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Game 1

Start with n chips. Players A,B alternately take 1,2,3 or 4 chips
until there are none left. The winner is the person who takes
the last chip:

Example

A B A B A
n = 10 3 2 4 1 B wins
n = 11 1 2 3 4 1 A wins

What is the optimal strategy for playing this game?
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Game 2

Chip placed at point (m,n). Players can move chip to (m′,n) or
(m,n′) where 0 ≤ m′ < m and 0 ≤ n′ < n. The player who
makes the last move and puts the chip onto (0,0) wins.

What is the optimal strategy for this game?

Game 2a Chip placed at point (m,n). Players can move chip to
(m′,n) or (m,n′) or to (m − a,n − a) where 0 ≤ m′ < m and
0 ≤ n′ < n and 0 ≤ a ≤ min{m,n}. The player who makes the
last move and puts the chip onto (0,0) wins.

What is the optimal strategy for this game?
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Game 3

W is a set of words. A and B alternately remove words
w1,w2, . . . , from W . The rule is that the first letter of wi+1 must
be the same as the last letter of wi . The player who makes the
last legal move wins.

Example
W = {England ,France,Germany ,Russia,Bulgaria, . . .}

What is the optimal strategy for this game?
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Abstraction

Represent each position of the game by a vertex of a digraph
D = (X ,A).
(x , y) is an arc of D iff one can move from position x to position
y .

We assume that the digraph is finite and that it is acyclic i.e.
there are no directed cycles.

The game starts with a token on vertex x0 say, and players
alternately move the token to x1, x2, . . . , where xi+1 ∈ N+(xi),
the set of out-neighbours of xi . The game ends when the token
is on a sink i.e. a vertex of out-degree zero. The last player to
move is the winner.
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Abstraction

Example 1: V (D) = {0,1, . . . ,n} and (x , y) ∈ A iff
x − y ∈ {1,2,3,4}.

Example 2: V (D) = {0,1, . . . ,m} × {0,1, . . . ,n} and
(x , y) ∈ N+((x ′, y ′))) iff x = x ′ and y > y ′ or x > x ′ and y = y ′.

Example 2a: V (D) = {0,1, . . . ,m} × {0,1, . . . ,n} and
(x , y) ∈ N+((x ′, y ′))) iff x = x ′ and y > y ′ or x > x ′ and y = y ′

or x − x ′ = y − y ′ > 0.

Example 3: V (D) = {(W ′,w) : W ′ ⊆W \ {w}}. w is the last
word used and W ′ is the remaining set of unused words.
(X ′,w ′) ∈ N+((X ,w)) iff w ′ ∈ X and w ′ begins with the last
letter of w . Also, there is an arc from (W , ·) to (W \ {w},w) for
all w , corresponding to the games start.
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Abstraction

We will first argue that such a game must eventually end.

A topological numbering of digraph D = (X ,A) is a map
f : X → [n], n = |X | which satisfies (x , y) ∈ A implies
f (x) < f (y).

Theorem
A finite digraph D = (X ,A) is acyclic iff it admits at least one
topological numbering.

Proof Suppose first that D has a topological numbering.
We show that it is acyclic.

Suppose that C = (x1, x2, . . . , xk , x1) is a directed cycle. Then
f (x1) < f (x2) < · · · < f (xk ) < f (x1), contradiction.
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Abstraction

Suppose now that D is acyclic. We first argue that D has at
least one sink.

Thus let P = (x1, x2, . . . , xk ) be a longest simple path in D. We
claim that xk is a sink.

If D contains an arc (xk , y) then either y = xi ,1 ≤ i ≤ k − 1 and
this means that D contains the cycle (xi , xi+1, . . . , xk , xi),
contradiction or y /∈ {x1, x2, . . . , xk} and then (P, y) is a longer
simple path than P, contradiction.
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Abstraction

We can now prove by induction on n that there is at least one
topological numbering.

If n = 1 and X = {x} then f (x) = 1 defines a topological
numbering.

Now asssume that n > 1. Let z be a sink of D and define
f (z) = n. The digraph D′ = D − z is acyclic and by the
induction hypothesis it admits a topological numbering,
f : X \ {z} → [n − 1].

The function we have defined on X is a topological numbering.
If (x , y) ∈ A then either x , y 6= z and then f (x) < f (y) by our
assumption on f , or y = z and then f (x) < n = f (z) (x 6= z
because z is a sink). �
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Abstraction

The fact that D has a topological numbering implies that the
game must end. Each move increases the f value of the
current position by at least one and so after at most n moves a
sink must be reached.

The positions of a game are partitioned into 2 sets:
P-positions: The next player cannot win. The previous
player can win regardless of the current player’s strategy.
N-positions: The next player has a strategy for winning the
game.

Thus an N-position is a winning position for the next player and
a P-position is a losing position for the next player.

The main problem is to determine N and P and what the
strategy is for winning from an N-position.
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Abstraction

Let the vertices of D be x1, x2, . . . , xn, in topological order.

Labelling procedure
1 i ← n, Label xn with P. N ← ∅, P ← ∅.
2 i ← i − 1. If i = 0 STOP.
3 Label xi with N, if N+(xi) ∩ P 6= ∅.
4 Label xi with P, if N+(xi) ⊆ N.
5 goto 2.

The partition N,P satisfies

x ∈ N iff N+(x) ∩ P 6= ∅

To play from x ∈ N, move to y ∈ N+(x) ∩ P.
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Abstraction

In Game 1, P = {5k : k ≥ 0}.

