SOME EXTREMAL PROBLEMS

Some extremal problems

Let $\mathcal{P}_n = \{A : A \subseteq [n]\}$ denote the *power set* of [n].

 $\mathcal{A} \subseteq \mathcal{P}_n$ is a *Sperner* family if $A, B \in \mathcal{A}$ implies that $A \not\subseteq B$ and $B \not\subseteq A$

Theorem

If $\mathcal{A} \subseteq \mathcal{P}_n$ is a Sperner family $|\mathcal{A}| \leq \binom{n}{\lfloor n/2 \rfloor}$.

Proof We will show that

$$\sum_{A \in \mathcal{A}} \frac{1}{\binom{n}{|A|}} \le 1.$$
 (1)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Now $\binom{n}{k} \leq \binom{n}{\lfloor n/2 \rfloor}$ for all k and so

$$1 \geq \sum_{A \in \mathcal{A}} \frac{1}{\binom{n}{\lfloor n/2 \rfloor}} = \frac{|\mathcal{A}|}{\binom{n}{\lfloor n/2 \rfloor}}.$$

Proof of (1): Let π be a random permutation of [*n*].

For a set $A \in \mathcal{A}$ let \mathcal{E}_A be the event $\{\pi(1), \pi(2), \dots, \pi(|A|)\} = A.$

If $A, B \in \mathcal{A}$ then the events $\mathcal{E}_A, \mathcal{E}_B$ are disjoint.

So

$$\sum_{A\in\mathcal{A}} \mathbf{Pr}(\mathcal{E}_A) \leq 1.$$

On the other hand, if $A \in \mathcal{A}$ then

$$\mathsf{Pr}(\mathcal{E}_{\mathsf{A}}) = \frac{|\mathsf{A}|!(n-|\mathsf{A}|)!}{n!} = \frac{1}{\binom{n}{|\mathsf{A}|}}$$

and (1) follows.

The set of all sets of size $\lfloor n/2 \rfloor$ is a Sperner family and so the bound in the above theorem is best possible.

Inequality (1) can be generalised as follows: Let $s \ge 1$ be fixed. Let \mathcal{A} be a family of subsets of [n] such that **there do not exist** distinct $A_1, A_2, \ldots, A_{s+1} \in \mathcal{A}$ such that $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_{s+1}$.

Proof Let π be a random permutation of [*n*].

Let $\mathcal{E}(A)$ be the event $\{\pi(1), \pi(2), ..., \pi(|A|) = A\}\}.$

<ロ> (四) (四) (三) (三) (三) (三)

Let

$$Z_i = egin{cases} 1 & \mathcal{E}(A_i) \text{ occurs.} \ 0 & otherwise. \end{cases}$$

and let $Z = \sum_{i} Z_{i}$ be the number of events $\mathcal{E}(A_{i})$ that occur.

Now our family is such that $Z \leq s$ for all π and so

$$E(Z) = \sum_{i} E(Z_i) = \sum_{i} \operatorname{Pr}(\mathcal{E}(A_i)) \leq s.$$

On the other hand, $A \in \mathcal{A}$ implies that $\Pr(\mathcal{E}(A)) = \frac{1}{\binom{n}{|A|}}$ and the required inequality follows.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Intersecting Families

A family $\mathcal{A} \subseteq \mathcal{P}_n$ is an *intersecting* family if $A, B \in \mathcal{A}$ implies $A \cap B \neq \emptyset$.

Theorem

If \mathcal{A} is an intersecting family then $|\mathcal{A}| \leq 2^{n-1}$.

Proof Pair up each $A \in \mathcal{P}_n$ with its complement $A^c = [n] \setminus A$. This gives us 2^{n-1} pairs altogether. Since \mathcal{A} is intersecting it can contain at most one member of each pair.

If $A = \{A \subseteq [n] : 1 \in A\}$ then A is intersecting and $|A| = 2^{n-1}$ and so the above theorem is best possible.

