
BASIC COUNTING

Basic Counting



Let ϕ(m,n) be the number of mappings from [n] to [m].

Theorem

ϕ(m,n) = mn

Proof By induction on n.

ϕ(m,0) = 1 = m0.

ϕ(m,n + 1) = mϕ(m,n)
= m × mn

= mn+1.

□
ϕ(m,n) is also the number of sequences x1x2 · · · xn where
xi ∈ [m], i = 1,2, . . . ,n.

Basic Counting



Let ψ(n) be the number of subsets of [n].

Theorem

ψ(n) = 2n.

Proof (1) By induction on n.
ψ(0) = 1 = 20.

ψ(n + 1)
= #{sets containing n + 1}+#{sets not containing n + 1}
= ψ(n) + ψ(n)
= 2n + 2n

= 2n+1.
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There is a general principle that if there is a 1-1
correspondence between two finite sets A,B then |A| = |B|.
Here is a use of this principle.

Proof (2).
For A ⊆ [n] define the map fA : [n] → {0,1} by

fA(x) =

{
1 x ∈ A
0 x /∈ A

.

fA is the characteristic function of A.

Distinct A’s give rise to distinct fA’s and vice-versa.

Thus ψ(n) is the number of choices for fA, which is 2n by
Theorem 1. □
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Let ψodd(n) be the number of odd subsets of [n] and let
ψeven(n) be the number of even subsets.

Theorem

ψodd(n) = ψeven(n) = 2n−1.

Proof For A ⊆ [n − 1] define

A′ =

{
A |A| is odd
A ∪ {n} |A| is even

The map A → A′ defines a bijection between [n − 1] and the
odd subsets of [n]. So 2n−1 = ψ(n− 1) = ψodd(n). Futhermore,

ψeven(n) = ψ(n)− ψodd(n) = 2n − 2n−1 = 2n−1.

□
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Let ϕ1−1(m,n) be the number of 1-1 mappings from [n] to [m].

Theorem

ϕ1−1(m,n) =
n−1∏
i=0

(m − i). (1)

Proof Denote the RHS of (1) by π(m,n). If m < n then
ϕ1−1(m,n) = π(m,n) = 0. So assume that m ≥ n. Now we use
induction on n.
If n = 0 then we have ϕ1−1(m,0) = π(m,0) = 1.
In general, if n < m then

ϕ1−1(m,n + 1) = (m − n)ϕ1−1(m,n)
= (m − n)π(m,n)
= π(m,n + 1).

□
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ϕ1−1(m,n) also counts the number of length n ordered
sequences distinct elements taken from a set of size m.

ϕ1−1(n,n) = n(n − 1) · · · 1 = n!

is the number of ordered sequences of [n] i.e. the number of
permutations of [n].
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Binomial Coefficients(
n
k

)
=

n!
(n − k)!k !

=
n(n − 1) · · · (n − k + 1)

k(k − 1) · · · 1
Let X be a finite set and let(

X
k

)
denote the collection of k -subsets of X .

Theorem ∣∣∣∣(X
k

)∣∣∣∣ = (|X |
k

)
.

Proof Let n = |X |,

k !
∣∣∣∣(X

k

)∣∣∣∣ = ϕ1−1(n, k) = n(n − 1) · · · (n − k + 1).

□
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Let m,n be non-negative integers. Let Z+ denote the
non-negative integers. Let

S(m,n) = {(i1, i2, . . . , in) ∈ Z n
+ : i1 + i2 + · · ·+ in = m}.

Theorem

|S(m,n)| =
(

m + n − 1
n − 1

)
.

Proof imagine m + n − 1 points in a line. Choose positions
p1 < p2 < · · · < pn−1 and color these points red. Let
p0 = 0, pn = m + 1. The gap sizes between the red points

it = pt − pt−1 − 1, t = 1,2, . . . ,n

form a sequence in S(m,n) and vice-versa. □
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|S(m,n)| is also the number of ways of coloring m
indistinguishable balls using n colors.

