies that

Pr

(
m⋃

i=1

Ei

)
= Pr(E1) + Pr(E2) + · · ·+ Pr(Em) ≤ 1.

The theorem now follows from Property (a). �
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The trace of a set system

Let X be a set and suppose that F ⊆ 2X .

For Y ⊆ X we let F ∩ Y = {F ∩ Y : F ∈ F}.

Then for positive integer k we let

fF (k) = max

{
|F ∩ Y | : Y ∈

(
X
k

)}
.

We define the trace number of the system F by

tr(F) = max {m : fF (m) = 2m} .
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Theorem

Suppose that |X | = n and F ⊆ 2X and |F| >
∑k−1

i=0
(n

i

)
. Then

tr(F) ≥ k.

Proof For x ∈ X set

Fx = F ∩ (X \ {x}) = {A \ {x} : A ∈ F} .

Let φx : F → Fx be given by φx (A) = A \ {x}.

φx is onto and if |φ−1(B)| ≥ 2 then φ−1(B) = {B,B ∪ {x}} and
x /∈ B.
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Let
Ax = {A ∈ F : x ∈ A,A \ {x} ∈ F} .

Bx = {B ∈ F : x /∈ B,B ∪ {x} ∈ F} .

Then
|F| − |Fx | = |Ax | = |Bx |. (3)

Note that if tr(Bx ) ≥ k − 1 then tr(F) ≥ k . Indeed, suppose
Bx ∩ Y = 2Y where |Y | = k − 1. Set Z = Y ∪ {x}. Then

F ∩ Z ⊃ (Ax ∪ Bx ) ∩ Z = 2Z .

Because if x ∈ U ⊂ Z then U \ {x} = B ∩ Y = B ∩ Z for some
B ∈ Bx by assumption. So U = A ∩ Z where A = B ∪ {x} ∈ Ax .
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To complete the proof we use induction on n + k . For n + k = 1
there is nothing to prove.

Suppose that n + k ≥ 2 and the result is true for smaller values
of n + k .

Let x ∈ X . If |Fx | >
∑k−1

j=0
(n−1

j

)
then tr(Fx ) ≥ k by induction

and so tr(Fx ) ≥ k . Otherwise, by (3),

|Bx | = |F| − |Fx | >
k−1∑
j=0

(
n
j

)
−

k−1∑
j=0

(
n − 1

j

)

=
k−1∑
j=1

(
n − 1
j − 1

)
=

k−2∑
j=0

(
n − 1

j

)
.

Hence, by induction, tr(Bx ) ≥ k − 1 and so tr(B) ≥ k . �
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Corollary
If F is a family of subsets of an infinite set S then either
fF (k) = 2k for every k or else there exists ` such that
fF (n) ≤ n` for every n ≥ `.

Proof Suppose that fF (k) 6= 2` for some `. Then by the
theorem,

fF (n) ≤
`−1∑
j=0

(
n
j

)
≤ n` for n > `.

�
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Sunflowers

A sunflower of size r is a family of sets A1,A2, . . . ,Ar such that
every element that belongs to more than one of the sets
belongs to all of them.

Let f (k , r) be the maximum size of a family of k -sets without a
sunflower of size r .

Theorem

f (k , r) ≤ (r − 1)kk !.

Proof Let F be a family of k -sets without a sunflower of
size r . Let A1,A2, . . . ,At be a maximum subfamily of pairwise
disjoint subsets in F .

Since a family of pairwise disjoint is a sunflower, we must have
t < r .
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Now let A =
⋃t

i=1 Ai . For every a ∈ A consider the family
Fa = {S \ {a} : S ∈ F ,a ∈ S}.

Now the size of A is at most (r − 1)k .

The size of each Fa is at most f (k − 1, r). This is because a
sunflower in Fa is a sunflower in F .