ヘロト 人間 とくほとく ほとう

Theorem

If A is an intersecting family and $A \in A$ implies that $|A| = k \le \lfloor n/2 \rfloor$ then

$$|\mathcal{A}| \le \binom{n-1}{k-1}$$

Proof If π is a permutation of [n] and $A \subseteq [n]$ let $\theta(\pi, A) = \begin{cases} 1 & \exists s : \{\pi(s), \pi(s+1), \dots, \pi(s+k-1)\} = A \\ 0 & otherwise \end{cases}$ where $\pi(i) = \pi(i-n)$ if i > n.

We will show that for any permutation π ,

$$\sum_{\mathbf{A}\in\mathcal{A}}\theta(\pi,\mathbf{A})\leq k.$$
(2)

Assume (2). We first observe that if π is a random permutation then

$$\mathbf{E}(\theta(\pi, A)) = n \frac{k!(n-k)!}{n!} = \frac{k}{\binom{n-1}{k-1}}$$

and so, from (2),

$$k \geq \mathsf{E}(\sum_{A \in \mathcal{A}} \theta(\pi, A)) = \sum_{A \in \mathcal{A}} \frac{k}{\binom{n-1}{|A|-1}}$$

Hence

$$|\mathcal{A}| \le \binom{n-1}{k-1}$$

Some extremal problems

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Assume w.l.o.g. that π is the identity permutation.

Let $A_t = \{t, t+1, \dots, t+k-1\}$ and suppose that $A_s \in A$.

All of the other sets A_t that intersect A_s can be partitioned into pairs $A_{s-i}, A_{s+k-i}, 1 \le i \le k-1$ and the members of each pair are disjoint. Thus A can contain at most one from each pair. This verifies (2).

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

Kraft's Inequality

Let $x_1, x_2, ..., x_m$ be a collection of sequences over an alphabet Σ of size *s*. Let x_i have length n_i and let $n = \max\{n_1, n_2, ..., n_m\}$.

Assume next that no sequence is a prefix of any other sequence: Sequence $x_i = a_1 a_2 \cdots a_{n_i}$ is a prefix of $x_j = b_1 b_2 \cdots b_{n_j}$ if $a_i = b_i$ for $i = 1, 2, \dots, n_i$.

Theorem $\sum_{i=1}^{m} r^{-n_i} \le 1.$

Some extremal problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Proof: Let *x* be a random sequence of length *n*. Let \mathcal{E}_i be the event x_i is a prefix of *x*. Then

(a) **Pr**(\mathcal{E}_i) = r^{-n_i} .

(b) The event \mathcal{E}_i , i = 1, 2, ..., m are disjoint.

(If \mathcal{E}_i and \mathcal{E}_j both occur and $n_i \leq n_j$ then x_i is a prefix of x_j .

Property (b) implies that

$$\Pr\left(\bigcup_{i=1}^{m} \mathcal{E}_{i}\right) = \Pr(\mathcal{E}_{1}) + \Pr(\mathcal{E}_{2}) + \cdots + \Pr(\mathcal{E}_{m}) \leq 1.$$

The theorem now follows from Property (a).

The trace of a set system

Let *X* be a set and suppose that $\mathcal{F} \subseteq 2^X$.

For $Y \subseteq X$ we let $\mathcal{F} \cap Y = \{F \cap Y : F \in \mathcal{F}\}$.

Then for positive integer k we let

$$f_{\mathcal{F}}(k) = \max\left\{|\mathcal{F} \cap Y| : Y \in {X \choose k}\right\}.$$

We define the trace number of the system \mathcal{F} by

$$\mathit{tr}(\mathcal{F}) = \max \left\{ \mathit{m} : \mathit{f}_{\mathcal{F}}(\mathit{m}) = \mathbf{2}^{\mathit{m}}
ight\}$$
 .

Theorem

Suppose that |X| = n and $\mathcal{F} \subseteq 2^X$ and $|\mathcal{F}| > \sum_{i=0}^{k-1} {n \choose i}$. Then $tr(\mathcal{F}) \ge k$.