Suppose that we want to count the number of ways of coloring
these balls so that each color appears at least once i.e. to
compute |S(m,n)∗| where, if N = {1,2, . . . , }

S(m,n)∗ =
{(i1, i2, . . . , in) ∈ Nn : i1 + i2 + · · ·+ in = m}
= {(i1 − 1, i2 − 1, . . . , in − 1) ∈ Z n

+ :

(i1 − 1) + (i2 − 1) + · · ·+ (in − 1) = m − n}

Thus,

|S(m,n)∗| =
(

m − n + n − 1
n − 1

)
=

(
m − 1
n − 1

)
.
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Seperated 1’s on a cycle
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How many ways (patterns) are there of placing k 1’s and n − k
0’s at the vertices of a polygon with n vertices so that no two 1’s
are adjacent?
Choose a vertex v of the polygon in n ways and then place a 1
there. For the remainder we must choose a1, . . . ,ak ≥ 1 such
that a1 + · · ·+ ak = n − k and then go round the cycle
(clockwise) putting a1 0’s followed by a 1 and then a2 0’s
followed by a 1 etc..
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Each pattern π arises k times in this way. There are k choices
of v that correspond to a 1 of the pattern. Having chosen v
there is a unique choice of a1,a2, . . . ,ak that will now give π.

There are
(n−k−1

k−1

)
ways of choosing the ai and so the answer to

our question is
n
k

(
n − k − 1

k − 1.

)
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Theorem
Symmetry (

n
r

)
=

(
n

n − r

)

Proof Choosing r elements to include is equivalent to
choosing n − r elements to exclude. □
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Theorem
Pascal’s Triangle (

n
k

)
+

(
n

k + 1

)
=

(
n + 1
k + 1

)

Proof A k + 1-subset of [n + 1] either
(i) includes n + 1 ——

(n
k

)
choices or

(ii) does not include n + 1 —–
( n

k+1

)
choices.
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Pascal’s Triangle
The following array of binomial coefficents, constitutes the

famous triangle:
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

1 7 21 35 35 21 7 1
· · ·
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Theorem

(
k
k

)
+

(
k + 1

k

)
+

(
k + 2

k

)
+ · · ·+

(
n
k

)
=

(
n + 1
k + 1

)
. (2)

Proof 1: Induction on n for arbitrary k .
Base case: n = k ;

(k
k

)
=
(k+1

k+1

)
Inductive Step: assume true for n ≥ k .

n+1∑
m=k

(
m
k

)
=

n∑
m=k

(
m
k

)
+

(
n + 1

k

)
=

(
n + 1
k + 1

)
+

(
n + 1

k

)
Induction

=

(
n + 2
k + 1

)
. Pascal’s triangle
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Proof 2: Combinatorial argument.
If S denotes the set of k + 1-subsets of [n + 1] and Sm is the
set of k + 1-subsets of [n + 1] which have largest element
m + 1 then

Sk ,Sk+1, . . . ,Sn is a partition of S.
|Sk |+ |Sk+1|+ · · ·+ |Sn| = |S|.
|Sm| =

(m
k

)
.

□

Basic Counting



Theorem
Vandermonde’s Identity

k∑
r=0

(
m
r

)(
n

k − r

)
=

(
m + n

k

)
.

Proof Split [m + n] into A = [m] and B = [m + n] \ [m]. Let
S denote the set of k -subsets of [m + n] and let
Sr = {X ∈ S : |X ∩ A| = r}. Then

S0,S1, . . . ,Sk is a partition of S.
|S0|+ |S1|+ · · ·+ |Sk | = |S|.
|Sr | =

(m
r

)( n
k−r

)
.

|S| =
(m+n

k

)
.

□
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Theorem
Binomial Theorem

(1 + x)n =
n∑

r=0

(
n
r

)
x r .