In Game 2, P = {(x , x) : x ≥ 0}.

Lemma
The partition into N,P satisfying x ∈ N iff N+(x) ∩ P 6= ∅ is
unique.

Proof If there were two partitions Ni ,Pi , i = 1,2, let xi be
the vertex of highest topological number which is not in
(N1 ∩ N2) ∪ (P1 ∩ P2). Suppose that xi ∈ N1 \ N2.

But then xi ∈ N1 implies N+(xi) ∩ P1 ∩ {xi+1, . . . , xn} 6= ∅ and
xi ∈ P2 implies N+(xi) ∩ P2 ∩ {xi+1, . . . , xn} = ∅.

But P1 ∩ {xi+1, . . . , xn} = P2 ∩ {xi+1, . . . , xn}. �
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Sums of games

Suppose that we have p games G1,G2, . . . ,Gp with digraphs
Di = (Xi ,Ai), i = 1,2, . . . ,p.
The sum G1 ⊕G2 ⊕ · · · ⊕Gp of these games is played as
follows. A position is a vector
(x1, x2, . . . , xp) ∈ X = X1 × X2 × · · · × Xp. To make a move, a
player chooses i such that xi is not a sink of Di and then
replaces xi by y ∈ N+

i (xi). The game ends when each xi is a
sink of Di for i = 1,2, . . . ,n.

Knowing the partitions Ni ,Pi for game i = 1,2, . . . ,p does not
seem to be enough to determine how to play the sum of the
games.

We need more information. This will be provided by the
Sprague-Grundy Numbering
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Sums of games

Example
Nim In a one pile game, we start with a ≥ 0 chips and while
there is a positive number x of chips, a move consists of
deleting y ≤ x chips. In this game the N-positions are the
positive integers and the unique P-position is 0.

In general, Nim consists of the sum of n single pile games
starting with a1,a2, . . . ,an > 0. A move consists of deleting
some chips from a non-empty pile.

Example 2 is Nim with 2 piles.
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Sums of games

Sprague-Grundy (SG) Numbering

For S ⊆ {0,1,2, . . . , } let

mex(S) = min{x ≥ 0 : x /∈ S}.

Now given an acyclic digraph D = X ,A with topological
ordering x1, x2, . . . , xn define g iteratively by

1 i ← n, g(xn) = 0.
2 i ← i − 1. If i = 0 STOP.
3 g(xi) = mex({g(x) : x ∈ N+(xi)}).
4 goto 2.
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Sums of games

Lemma

x ∈ P ↔ g(x) = 0.

Proof Because

x ∈ N iff N+(x) ∩ P 6= ∅

all we have to show is that

g(x) > 0 iff ∃y ∈ N+(y) such that g(y) = 0.

But this is immediate from g(x) = mex({g(y) : y ∈ N+(x)}) �
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Sums of games

Another one pile subtraction game.

A player can remove any even number of chips, but not the
whole pile.
A player can remove the whole pile if it is odd.

The terminal positions are 0 or 2.

Lemma
g(0) = 0, g(2k) = k − 1 and g(2k − 1) = k for k ≥ 1.
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Sums of games

Proof 0,2 are terminal postions and so g(0) = g(2) = 0.
g(1) = 1 because the only position one can move to from 1 is
0. We prove the remainder by induction on k .

Assume that k > 1.

g(2k) = mex{g(2k − 2),g(2k − 4), . . . ,g(2)}
= mex{k − 2, k − 3, . . . ,0}
= k − 1.

g(2k − 1) = mex{g(2k − 3),g(2k − 5), . . . ,g(1),g(0)}
= mex{k − 1, k − 2, . . . ,0}
= k .

�
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Sums of games

We now show how to compute the SG numbering for a sum of
games.

For binary integers a = amam−1 · · · a1a0 and
b = bmbm−1 · · · b1b0 we define a⊕ b = cmcm−1 · · · c1c0 by

ci =

{
1 if ai 6= bi

0 if ai = bi

for i = 1,2, . . . ,m.

So 11⊕ 5 = 14.
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Sums of games

Theorem
If gi is the SG function for game Gi , i = 1,2, . . . ,p then the SG
function g for the sum of the games G = G1 ⊕G2 ⊕ · · · ⊕Gp is
defined by

g(x) = g1(x1)⊕ g2(x2)⊕ · · · ⊕ gp(xp)

where x = (x1, x2, . . . , xp).

For example if in a game of Nim, the pile sizes are x1, x2, . . . , xp
then the SG value of the position is

x1 ⊕ x2 ⊕ · · · ⊕ xp
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Sums of games

Proof It is enough to show this for p = 2 and then use
induction on p.

Write G = H ⊕Gp where H = G1 ⊕G2 ⊕ · · · ⊕Gp−1. Let h be
the SG numbering for H. Then, if y = (x1, x2, . . . , xp−1),

g(x) = h(y)⊕ gp(xp) assuming theorem for p = 2
= g1(x1)⊕ g2(x2)⊕ · · · ⊕ gp−1(xp−1)⊕ gp(xp)

by induction.
It is enough now to show, for p = 2, that

A1 If x ∈ X and g(x) = b > a then there exists
x ′ ∈ N+(x) such that g(x ′) = a.

A2 If x ∈ X and g(x) = b and x ′ ∈ N+(x) then
g(x ′) 6= g(x).