Proof For $x \in X$ set

$$\mathcal{F}_{x} = \mathcal{F} \cap (X \setminus \{x\}) = \{A \setminus \{x\} : A \in \mathcal{F}\}.$$

Let $\phi_x : \mathcal{F} \to \mathcal{F}_x$ be given by $\phi_x(A) = A \setminus \{x\}$.

 ϕ_x is onto and if $|\phi^{-1}(B)| \ge 2$ then $\phi^{-1}(B) = \{B, B \cup \{x\}\}$ and $x \notin B$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Let

$$\mathcal{A}_{\boldsymbol{x}} = \{\boldsymbol{A} \in \mathcal{F} : \boldsymbol{x} \in \boldsymbol{A}, \boldsymbol{A} \setminus \{\boldsymbol{x}\} \in \mathcal{F}\}.$$

$$\mathcal{B}_{x} = \{ B \in \mathcal{F} : x \notin B, B \cup \{x\} \in \mathcal{F} \}.$$

Then

$$|\mathcal{F}| - |\mathcal{F}_{\mathsf{X}}| = |\mathcal{A}_{\mathsf{X}}| = |\mathcal{B}_{\mathsf{X}}|. \tag{3}$$

Note that if $tr(\mathcal{B}_x) \ge k - 1$ then $tr(\mathcal{F}) \ge k$. Indeed, suppose $\mathcal{B}_x \cap Y = 2^Y$ where |Y| = k - 1. Set $Z = Y \cup \{x\}$. Then

 $\mathcal{F} \cap Z \supset (\mathcal{A}_X \cup \mathcal{B}_X) \cap Z = 2^Z.$

Because if $x \in U \subset Z$ then $U \setminus \{x\} = B \cap Y = B \cap Z$ for some $B \in \mathcal{B}_x$ by assumption. So $U = A \cap Z$ where $A = B \cup \{x\} \in \mathcal{A}_x$.

To complete the proof we use induction on n + k. For n + k = 1 there is nothing to prove.

Suppose that $n + k \ge 2$ and the result is true for smaller values of n + k.

Let $x \in X$. If $|\mathcal{F}_x| > \sum_{j=0}^{k-1} {\binom{n-1}{j}}$ then $tr(\mathcal{F}_x) \ge k$ by induction and so $tr(\mathcal{F}_x) \ge k$. Otherwise, by (3),

$$|\mathcal{B}_{x}| = |\mathcal{F}| - |\mathcal{F}_{x}| > \sum_{j=0}^{k-1} \binom{n}{j} - \sum_{j=0}^{k-1} \binom{n-1}{j}$$
$$= \sum_{j=1}^{k-1} \binom{n-1}{j-1} = \sum_{j=0}^{k-2} \binom{n-1}{j}.$$

Hence, by induction, $tr(\mathcal{B}_x) \ge k - 1$ and so $tr(\mathcal{B}) \ge k$.

Corollary

If \mathcal{F} is a family of subsets of an infinite set S then either $f_{\mathcal{F}}(k) = 2^k$ for every k or else there exists ℓ such that $f_{\mathcal{F}}(n) \leq n^{\ell}$ for every $n \geq \ell$.

Proof Suppose that $f_{\mathcal{F}}(k) \neq 2^{\ell}$ for some ℓ . Then by the theorem,

$$f_{\mathcal{F}}(n) \leq \sum_{j=0}^{\ell-1} inom{n}{j} \leq n^\ell ext{ for } n > \ell$$

Sunflowers

A sunflower of size *r* is a family of sets A_1, A_2, \ldots, A_r such that every element that belongs to more than one of the sets belongs to all of them.

Let f(k, r) be the maximum size of a family of k-sets without a sunflower of size r.

Theorem $f(k,r) \le (r-1)^k k!.$

Proof Let \mathcal{F} be a family of *k*-sets without a sunflower of size *r*. Let A_1, A_2, \ldots, A_t be a maximum subfamily of pairwise disjoint subsets in \mathcal{F} .

Since a family of pairwise disjoint is a sunflower, we must have t < r.

Now let $A = \bigcup_{i=1}^{t} A_i$. For every $a \in A$ consider the family $\mathcal{F}_a = \{S \setminus \{a\} : S \in \mathcal{F}, a \in S\}.$

Now the size of *A* is at most (r - 1)k.