Proof Coefficient x r in (1 + x)(1 + x) · · · (1 + x): choose x
from r brackets and 1 from the rest. □
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Applications of Binomial Theorem

x = 1: (
n
0

)
+

(
n
1

)
+ · · ·+

(
n
n

)
= (1 + 1)n = 2n.

LHS counts the number of subsets of all sizes in [n].
x = −1:(

n
0

)
−
(

n
1

)
+ · · ·+ (−1)n

(
n
n

)
= (1 − 1)n = 0,

i.e.(
n
0

)
+

(
n
2

)
+

(
n
4

)
+ · · · =

(
n
1

)
+

(
n
3

)
+

(
n
5

)
+ · · ·

and number of subsets of even cardinality = number of
subsets of odd cardinality.
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n∑
k=0

k
(

n
k

)
= n2n−1.

Differentiate both sides of the Binomial Theorem w.r.t. x .

n(1 + x)n−1 =
n∑

k=0

k
(

n
k

)
xk−1.

Now put x = 1.
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Grid path problems

A monotone path is made up of segments
(x , y) → (x + 1, y) or (x , y) → (x , y + 1).

(a,b) → (c,d))= {monotone paths from (a,b) to (c,d)}.

We drop the (a,b) → for paths starting at (0,0).
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(a,b)

(0,0)
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We consider 3 questions: Assume a,b ≥ 0.

1. How large is PATHS(a,b)?

2. Assume a < b. Let PATHS>(a,b) be the set of paths in
PATHS(a,b) which do not touch the line x = y except at (0,0).
How large is PATHS>(a,b)?

3. Assume a ≤ b. Let PATHS≥(a,b) be the set of paths in
PATHS(a,b) which do not pass through points with x > y .
How large is PATHS≥(a,b)?

Basic Counting



1. STRINGS(a,b) = {x ∈ {R,U}∗ : x has a R’s and b U ’s}. 1

There is a natural bijection between PATHS(a,b) and
STRINGS(a,b):

Path moves to Right, add R to sequence.
Path goes up, add U to sequence.

So

|PATHS(a,b)| = |STRINGS(a,b)| =
(

a + b
a

)
since to define a string we have state which of the a + b places
contains an R.

1{R,U}∗ = set of strings of R’s and U ’s
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2. Every path in PATHS>(a,b) goes through (0,1). So

|PATHS>(a,b)| =
|PATHS((0,1) → (a,b))| − |PATHS ̸>((0,1) → (a,b))|.

Now

|PATHS((0,1) → (a,b))| =
(

a + b − 1
a

)
and

|PATHS ̸>((0,1) → (a,b))| =

|PATHS((1,0) → (a,b))| =
(

a + b − 1
a − 1

)
.

We explain the first equality momentarily. Thus

|PATHS>(a,b)| =

(
a + b − 1

a

)
−
(

a + b − 1
a − 1

)
=

b − a
a + b

(
a + b

a

)
.
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Suppose P ∈ PATHS ̸>((0,1) → (a,b)). We define
P ′ ∈ PATHS((1,0) → (a,b)) in such a way that
P → P ′ is a bijection.

Let (c, c) be the first point of P, which lies on the line
L = {x = y} and let S denote the initial segment of P going
from (0,1) to (c, c).

P ′ is obtained from P by deleting S and replacing it by its
reflection S′ in L.

To show that this defines a bijection, observe that if
P ′ ∈ PATHS((1,0) → (a,b))
then a similarly defined reverse reflection yields a
P ∈ PATHS̸>((0,1) → (a,b)).
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(a,b)

(0,0)

P

P’
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3. Suppose P ∈ PATHS≥(a,b). We define
P” ∈ PATHS>(a,b+1) in such a way that P → P” is a bijection.

Thus

|PATHS≥(a,b)| =
b − a + 1
a + b + 1

(
a + b + 1

a

)
.