So,

f (k , r) ≤ (r − 1)k × f (k − 1, r) ≤ (r − 1)k × (r − 1)k−1(k − 1)!,

by induction. �
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Distinct Distances

Suppose that X1,X2, . . . ,Xn are n points in the plane. We put
bounds on the number of distinct distances among |XiXj |.

Let f (n) denote the minimum among all sets of n points.

Lower bound: f (n) ≥ (n − 3/4)1/2 − 1/2.

Assume that X1 is a vertex of the least (in y value) convex
polygon contained in the points. Let K be the number of distinct
values among {|X1Xi | : i ≥ 2}.

If N is the maximum number of times the same distance occurs
then KN ≥ n − 1.
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If r is a distance that occurs N times then there are N points on
the circle with center X1 and radius r . They all lie on a
semi-circle.

Going round the circle, let these points be Q1,Q2, . . . ,QN . Then
|Q1Q2| < |Q1Q3| · · · < |Q1QN |.

Thus f (n) ≥ max{(n − 1)/N,N − 1}. N(N − 1) minimises this
lower bound and gives us what we claim.

Upper bound: we consider the integer points {(x , y)} where
0 ≤ x , y ≤ n1/2. These have distance of the form (u2 + v2)1/2

and cn/ log1/2 n is a bound on the number of integers of the
form 0 ≤ u2 + v2 ≤ 2n.
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Matchings

A matching M of a graph G = (V ,E) is a set of edges, no two
of which are incident to a common vertex.

M={ }

Perfect Matching

M-unsaturated

M-saturated
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M-alternating path

M M M M Mnot not

a

b

c

d

e

f

(a,b,c,d,e,f) is an

M-alternating path

An M-alternating path joining 2 M-unsaturated vertices is called
an M-augmenting path.
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M is a maximum matching of G if no matching M ′ has more
edges.

Theorem
M is a maximum matching iff M admits no M-augmenting paths.

Proof Suppose M has an augmenting path
P = (a0,b1,a1, . . . ,ak ,bk+1) where
ei = (ai−1,bi) /∈ M, 1 ≤ i ≤ k + 1 and
fi = (bi ,ai) ∈ M, 1 ≤ i ≤ k .

0

1

1

2

2

a

b

a

b

a

b 3

M ′ = M − {f1, f2, . . . , fk}+ {e1,e2, . . . ,ek+1}.
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|M ′| = |M|+ 1.
M ′ is a matching

For x ∈ V let dM(x) denote the degree of x in matching M, So

dM(x) is 0 or 1. dM′(x) =


dM(x) x 6∈ {a0,b1, . . . ,bk+1}
dM(x) x ∈ {b1, . . . ,ak}
dM(x) + 1 x ∈ {a0,bk+1}

So if M has an augmenting path it is not maximum.
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Suppose M is not a maximum matching and |M ′| > |M|.
Consider H = G[M∇M ′] where M∇M ′ = (M \M ′) ∪ (M ′ \M) is
the set of edges in exactly one of M,M ′.
Maximum degree of H is 2 – ≤ 1 edge from M or M ′. So H is a
collection of vertex disjoint alternating paths and cycles.

M

M’

x

y

(a) (b)

(c) (d)

x,y M-unsaturated

|M ′| > |M| impplies that there is at least one path of type (d).
Such a path is M-augmenting �
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Bipartite Graphs

Let G = (A ∪ B,E) be a bipartite graph with bipartition A,B.
For S ⊆ A let N(S) = {b ∈ B : ∃a ∈ S, (a,b) ∈ E}.

a

a

a

a

b

b

b

b

1

2

3

4

1

2

3

4

N({a
2

, a
3

}) ={
1 3 4

b b b }

Clearly, |M| ≤ |A|, |B| for any matching M of G.
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Systems of Distinct Representatives

Let S1,S2, . . . ,Sm be arbitrary sets. A set s1, s2, . . . , sm of m
disitinct elements is a system of distinct representatives if
si ∈ Si for i = 1,2, . . . ,m.