The size of each \mathcal{F}_a is at most f(k - 1, r). This is because a sunflower in \mathcal{F}_a is a sunflower in \mathcal{F} .

So,

 $f(k,r) \leq (r-1)k \times f(k-1,r) \leq (r-1)k \times (r-1)^{k-1}(k-1)!,$

by induction.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Distinct Distances

Suppose that $X_1, X_2, ..., X_n$ are *n* points in the plane. We put bounds on the number of distinct distances among $|X_iX_j|$.

Let f(n) denote the minimum among all sets of *n* points.

Lower bound: $f(n) \ge (n - 3/4)^{1/2} - 1/2$.

Assume that X_1 is a vertex of the least (in *y* value) convex polygon contained in the points. Let *K* be the number of distinct values among $\{|X_1X_i| : i \ge 2\}$.

If *N* is the maximum number of times the same distance occurs then $KN \ge n - 1$.

◆□ → ◆ 三 → ◆ 三 → ◆ ○ ◆

If *r* is a distance that occurs *N* times then there are *N* points on the circle with center X_1 and radius *r*. They all lie on a semi-circle.

Going round the circle, let these points be Q_1, Q_2, \ldots, Q_N . Then $|Q_1 Q_2| < |Q_1 Q_3| \cdots < |Q_1 Q_N|$.

Thus $f(n) \ge \max\{(n-1)/N, N-1\}$. N(N-1) minimises this lower bound and gives us what we claim.

Upper bound: we consider the integer points $\{(x, y)\}$ where $0 \le x, y \le n^{1/2}$. These have distance of the form $(u^2 + v^2)^{1/2}$ and $cn/\log^{1/2} n$ is a bound on the number of integers of the form $0 \le u^2 + v^2 \le 2n$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Matchings

A matching M of a graph G = (V, E) is a set of edges, no two of which are incident to a common vertex.

Some extremal problems

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

An *M*-alternating path joining 2 *M*-unsaturated vertices is called an *M*-augmenting path.

イロン 不得 とくほ とくほ とうほ

M is a *maximum* matching of *G* if no matching M' has more edges.

Theorem

M is a maximum matching iff *M* admits no *M*-augmenting paths.

Proof Suppose *M* has an augmenting path $P = (a_0, b_1, a_1, \dots, a_k, b_{k+1})$ where $e_i = (a_{i-1}, b_i) \notin M$, $1 \le i \le k+1$ and $f_i = (b_i, a_i) \in M$, $1 \le i \le k$.

$$M' = M - \{f_1, f_2, \dots, f_k\} + \{e_1, e_2, \dots, e_{k+1}\}.$$

▲ @ ▶ ▲ 三 ▶ ▲

- |M'| = |M| + 1.
- M' is a matching

For $x \in V$ let $d_M(x)$ denote the degree of x in matching M, So $d_M(x)$ is 0 or 1. $d_{M'}(x) = \begin{cases} d_M(x) & x \notin \{a_0, b_1, \dots, b_{k+1}\} \\ d_M(x) & x \in \{b_1, \dots, a_k\} \\ d_M(x) + 1 & x \in \{a_0, b_{k+1}\} \end{cases}$

So if M has an augmenting path it is not maximum.

Some extremal problems

Suppose *M* is not a maximum matching and |M'| > |M|. Consider $H = G[M \nabla M']$ where $M \nabla M' = (M \setminus M') \cup (M' \setminus M)$ is the set of edges in *exactly* one of *M*, *M'*. Maximum degree of *H* is $2 - \leq 1$ edge from *M* or *M'*. So *H* is a collection of vertex disjoint alternating paths and cycles.

Bipartite Graphs

Let $G = (A \cup B, E)$ be a bipartite graph with bipartition A, B. For $S \subseteq A$ let $N(S) = \{b \in B : \exists a \in S, (a, b) \in E\}$.

 $N(\{a_{2}, a_{3}\}) = \{b_{1}b_{3}b_{4}\}$

Clearly, $|M| \leq |A|, |B|$ for any matching M of G.