In particular

|PATHS≥(a,a)| =
1

2a + 1

(
2a + 1

a

)
=

1
a + 1

(
2a
a

)
.

The final expression is called a Catalan Number.
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The bijection

Given P we obtain P” by raising it vertically one position and
then adding the segment (0,0) → (0,1).

More precisely, if P = (0,0), (x1, y1), (x2, y2), . . . , (a,b) then
P” = (0,0), (0,1), (x1, y1 + 1), . . . , (a,b + 1).

This is clearly a 1 − 1 onto function between PATHS≥(a,b) and
PATHS>(a,b + 1).

Basic Counting



(a,b)

(0,0)

P

P"
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Multi-sets

Suppose we allow elements to appear several times in a set:
{a,a,a,b,b, c, c, c,d ,d}.
To avoid confusion with the standard definition of a set we write
{3 × a,2 × b,3 × c,2 × d}.
How many distinct permutations are there of the multiset
{a1 × 1,a2 × 2, . . . ,an × n}?
Ex. {2 × a,3 × b}.
aabbb;ababb;abbab;abbba;baabb
babab;babba;bbaab;bbaba;bbbaa.
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Start with {a1,a2,b1,b2,b3} which has 5! = 120 permutations:
. . . a2b3a1b2b1 . . . a1b2a2b1b3 . . .
After erasing the subscripts each possible sequence e.g.
ababb occurs 2!× 3! times and so the number of permutations
is 5!/2!3! = 10.
In general if m = a1 + a2 + · · ·+ an then the number of
permutations is

m!

a1!a2! · · · an!
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Multinomial Coefficients(
m

a1,a2, . . . ,an

)
=

m!

a1!a2! · · · an!

(x1 + x2 + · · ·+ xn)
m =

∑
a1+a2+···+an=m

a1≥0,...,an≥0

(
m

a1,a2, . . . ,an

)
xa1

1 xa2
2 . . . xan

n .

E.g.

(x1 + x2 + x3)
4 =

(
4

4,0,0

)
x4

1 +

(
4

3,1,0

)
x3

1 x2 +(
4

3,0,1

)
x3

1 x3 +

(
4

2,1,1

)
x2

1 x2x3 + · · ·

= x4
1 + 4x3

1 x2 + 4x3
1 x3 + 12x2

1 x2x3 + · · ·
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Contribution of 1 to the coefficient of
xa1

1 xa2
2 . . . xan

n from every permutation in
S = {x1 × a1, x2 × a2, . . . , xn × an}.
E.g.

(x1 + x2 + x3)
6 = · · ·+ x2x3x2x1x1x3 + · · ·

where the displayed term comes by choosing x2 from first
bracket, x3 from second bracket etc.

Given a permutation i1i2 · · · im of S e.g. 331422 · · · we choose
x3 from the first 2 brackets, x1 from the 3rd bracket etc.
Conversely, given a choice from each bracket which contributes
to the coefficient of xa1

1 xa2
2 . . . xan

n we get a permutation of S.
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Balls in boxes

m distinguishable balls are placed in n distinguishable boxes.
Box i gets bi balls.

# ways is
(

m
b1,b2, . . . ,bn

)
.

m = 7,n = 3,b1 = 2,b2 = 2,b3 = 3
No. of ways is

7!/(2!2!3!) = 210

[1,2][3,4][5,6,7] [1,2][3,5][4,6,7] · · · [6,7][4,5][1,2,3]

3 1 3 2 1 3 2
Ball 1 goes in box 3, Ball 2 goes in box 1, etc.
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Conversely, given an allocation of balls to boxes:

3
7 2 4 1 5

6

3212331
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How many trees? – Cayley’s Formula
n=4

4 12

n=5

5 60 60

n=6

6 120 360 90

360
360
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Prüfer’s Correspondence

There is a 1-1 correspondence ϕV between spanning trees of
KV (the complete graph with vertex set V ) and sequences
V n−2. Thus for n ≥ 2

τ(Kn) = nn−2 Cayley’s Formula.