A3 If x ∈ X and g(x) = 0 and x ′ ∈ N+(x) then
g(x ′) 6= 0
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Sums of games

A1. Write d = a⊕ b. Then

a = d ⊕ b = d ⊕ g1(x1)⊕ g2(x2). (1)

Now suppose that we can show that either

(i) d ⊕ g1(x1) < g1(x1) or (ii) d ⊕ g2(x2) < g2(x2) or both. (2)

Assume that (i) holds.

Then since g1(x1) = mex(N+
1 (x1)) there must exist x ′1 ∈ N+

1 (x1)
such that g1(x ′1) = d ⊕ g1(x1).

Then from (1) we have

a = g1(x ′1)⊕ g2(x2) = g(x ′1, x2).

Furthermore, (x ′1, x2) ∈ N+(x) and so we will have verified A1.
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Sums of games

Let us verify (2).

Suppose that 2k−1 ≤ d < 2k .

Then d has a 1 in position k and no higher.

Since dk = ak ⊕ bk and a < b we must have ak = 0 and bk = 1.

So either (i) g1(x1) has a 1 in position k or (ii) g2(x2) has a 1 in
position k . Assume (i).

But then d ⊕ g1(x1) < g1(x1) since d “destroys” the k th bit of
g1(x1) and does not change any higher bit.
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Sums of games

A2. Suppose without loss of generality that g(x ′1, x2) = g(x1, x2)
where x ′1 ∈ N+(x1).

Then g1(x ′1)⊕ g2(x2) = g1(x1)⊕ g2(x2) implies that
g1(x ′1) = g1(x1), contradition. �

A3. Suppose that g1(x1)⊕ g2(x2) = 0 and g1(x ′1)⊕ g2(x2) = 0
where x ′1 ∈ N+(x1).

Then g1(x1) = g1(x ′1), contradicting
g1(x1) = mex{g1(x) : x ∈ N+(x1)}.
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Sums of games

If we apply this theorem to the game of Nim then if the position
x consists of piles of xi chips for i = 1,2, . . . ,p then
g(x) = x1 ⊕ x2 ⊕ · · · ⊕ xp.

In our first example, g(x) = x mod 5 and so for the sum of p
such games we have

g(x1, x2, . . . , xp) = (x1 mod 5)⊕(x2 mod 5)⊕· · ·⊕(xp mod 5).
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A more complicated one pile game

Start with n chips. First player can remove up to n − 1 chips.

In general, if the previous player took x chips, then the next
player can take y ≤ x chips.

Thus a games position can be represented by (n, x) where n is
the current size of the pile and x is the maximum number of
chips that can be removed in this round.

Theorem

Suppose that the position is (n, x) where n = m2k and m is
odd. Then,

(a) This is an N-position if x ≥ 2k .
(b) This is a P-position if m = 1 and x < n.
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A more complicated one pile game

Proof For a non-negative integer n = m2k , let ones(n)
denote the number of ones in the binary expansion of n and let
k = ρ(n) determine the position of the right-most one in this
expansion.

We claim that the following strategy is a win for the player in a
postion described in (a):

Remove y = 2k chips.

Suppose this player is A.

If m = 1 then x ≥ n and A wins.
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A more complicated one pile game

Otherwise, after such a move the position is (n′, y) where
ρ(n′) > ρ(n).

Note first that ones(n′) = ones(n)− 1 > 0 and ρ(n′) > k .
B cannot remove more than 2k chips and so B cannot win at
this point.

If B moves the position to (n′′, x ′′) then ones(n′′) > ones(n′)
and furthermore, x ′′ ≥ 2ρ(n

′′), since x ′′ must have a 1 in position
ρ(n′′). ( ρ(n′′) is the least significant bit of x ′′.)

Thus, by induction, A is in an N-position and wins the game.

To prove (b), note that after the first move, the position satisfies
the conditions of (a). �.
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A General Subtraction Game

Let us next consider a generalisation of this game.

There are 2 players A and B and A goes first.

We have a non-decreasing function f from N→ N where
N = {1,2, . . .} which satisfies f (x) ≥ x .

At the first move A takes any number less than h from the pile,
where h is the size of the initial pile.

Then on a subsequent move, if a player takes x chips then the
next player is constrained to take at most f (x) chips.

Thus the previous analysis was for the game with f (x) = x .
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A General Subtraction Game

There is a set H = {H1 = 1 < H2 < . . .} of initial pile sizes for
which the first player will lose, assuming that the second player
plays optimally.

Also, if the initial pile size h /∈ H then the first player has a
winning strategy. It will turn out that the sequence satisfies the
recurrence:

Hj+1 = Hj + H` where H` = min
i≤j
{Hi | f (Hi) ≥ Hj}, for j ≥ 0.
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If f (x) = x then Hj = 2j−1.

We prove this inductively. It is true for j = 1.

Hj+1 = 2j−1 + min
i≤j
{2i−1 : 2i−1 ≥ 2j−1}

= 2j−1 + 2j−1

= 2j .
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A General Subtraction Game

If f (x) = 2x then H = {1,2,3,5,8, . . . , } = {F1,F2, . . . , }, the
Fibonacci sequence.

We prove this inductively. It is true for j = 1,2.

Hj+1 = Fj + min
i≤j
{Fi : 2Fi ≥ Fj}

= Fj + Fj−1

= Fj+1.

Recall that Fj = Fj−1 + Fj−2 and

2Fj−2 < Fj−1 + Fj−2 = Fj .
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A General Subtraction Game

The key to the game is the following result.