Systems of Distinct Representatives

Let S_1, S_2, \ldots, S_m be arbitrary sets. A set s_1, s_2, \ldots, s_m of *m* distinct elements is a system of distinct representatives if $s_i \in S_i$ for $i = 1, 2, \ldots, m$.

For example $\{1, 2, 4\}$ is a system of distinct representatives for $\{1, 2, 3\}, \{2, 5, 6\}, \{2, 4, 5\}.$

Now define the bipartite graph *G* with vertex bipartition [*m*], *S* where $S = \bigcup_{i=1}^{m} S_i$ and an edge (i, s) iff $s \in S_i$.

Then S_1, S_2, \ldots, S_m has a system of distinct representatives iff *G* has a matching of size *m*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Hall's Theorem

 $N(\{a_1, a_2, a_3\}) = \{b_1, b_2\}$ and so at most 2 of a_1, a_2, a_3 can be saturated by a matching.

Only if: Suppose $M = \{(a, \phi(a)) : a \in A\}$ saturates A.

and so (4) holds. If: Let $M = \{(a, \phi(a)) : a \in A'\}$ ($A' \subseteq A$) is a maximum matching. Suppose $a_0 \in A$ is *M*-unsaturated. We show that (4) fails. Let

 $A_1 = \{a \in A : \text{such that } a \text{ is reachable from } a_0 \text{ by an } M$ -alternating path.} $B_1 = \{b \in B : \text{such that } b \text{ is reachable from } a_0 \text{ by an } b \text{ an } b \text{ box an$

M-alternating path.}

(雪) (ヨ) (ヨ)

ъ

- B_1 is *M*-saturated else there exists an *M*-augmenting path.
- If $a \in A_1 \setminus \{a_0\}$ then $\phi(a) \in B_1$.

So $|N(A_1)| = |A_1| - 1$ and (4) fails to hold.

Some extremal problems

Marriage Theorem

Theorem

Suppose $G = (A \cup B, E)$ is k-regular. $(k \ge 1)$ i.e. $d_G(v) = k$ for all $v \in A \cup B$. Then G has a perfect matching.

Proof k|A| = |E| = k|B| and so |A| = |B|. Suppose $S \subseteq A$. Let *m* be the number of edges incident with *S*. Then $k|S| = m \le k|N(S)|$. So (4) holds and there is a matching of size |A| i.e. a perfect matching.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Edge Covers

A set of vertices $X \subseteq V$ is a *covering* of G = (V, E) if every edge of *E* contains at least one endpoint in *X*.

Lemma

If X is a covering and M is a matching then $|X| \ge |M|$.

Proof Let $M = \{(a_1, b_i) : 1 \le i \le k\}$. Then $|X| \ge |M|$ since $a_i \in X$ or $b_i \in X$ for $1 \le i \le k$ and a_1, \ldots, b_k are distinct.

Konig's Theorem

Let $\mu(G)$ be the maximum size of a matching. Let $\beta(G)$ be the minimum size of a covering. Then $\mu(G) \leq \beta(G)$.

Theorem

If G is bipartite then $\mu(G) = \beta(G)$.

Proof Let *M* be a maximum matching. Let S_0 be the *M*-unsaturated vertices of *A*. Let $S \supseteq S_0$ be the *A*-vertices which are reachable from S_0 by *M*-alternating paths.

Let *T* be the *M*-neighbours of $S \setminus S_0$.

ヘロン 人間 とくほ とくほ とう

Let
$$X = (A \setminus S) \cup T$$
.
• $|X| = |M|$.
 $|T| = |S \setminus S_0|$. The remaining edges of *M* cover $A \setminus S$ exactly once.

X is a cover.

There are no edges (x, y) where $x \in S$ and $y \in B \setminus T$. Otherwise, since y is *M*-saturated (no *M*-augmenting paths) the *M*-neightbour of y would have to be in *S*, contradicting $y \notin T$. \Box

▲ @ ▶ ▲ 三 ▶ ▲

三 🕨 👘