Assume some arbitrary ordering V = {v1 < v2 < · · · < vn}.
ϕV (T ):
begin

T1 := T ;
for i = 1 to n − 2 do
begin

si := neighbour of least leaf ℓi of Ti .
Ti+1 = Ti − ℓi .

end ϕV (T ) = s1s2 . . . sn−2
end
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5 3

4

26

7

8

9
10

11

1
12

13

14

15

6,4,5,14,2,6,11,14,8,5,11,4,2
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Lemma

v ∈ V (T ) appears exactly dT (v)− 1 times in ϕV (T ).

Proof Assume n = |V (T )| ≥ 2. By induction on n.
n = 2: ϕV (T ) = Λ = empty string.
Assume n ≥ 3:

T1
l1

s1

ϕV (T ) = s1ϕV1(T1) where V1 = V − {s1}.
s1 appears dT1(s1)− 1 + 1 = dT (s1)− 1 times – induction.
v ̸= s1 appears dT1(v)− 1 = dT (v)− 1 times – induction. □
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Construction of ϕ−1
V

Inductively assume that for all |X | < n there is an inverse
function ϕ−1

X . (True for n = 2).
Now define ϕ−1

V by

ϕ−1
V (s1s2 . . . sn−2) = ϕ−1

V1
(s2 . . . sn−2) plus edge s1ℓ1,

where ℓ1 = min{s ∈ V : s /∈ {s1, s2, . . . sn−2}} and
V1 = V − {ℓ1}. Then

ϕV (ϕ
−1
V (s1s2 . . . sn−2)) = s1ϕV1(ϕ

−1
V1

(s2 . . . sn−2))

= s1s2 . . . sn−2.

Thus ϕV has an inverse and the correspondence is
established.
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n = 10
s = 5,3,7,4,4,3,2,6.

10

6

2

3

5

1

4

97

8

9
8

7

2

1

3

4
5

6
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Number of trees with a given degree sequence

Corollary
If d1 + d2 + · · ·+ dn = 2n − 2 then the number of spanning trees
of Kn with degree sequence d1,d2, . . . ,dn is(

n − 2
d1 − 1,d2 − 1, . . . ,dn − 1

)
=

(n − 2)!
(d1 − 1)!(d2 − 1)! · · · (dn − 1)!

.

Proof From Prüfer’s correspondence this is the number of
sequences of length n − 2 in which 1 appears d1 − 1 times, 2
appears d2 − 1 times and so on. □
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Inclusion-Exclusion

2 sets:
|A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2|

So if A1,A2 ⊆ A and Ai = A \ Ai , i = 1,2 then

|A1 ∩ A2| = |A| − |A1| − |A2|+ |A1 ∩ A2|

3 sets:

|A1 ∩ A2 ∩ A3| = |A| − |A1| − |A2| − |A3|
+|A1 ∩ A2|+ |A1 ∩ A3|+ |A2 ∩ A3|
−|A1 ∩ A2 ∩ A3|.
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General Case

A1,A2, . . . ,AN ⊆ A and each x ∈ A has a weight wx . (In our
examples wx = 1 for all x and so w(X ) = |X |.)

For S ⊆ [N], AS =
⋂

i∈S Ai and w(S) =
∑

x∈S wx .

E.g. A{4,7,18} = A4 ∩ A7 ∩ A18.

A∅ = A.

Inclusion-Exclusion Formula:

w

(
N⋂

i=1

Ai

)
=
∑

S⊆[N]

(−1)|S|w(AS).
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Simple example. How many integers in [1000] are not divisible
by 5,6 or 8 i.e. what is the size of A1 ∩ A2 ∩ A3 below? Here we
take wx = 1 for all x .