Theorem
Every positive integer n can be uniquely written as the sum

n = Hj1 + Hj2 + · · ·+ Hjp

where f (Hji ) < Hji+1 for 1 ≤ i < p.

One simple consequence of the uniqueness of the
decomposition is that

Hk 6= Hj1 + Hj2 + · · ·+ Hjp

for all k and sequences j1, j2, . . . , jp where f (Hji ) < Hji+1 for
i = 1,2, ...,p − 1.
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A General Subtraction Game

It follows that the integers n can be given unique “binary”
representations by representing n = Hj1 + Hj2 + · · ·+ Hjp by the
0-1 string with a 1 in posiitons j1, j2, . . . , jp and 0 everywhere
else.

Let ρH(n) = p be the number of 1’s in the representation.

We call this the H-representation of n. This then leads to the
following

Theorem
Suppose that the start position is (n, ∗). Then,

(a) This is an N-position if n /∈ H = {H1,H2, . . . , }.
(b) This is a P-position if n ∈ H.
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A General Subtraction Game

(a) The winning strategy is to delete a number of chips equal to
Hj1 where j1 is the index of the rightmost 1 in the
H-representation of n = Hjp + · · ·+ Hj1 .

All we have to do is verify that this strategy is possible.

Note first that if A deletes Hj1 chips, then B cannot respond by
deleting Hj2 chips, because Hj2 > f (Hj1).

B is forced to delete x ≤ f (Hj1) < Hj2 chips.

If p = 2 then ρH(n − Hj1 − x) ≥ 1 = ρH(n − Hj1).
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A General Subtraction Game

If p ≥ 3 and y = Hj2 − x = Hkq + · · ·+ Hk1 then the
H-representation of n − Hj1 − x is

Hjp + · · ·+ Hj3 + Hkq + · · ·+ Hk1 .

Here we use the fact that f (Hkq ) ≤ f (y) ≤ f (Hj2) < Hj3 .

And so in both cases ρH(n − Hj2 − x) ≥ ρH(n − Hj1) it is only A
that can reduce ρH .
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A General Subtraction Game

The next thing to check is that if A starts in (n, ∗) then A can
always delete Hj1 chips i.e. the positions (m, x) that A will face
satisfy f (x) ≥ Hk1 where m = Hk1 + Hk2 + · · ·+ Hkq .

We do this by induction on the number of plays in the game so
far.

It is true in the first move and suppose that it is true for (m, x)
and that A removes Hk1 and B removes y where
y ≤ min{m − Hk1 , f (Hk1)} < Hk2 . Now if
Hk2 − y = H`r + H`r−1 + · · ·+ H`1 then

m − Hk1 − y = Hkq + · · ·+ Hk3 + Hk2 − y
= Hkq + · · ·+ Hk3 + H`r + H`r−1 + · · ·+ H`1

and we need to argue that H`1 ≤ f (y).
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A General Subtraction Game

But if f (y) < H`1 then we have

Hk2 = y + H`1 + H`2 + · · ·+ H`r

= Ha1 + · · ·+ Has + H`1 + H`2 + · · ·+ H`r

where f (Has ) ≤ f (y) < H`1 , which gives two distinct
decompositons for Hk2 , contradiction.

Thus A can remove H`1 in the next round, as required.
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A General Subtraction Game

(b) Assume that n = Hk . After A removes x chips we have

Hk − x = Hj1 + Hj2 + · · ·+ Hjp

chips left.

All we have to show is that B can now remove Hj1 chips i.e.
Hj1 ≤ f (x).

But if this is not the case then we argue as above that
Hk = Ha1 + · · ·+ Has + Hj1 + Hj2 + · · ·+ Hjp , where
x = Ha1 + · · ·+ Has and f (Hj1) ≤ f (x) < Hj1 , which gives two
distinct decompositons for Hk , contradiction.
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A General Subtraction Game

Proof of the existence of a unique decomposition

We prove this by induction on n. If n = 1 then n = H1 is the
unique decomposition.
Going back to the defining recurrence we see that

Hj+1 = Hj + H` ≤ 2Hj .

Existence
Assume that any n < Hk can be represented as a sum of
distinct Hji ’s with f (Hji ) < Hji+1 and suppose that
Hk ≤ n < Hk+1. Hk+1 ≤ 2Hk implies that n − Hk < Hk .
It follows by induction that

n − Hk = Hj1 + · · ·+ Hjp ,

where f (Hji ) < Hji+1 for i = 1,2, ...,p − 1.

We now need only show that f (Hjp ) < Hk .Combinatorial Games



A General Subtraction Game

Assume to the contrary that f (Hjp ) ≥ Hk .

Then for some m ≤ jp we have

Hk+1 = Hk + Hm ≤ Hk + Hjp ≤ n,

contradicting the choice of n.
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A General Subtraction Game

Uniqueness
We will first prove by induction on p that if f (Hji ) < Hji+1 for
1 ≤ i < p then

Hj1 + Hj2 + · · ·+ Hjp < Hjp+1. (3)

If p = 2 then we are saying that if f (Hj1) < Hj2 then
Hj1 + Hj2 < Hj2+1. But this follows directly from Hj2+1 = Hj2 + Hm
where f (Hm) ≥ Hj2 i.e. Hm > Hj1 .
So assume that (3) is true for p ≥ 2. Now

Hjp+1+1 = Hjp+1 + Hm and f (Hjp ) < Hjp+1

implies that m ≥ jp + 1. Thus

Hjp+1+1 ≥ Hjp+1 + Hjp+1

> Hjp+1 + Hjp + Hjp−1 + · · ·+ Hj1

after applying induction to get the second inequality.
This completes the induction for (3).
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A General Subtraction Game

Now assume by induction on k that n < Hk has a unique
decomposition. This is true for k = 2 and so now assume that
k ≥ 2 and Hk ≤ n < Hk+1. Consider a decomposition

n = Hj1 + Hj2 + · · ·+ Hjp .