For example {1,2,4} is a system of distinct representatives for
{1,2,3} , {2,5,6} , {2,4,5}.

Now define the bipartite graph G with vertex bipartition [m],S
where S =

⋃m
i=1 Si and an edge (i , s) iff s ∈ Si .

Then S1,S2, . . . ,Sm has a system of distinct representatives iff
G has a matching of size m.
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Hall’s Theorem

Theorem
G contains a matching of size |A| iff

|N(S)| ≥ |S| ∀S ⊆ A. (4)

a

a

a

a

b

b

b

b

1

2

3

4

1

2

3

4

N({a1,a2,a3}) = {b1,b2} and so at most 2 of a1,a2,a3 can be
saturated by a matching.
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Only if: Suppose M = {(a, φ(a)) : a ∈ A} saturates A.

1

3

4

φ

φ

φ

φ

(2)

(4)

(1)

(3)

ε

ε

ε

N(S)

N(S)

N(S)

S
+non-matching

edges

2

|N(S)| ≥ |{φ(s) : s ∈ S}|
= |S|

and so (4) holds.
If: Let M = {(a, φ(a)) : a ∈ A′} (A′ ⊆ A) is a maximum
matching. Suppose a0 ∈ A is M-unsaturated. We show that (4)
fails.
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Let
A1 = {a ∈ A : such that a is reachable from a0 by an
M-alternating path.}
B1 = {b ∈ B : such that b is reachable from a0 by an
M-alternating path.}

No A1- B\B 1

edges

a A A A A

B B B B

0
1 1 1 1

1 1 1 1
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• B1 is M-saturated else there exists an M-augmenting path.
• If a ∈ A1 \ {a0} then φ(a) ∈ B1.

a 0
aφ(a)

• If b ∈ B1 then φ−1(b) ∈ A1 \ {a0}.
So |B1| = |A1| − 1. • N(A1) ⊆ B1

a 0
ab

So |N(A1)| = |A1| − 1 and (4) fails to hold.
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Marriage Theorem

Theorem
Suppose G = (A ∪ B,E) is k-regular. (k ≥ 1) i.e. dG(v) = k for
all v ∈ A ∪ B. Then G has a perfect matching.

Proof k |A| = |E | = k |B| and so |A| = |B|.
Suppose S ⊆ A. Let m be the number of edges incident with S.
Then k |S| = m ≤ k |N(S)|. So (4) holds and there is a matching
of size |A| i.e. a perfect matching.
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Edge Covers

A set of vertices X ⊆ V is a covering of G = (V ,E) if every
edge of E contains at least one endpoint in X .

{ } is a covering

Lemma
If X is a covering and M is a matching then |X | ≥ |M|.

Proof Let M = {(a1,bi) : 1 ≤ i ≤ k}. Then |X | ≥ |M| since
ai ∈ X or bi ∈ X for 1 ≤ i ≤ k and a1, . . . ,bk are distinct. �
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Konig’s Theorem

Let µ(G) be the maximum size of a matching.
Let β(G) be the minimum size of a covering.
Then µ(G) ≤ β(G).

Theorem
If G is bipartite then µ(G) = β(G).

Proof Let M be a maximum matching.
Let S0 be the M-unsaturated vertices of A.
Let S ⊇ S0 be the A-vertices which are reachable from S0 by
M-alternating paths.
Let T be the M-neighbours of S \ S0.
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S S S
0 0 0

S S S S

T T T T

Let X = (A \ S) ∪ T .
• |X | = |M|.
|T | = |S \ S0|. The remaining edges of M cover A \ S exactly
once.
• X is a cover.
There are no edges (x , y) where x ∈ S and y ∈ B \ T .
Otherwise, since y is M-saturated (no M-augmenting paths) the
M-neightbour of y would have to be in S, contradicting y /∈ T . �
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