A = A∅ = {1,2,3, . . . , } |A| = 1000
A1 = {5,10,15, . . . , } |A1| = 200
A2 = {6,12,18, . . . , } |A2| = 166
A3 = {8,16,24, . . . , } |A2| = 125

A{1,2} = {30,60,90, . . . , } |A{1,2}| = 33
A{1,3} = {40,80,120, . . . , } |A{1,3}| = 25
A{2,3} = {24,48,72, . . . , } |A{2,3}| = 41

A{1,2,3} = {120,240,360, . . . , } |A{1,2,3}| = 8

|A1 ∩ A2 ∩ A3| = 1000 − (200 + 166 + 125)
+ (33 + 25 + 41)− 8

= 600.
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Derangements

A derangement of [n] is a permutation π such that

π(i) ̸= i : i = 1,2, . . . ,n.

We must express the set of derangements Dn of [n] as the
intersection of the complements of sets.
We let Ai = {permutations π : π(i) = i} and then

|Dn| =

∣∣∣∣∣
n⋂

i=1

Ai

∣∣∣∣∣ .
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We must now compute |AS| for S ⊆ [n].

|A1| = (n − 1)!: after fixing π(1) = 1 there are (n − 1)! ways of
permuting 2,3, . . . ,n.

|A{1,2}| = (n − 2)!: after fixing π(1) = 1, π(2) = 2 there are
(n − 2)! ways of permuting 3,4, . . . ,n.

In general
|AS| = (n − |S|)!

Basic Counting



|Dn| =
∑

S⊆[n]

(−1)|S|(n − |S|)!

=
n∑

k=0

(−1)k
(

n
k

)
(n − k)!

=
n∑

k=0

(−1)k n!
k !

= n!
n∑

k=0

(−1)k 1
k !
.

When n is large,
n∑

k=0

(−1)k 1
k !

≈ e−1.
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Proof of inclusion-exclusion formula

θx ,i =

{
1 x ∈ Ai
0 x /∈ Ai

(1 − θx ,1)(1 − θx ,2) · · · (1 − θx ,N) =

{
1 x ∈

⋂N
i=1 Ai

0 otherwise

So

w

(
N⋂

i=1

Ai

)
=

∑
x∈A

wx(1 − θx ,1)(1 − θx ,2) · · · (1 − θx ,N)

=
∑
x∈A

wx
∑

S⊆[N]

(−1)|S|
∏
i∈S

θx ,i

=
∑

S⊆[N]

(−1)|S|
∑
x∈A

wx
∏
i∈S

θx ,i

=
∑

S⊆[N]

(−1)|S|w(AS).

Basic Counting



Euler’s Function ϕ(n).

Let ϕ(n) be the number of positive integers x ≤ n which are
mutually prime to n i.e. have no common factors with n, other
than 1.
ϕ(12) = 4.
Let n = pα1

1 pα2
2 pα2

1 · · · pαk
k be the prime factorisation of n.

Ai = {x ∈ [n] : pi divides x}, 1 ≤ i ≤ k .

ϕ(n) =

∣∣∣∣∣
k⋂

i=1

Ai

∣∣∣∣∣
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|AS| =
n∏

i∈S

pi
S ⊆ [k ].

ϕ(n) =
∑

S⊆[k ]

(−1)|S| n∏
i∈S

pi

= n
(

1 − 1
p1

)(
1 − 1

p2

)
· · ·
(

1 − 1
pk

)
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Surjections

Fix n,m. Let
A = {f : [n] → [m]}

Thus |A| = mn. Let

F (n,m) = {f ∈ A : f is onto [m]}.

How big is F (n,m)?
Let

Ai = {f ∈ F : f (x) ̸= i , ∀x ∈ [n]}.

Then

F (n,m) =
m⋂

i=1

Ai .
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For S ⊆ [m]

AS = {f ∈ A : f (x) /∈ S, ∀x ∈ [n]}.
= {f : [n] → [m] \ S}.

So
|AS| = (m − |S|)n.