It follows from (3) that jp = k . Indeed, jp ≤ k since n < Hk+1
and if jp < k then Hj1 + Hj2 + · · ·+ Hjp < Hjp+1 ≤ Hk ,
contradicting our choice of n. So Hk appears in every
decomposition of n.
Now Hk+1 ≤ 2Hk and n < Hk+1 implies n − Hk < Hk and so, by
induction, n − Hk has a unique decompositon. But then if n had
two distinct decompositions, Hk would appear in each, implying
that n − Hk also had two distinct decompositions, contradiction.

Note that although we know the optimal strategy for this game,
we do not know the Sprague-grundy numbers and so we do not
immediately get a solution to multi-pile versions.
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Wythoff’s Nim

This is Game 2a.

Theorem
The set of P-positions is A = ((ai ,bi), i = 0,1,2, . . .) where
ai < bi , i 6= 0 can be generated as follows: a0 = b0 = 0 and

ai is the smallest integer not appearing in
a0,b0, . . . ,ai−1,bi−1

bi = ai + i .

The sequence A starts

0 0 1 2 3 5
4 7 6 10 8 13
9 15 11 18 12 20
14 23 16 26 17 28
19 31 21 34 22 36
24 39 25 41 27 44
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Wythoff’s Nim

Proof We first prove that each positive integer appears
exactly once either as ai or bi .

We cannot have ai = aj for i < j because aj is the smallest
integer that has not previously appeared. Similarly, we cannot
have ai < ai−1, else ai−1 was too large.

Since bi = ai + i we see that both of the sequences a0,a1, . . . ,
and b0,b1, . . . , are monotone increasing.

Suppose then that x = ai = bj . Since ai < bi < bj for i < j , we
must have i > j here. But then ai is not an integer that has not
appeared before.

Thus each positive integer appears exactly once either as ai or
bi .
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Wythoff’s Nim

Now suppose that (ai ,bi) ∈ A. We consider the possible
positions we can move to and check that we cannot move to A:

1 (ai − x ,bi) = (aj ,bj) where x > 0.
We must have j < i and bj = bi . Not possible.

2 (ai ,bi − x) = (aj ,bj) where x > 0.
We must have j < i and aj = ai . Not possible.

3 (ai − x ,bi − x) = (aj ,bj) where x > 0.
We must have j < i and i = bi − ai = bj − aj = j . Not
possible.
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Now suppose that (c,d) /∈ A, c,d . We see that we can move to
a pair in A.

1 c = ai and d > bi .
We can move to (ai ,bi) by removing d − bi from the d pile.

2 c = ai and d < bi .
Let j = d − c. We can move to (aj ,bj) by deleting
c − aj = d − bj from each pile.

3 d = bi and c > ai .
We can move to (ai ,bi) by removing c − ai from the c pile.

4 d = bi and c < ai and we are not in Case 1 (with i
replaced by i ′).
Thus, c = bj for some j < i . We can move to (aj ,bj) by
removing d − aj from the d pile.

We have therefore verified that the sequence A does indeed
define the set of P positions.
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We can give the following description of the sequence A.

Theorem

ak = b k
2 (1 +

√
5)c and bk = b k

2 (3 +
√

5)c

for k = 0,1,2, . . ..

Proof It will be enough to show that each non-negative
integer appears exactly once in the sequence
(xk , yk ) =

(
b k

2 (1 +
√

5)c, b k
2 (3 +

√
5)c
)

(∗).

Given (*) we assume inductively that (ai ,bi) = (xi , yi) for
0 ≤ i ≤ k . This is true for k = 0.

Using (*) we see that ak+1 appears in some pair xj , yj . We must
have j > k else ak+1 will appear in a0, . . . ,bk .

Combinatorial Games



Wythoff’s Nim

Now xk+1 is the smallest integer that that does not appear in
(x0, . . . , yk ) = (a0, . . . ,bk ) and so xk+1 = ak+1 and then
yk+1 = xk+1 + k = bk+1, completing the induction.
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Proof of (*)
Fix an integer n and write

α =
1
2

p(1 +
√

5)− n (4)

β =
1
2

q(3 +
√

5)− n (5)

where p,q are integers and

0 < α <
1
2

p(1 +
√

5) (6)

0 < β <
1
2

q(3 +
√

5) (7)
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Wythoff’s Nim

Multiply (9) by 1
2(−1 +

√
5) and (10) by 1

2(3−
√

5) and add to
get

1
2
α(−1 +

√
5) +

1
2
β(3−

√
5) = p + q − n = integer .

Multiply (6) by 1
2(−1 +

√
5) and (7) by 1

2(3−
√

5) and add to get

0 <
1
2
α(−1 +

√
5) +

1
2
β(3−

√
5) < 2.

We see therefore that

1
2
α(−1 +

√
5) +

1
2
β(3−

√
5) = p + q − n = 1. (8)

Although α = β = 1 satisfies (8) this can be rejected by
observing that (9) would then imply that n + 1 = p(1 +

√
5).
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Thus either (i) α < 1, β > 1 or (ii) α > 1, β < 1.

In case (i) we have from (9) that n = bp(1 +
√

5)c, while in case
(ii) we have from (10) that n = bq(3 +

√
5)c

This proves that n appears among the xk , yk . We now argue
that the xk , yk are distinct.

In Case (i) we can that since β > 1 is as small as possible,
n 6= yk for every k . In Case (ii) we see that n 6= xk for every k .

So if an n appears twice, then we would have (a) xk = x` or (b)
yk = y` for some k > `.
But (a) implies 0 = xk − x` = 1

2(k − `)(1 +
√

5)− η where
|η| < 1, a contradiction. We rule out (b) in the same way.
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Geography

Start with a chip sitting on a vertex v of a graph or digraph G.
A move consists of moving the chip to a neighbouring vertex.

In edge geography, moving the chip from x to y deletes the
edge (x , y). In vertex geography, moving the chip from x to y
deletes the vertex x .

The problem is given a position (G, v), to determine whether
this is a P or N position.

Complexity Both edge and vertex geography are Pspace-hard
on digraphs. Edge geography is Pspace-hard on an undirected
graph. Only vertex geography on a graph is polynomial time
solvable.
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Undirected Vertex Geography

We need some simple results from the theory of matchings on
graphs.
A matching M of a graph G = (V ,E) is a set of edges, no two
of which are incident to a common vertex.

M={ }

Perfect Matching

M-unsaturated

M-saturated
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M-alternating path

M M M M Mnot not

a

b

c

d

e

f

(a,b,c,d,e,f) is an

M-alternating path

An M-alternating path joining 2 M-unsaturated vertices is called
an M-augmenting path.
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M is a maximum matching of G if no matching M ′ has more
edges.

Theorem
M is a maximum matching iff M admits no M-augmenting paths.

Proof Suppose M has an augmenting path
P = (a0,b1,a1, . . . ,ak ,bk+1) where
ei = (ai−1,bi) /∈ M, 1 ≤ i ≤ k + 1 and
fi = (bi ,ai) ∈ M, 1 ≤ i ≤ k .

0

1

1

2

2

a

b

a

b

a

b 3

Let M ′ = M − {f1, f2, . . . , fk}+ {e1,e2, . . . ,ek+1}.
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|M ′| = |M|+ 1.
M ′ is a matching

For x ∈ V let dM(x) denote the degree of x in matching M, So
dM(x) is 0 or 1.

dM′(x) =


dM(x) x 6∈ {a0,b1, . . . ,bk+1}
dM(x) x ∈ {b1, . . . ,ak}
dM(x) + 1 x ∈ {a0,bk+1}

So if M has an augmenting path it is not maximum.
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Suppose M is not a maximum matching and |M ′| > |M|.
Consider H = G[M∇M ′] where M∇M ′ = (M \M ′) ∪ (M ′ \M) is
the set of edges in exactly one of M,M ′.
Maximum degree of H is 2 – ≤ 1 edge from M or M ′. So H is a
collection of vertex disjoint alternating paths and cycles.

M

M’

x

y

(a) (b)

(c) (d)

x,y M-unsaturated

|M ′| > |M| implies that there is at least one path of type (d).
Such a path is M-augmenting �
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Theorem
(G, v) is an N-position in UVG iff every maximum matching of
G covers v.

Proof (i) Suppose that M is a maximum matching of G
which covers v . Player 1’s strategy is now: Move along the
M-edge that contains the current vertex.

If Player 1 were to lose, then there would exist a sequence of
edges e1, f1, . . . ,ek , fk such that v ∈ e1, e1,e2, . . . ,ek ∈ M,
f1, f2, . . . , fk /∈ M and fk = (x , y) where y is the current vertex for
Player 1 and y is not covered by M.

But then if A = {e1,e2, . . . ,ek} and B = {f1, f2, . . . , fk} then
(M \ A) ∪ B is a maximum matching (same size as M) which
does not cover v , contradiction.
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(ii) Suppose now that there is some maximum matching M
which does not cover v . If (v ,w) is Player 1’s move,then w

must be covered by M, else M is not a maximum matching.

Player 2’s strategy is now: Move along the M-edge that
contains the current vertex. If Player 2 were to lose then there
exists e1 = (v ,w), f1, . . . ,ek , fk ,ek+1 = (x , y) where y is the
current vertex for Player 2 and y is not covered by M.

But then we have defined an augmenting path from v to y and
so M is not a maximum matching, contradiction. �
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Note that we can determine whether or not v is covered by all
maximum matchings as follows: Find the size σ of the
maximum matching G.

This can be done in O(n3) time on an n-vertex graph. Find the
size σ′ of a maximum matching in G − v . Then v is covered by
all maximum matchings of G iff σ 6= σ′.
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Undirected Edge Geography on a bipartite graph

An even kernel of G is a non-empty set S ⊆ V such that (i) S is
an independent set and (ii) v /∈ S implies that degS(v) is even,
(possibly zero). (degS(v) is the number of neighbours of v in
S.)

Lemma

If S is an even kernel and v ∈ S then (G, v) is a P-position in
UEG.

Proof Any move at a vertex in S takes the chip outside S
and then Player 2 can immediately put the chip back in S. After
a move from x ∈ S to y /∈ S, degS(y) will become odd and so
there is an edge back to S. making this move, makes degS(y)
even again. Eventually, there will be no S : S̄ edges and Player
1 will be stuck in S. �
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We now discuss Bipartite UEG i.e. we assume that G is
bipartite, G has bipartion consisting of a copy of [m] and a
disjoint copy of [n] and edges set E . Now consider the m × n
0-1 matrix A with A(i , j) = 1 iff (i , j) ∈ E .

We can play our game on this matrix: We are either positioned
at row i or we are positioned at column j . If say, we are
positioned at row i , then we choose a j such that A(i , j) = 1 and
(i) make A(i , j) = 0 and (ii) move the position to column j . An
analogous move is taken when we positioned at column j .

Lemma
Suppose the current position is row i. This is a P-position iff row
i is in the span of the remaining rows (is the sum (mod 2) of a
subset of the other rows) or row i is a zero row. A similar
statement can be made if the position is column j.
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Proof If row i is a zero row then vertex i is isolated and this
is clearly a P-position. Otherwise, assume the position is row 1
and there exists I ⊆ [m] such that 1 ∈ I and

r1 =
∑

i∈I\{1}

ri(mod 2) or
∑
i∈I

ri = 0(mod 2) (9)

where ri denotes row i .

I is an even kernel: If x /∈ I then either (i) x corresponds to a
row and there are no x , I edges or (ii) x corresponds to a
column and then

∑
i∈I A(i , x) = 0(mod 2) from (9) and then x

has an even number of neighbours in I.
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Now suppose that (9) does not hold for any I. We show that
there exists a ` such that A(1, `) = 1 and putting A(1, `) = 0
makes column ` dependent on the remaining columns. Then
we will be in a P-position, by the first part.

Let e1 be the m-vector with a 1 in row 1 and a 0 everywhere
else. Let A∗ be obtained by adding e1 to A as an (n + 1)th
column. Now the row-rank of A∗ is the same as the row-rank of
A (here we are doing all arithmetic modulo 2). Suppose not,
then if r∗i is the i th row of A∗ then there exists a set J such that∑

i∈J

ri = 0(mod 2) 6=
∑
i∈J

r∗i (mod 2).

Now 1 /∈ J because r1 is independent of the remaining rows of
A, but then

∑
i∈J ri = 0(mod 2) implies

∑
i∈J r∗i = 0(mod 2)

since the last column has all zeros, except in row 1.
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Thus rank A∗ = rank A and so there exists K ⊆ [n] such that

e1 =
∑
k∈K

ck (mod 2) or e1 +
∑
k∈K

ck = 0(mod 2) (10)

where ck denotes column k of A.

Thus there exists ` ∈ K such that A(1, `) = 1. Now let c′j = cj
for j 6= ` and c′` be obtained from c` by putting A(1, `) = 0 i.e.
c′` = c` + e1. But then (10) implies that

∑
k∈K c′k = 0(mod 2)

(K = {k} is a possibility here).. �
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We consider the following multi-dimensional version of Tic Tac
Toe (Noughts and Crosses to the English).

The board consists of [n]d . A point on the board is therefore a
vector (x1, x2, . . . , xd ) where 1 ≤ xi ≤ n for 1 ≤ i ≤ d .

A line is a set points (x (1)
j , x (2)

j , . . . , x (d)
j ), j = 1,2, . . . ,n where

each sequence x (i) is either (i) of the form k , k , . . . , k for some
k ∈ [n] or is (ii) 1,2, . . . ,n or is (iii) n,n − 1, . . . ,1. Finally, we
cannot have Case (i) for all i .

Thus in the (familiar) 3× 3 case, the top row is defined by
x (1) = 1,1,1 and x (2) = 1,2,3 and the diagonal from the
bottom left to the top right is defined by x (1) = 3,2,1 and
x (2) = 1,2,3
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Lemma

The number of winning lines in the (n,d) game is (n+2)d−nd

2 .

Proof In the definition of a line there are n choices for k in
(i) and then (ii), (iii) make it up to n + 2. There are d
independent choices for each i making (n + 2)d .

Now delete nd choices where only Case (i) is used. Then divide
by 2 because replacing (ii) by (iii) and vice-versa whenever
Case (i) does not hold produces the same set of points
(traversing the line in the other direction). �
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The game is played by 2 players. The Red player (X player)
goes first and colours a point red. Then the Blue player (0
player) colours a different point blue and so on.

A player wins if there is a line, all of whose points are that
players colour. If neither player wins then the game is a draw.
The second player does not have a wnning strategy:

Lemma

Player 1 can always get at least a draw.
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Proof We prove this by considering strategy stealing.

Suppose that Player 2 did have a winning strategy. Then Player
1 can make an arbitrary first move x1. Player 2 will then move
with y1. Player 1 will now win playing the winning strategy for
Player 2 against a first move of y1.

This can be carried out until the strategy calls for move x1 (if at
all). But then Player 1 can make an arbitrary move and
continue, since x1 has already been made. �

The Hales-Jewett Theorem of Ramsey Theory implies that
there is a winner in the (n,d) game, when n is large enough
with respect to d . The winner is of course Player 1.
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11 1 8 1 12
6 2 2 9 10
3 7 ∗ 9 3
6 7 4 4 10

12 5 8 5 11


The above array gives a strategy for Player 2 in the 5× 5 game
(d = 2,n = 5).

For each of the 12 lines there is an associated pair of positions.
If Player 1 chooses a position with a number i , then Player 2
responds by choosing the other cell with the number i .

This ensures that Player 1 cannot take line i . If Player 1
chooses the * then Player 2 can choose any cell with an
unused number.
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So, later in the game if Player 1 chooses a cell with j and Player
2 already has the other j , then Player 2 can choose an arbitrary
cell.

Player 2’s strategy is to ensure that after all cells have been
chosen, he/she will have chosen one of the numbered cells
asociated with each line. This prevents Player 1 from taking a
whole line. This is called a pairing strategy.
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We now generalise the game to the following: We have a family
F = A1,A2, . . . ,AN ⊆ A. A move consists of one player, taking
an uncoloured member of A and giving it his colour.

A player wins if one of the sets Ai is completely coloured with
his colour.

A pairing strategy is a collection of distinct elements
X = {x1, x2, . . . , x2N−1, x2N} such that x2i−1, x2i ∈ Ai for i ≥ 1.

This is called a draw forcing pairing. Player 2 responds to
Player 1’s choice of x2i+δ, δ = 0,1 by choosing x2i+3−δ. If Player
1 does not choose from X , then Player 2 can choose any
uncoloured element of X .
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In this way, Player 2 avoids defeat, because at the end of the
game Player 2 will have coloured at least one of each of the
pairs x2i−1, x2i and so Player 1 cannot have completely
coloured Ai for i = 1,2, . . . ,N.
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Theorem

If ∣∣∣∣∣ ⋃
X∈G

X

∣∣∣∣∣ ≥ 2|G| ∀G ⊆ F (11)

then there is a draw forcing pairing.

Proof We define a bipartite graph Γ. A will be one side of
the bipartition and B = {b1,b2, . . . ,b2N}. Here b2i−1 and b2i
both represent Ai in the sense that if a ∈ Ai then there is an
edge (a,b2i−1) and an edge (a,b2i).

A draw forcing pairing corresponds to a complete matching of B
into A and the condition (11) implies that Hall’s condition is
satisfied. �
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Corollary

If |Ai | ≥ n for i = 1,2, . . . ,n and every x ∈ A is contained in at
most n/2 sets of F then there is a draw forcing pairing.

Proof The degree of a ∈ A is at most 2(n/2) in Γ and the
degree of each b ∈ B is at least n. This implies (via Hall’s
condition) that there is a complete matching of B into A. �
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Consider Tic tac Toe when d = 2. If n is even then every array
element is in at most 3 lines (one row, one column and at most
one diagonal) and if n is odd then every array element is in at
most 4 lines (one row, one column and at most two diagonals).

Thus there is a draw forcing pairing if n ≥ 6, n even and if
n ≥ 9, n odd. (The cases n = 4,7 have been settled as draws.
n = 7 required the use of a computer to examine all possible
strategies.)
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In general we have

Lemma

If n ≥ 3d − 1 and n is odd or if n ≥ 2d − 1 and n is even, then
there is a draw forcing pairing of (n,d) Tic tac Toe.

Proof We only have to estimate the number of lines
through a fixed point c = (c1, c2, . . . , cd ).

If n is odd then to choose a line L through c we specify, for each
index i whether L is (i) constant on i , (ii) increasing on i or (iii)
decreasing on i .

This gives 3d choices. Subtract 1 to avoid the all constant case
and divide by 2 because each line gets counted twice this way.
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When n is even, we observe that once we have chosen in
which positions L is constant, L is determined.

Suppose c1 = x and 1 is not a fixed position. Then every other
non-fixed position is x or n − x + 1. Assuming w.l.o.g. that
x ≤ n/2 we see that x < n − x + 1 and the positions with x
increase together at the same time as the positions with
n − x + 1 decrease together.

Thus the number of lines through c in this case is bounded by∑d−1
i=0

(d
i

)
= 2d − 1. �
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Quasi-probabilistic method

We now prove a theorem of Erdős and Selfridge.

Theorem

If |Ai | ≥ n for i ∈ [N] and N < 2n−1, then Player 2 can get a
draw in the game defined by F .

Proof At any point in the game, let Cj denote the set of
elements in A which have been coloured with Player j ’s colour,
j = 1,2 and U = A \ C1 ∪ C2. Let

Φ =
∑

i:Ai∩C2=∅

2−|Ai∩U|.

Suppose that the players choices are x1, y1, x2, y2, . . . ,. Then
we observe that immediately after Player 1’s first move,
Φ < N2−(n−1) < 1.
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We will show that Player 2 can keep Φ < 1 through out. Then at
the end, when U = ∅, Φ =

∑
i:Ai∩C2=∅ 1 < 1 implies that

Ai ∩ C2 6= ∅ for all i ∈ [N].

So, now let Φj be the value of Φ after the choice of x1, y1, . . . , xj .
then if U,C1,C2 are defined at precisely this time,

Φj+1 − Φj = −
∑

i:Ai∩C2=∅
yj∈Ai

2−|Ai∩U| +
∑

i:Ai∩C2=∅
yj /∈Ai ,xj+1∈Ai

2−|Ai∩U|

≤ −
∑

i:Ai∩C2=∅
yj∈Ai

2−|Ai∩U| +
∑

i:Ai∩C2=∅
xj+1∈Ai

2−|Ai∩U|
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We deduce that Φj+1 − Φj ≤ 0 if Player 2 chooses yj to
maximise

∑
i:Ai∩C2=∅

y∈Ai

2−|Ai∩U| over y .

In this way, Player 2 keeps Φ < 1 and obtains a draw. �

In the case of (n,d) Tic Tac Toe, we see that Player 2 can force
a draw if

(n + 2)d − nd

2
< 2n−1

which is implied, for n large, by

n ≥ (1 + ε)d log2 d

where ε > 0 is a small positive constant.
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