Hence

F (n,m) =
∑

S⊆[m]

(−1)|S|(m − |S|)n

=
m∑

k=0

(−1)k
(

m
k

)
(m − k)n.
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Scrambled Allocations

We have n boxes B1,B2, . . . ,Bn and 2n distinguishable balls
b1,b2, . . . ,b2n.
An allocation of balls to boxes, two balls to a box, is said to be
scrambled if there does not exist i such that box Bi contains
balls b2i−1,b2i . Let σn be the number of scrambled allocations.

Let Ai be the set of allocations in which box Bi contains
b2i−1,b2i . We show that

|AS| =
(2(n − |S|))!

2n−|S| .

Inclusion-Exclusion then gives

σn =
n∑

k=0

(−1)k
(

n
k

)
(2(n − k))!

2n−k .

Basic Counting



First consider A∅:

Each permutation π of [2n] yields an allocation of balls, placing
bπ(2i−1),bπ(2i) into box Bi , for i = 1,2, . . . ,n. The order of balls
in the boxes is immaterial and so each allocation comes from
exactly 2n distinct permutations, giving

|A∅| =
(2n)!

2n .

To get the formula for |AS| observe that the contents of 2|S|
boxes are fixed and so we are in essence dealing with n − |S|
boxes and 2(n − |S|) balls.
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Probléme des Ménages

In how many ways Mn can n male-female couples be seated
around a table, alternating male-female, so that no person is
seated next to their partner?

Let Ai be the set of seatings in which couple i sit together.

If |S| = k then
|AS| = 2k !(n − k)!2 × dk .

dk is the number of ways of placing k 1’s on a cycle of length
2n so that no two 1’s are adjacent. (We place a person at each
1 and his/her partner on the succeeding 0).

2 choices for which seats are occupied by the men or women.
k ! ways of assigning the couples to the positions; (n − k)!2

ways of assigning the rest of the people.
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dk =
2n
k

(
2n − k − 1

k − 1

)
=

2n
2n − k

(
2n − k

k

)
.

(See slides 11 and 12).

Mn =
n∑

k=0

(−1)k
(

n
k

)
× 2k !(n − k)!2 × 2n

2n − k

(
2n − k

k

)

= 2n!
n∑

k=0

(−1)k 2n
2n − k

(
2n − k

k

)
(n − k)!.
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The weight of elements in exactly k sets:
Observe that∏

i∈S

θx ,i
∏
i /∈S

(1 − θx ,i) = 1 iff x ∈ Ai , i ∈ S and x /∈ Ai , i /∈ S.

Wk is the total weight of elements in exactly k of the Ai :

Wk =
∑
x∈A

wx
∑
|S|=k

∏
i∈S

θx ,i
∏
i /∈S

(1 − θx ,i)

=
∑
|S|=k

∑
x∈A

wx
∏
i∈S

θx ,i
∏
i /∈S

(1 − θx ,i)

=
∑
|S|=k

∑
T⊇S

∑
x∈A

wx(−1)|T\S|
∏
i∈T

θx ,i

=
∑
|S|=k

∑
T⊇S

(−1)|T\S|w(AT )

=
N∑

ℓ=k

∑
|T |=ℓ

(−1)ℓ−k
(
ℓ

k

)
w(AT ).
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As an example. Let Dn,k denote the number of permutations π
of [n] for which there are exactly k indices i for which π(i) = i .
Then

Dn,k =
n∑

ℓ=k

(
n
ℓ

)
(−1)ℓ−k

(
ℓ

k

)
(n − ℓ)!

=
n∑

ℓ=k

n!
ℓ!(n − ℓ)!

(−1)ℓ−k ℓ!

k !(ℓ− k)!
(n − ℓ)!

=
n!
k !

n∑
ℓ=k

(−1)ℓ−k

(ℓ− k)!

=
n!
k !

n−k∑
r=0

(−1)r

r !

≈ n!
ek !

when n is large and k is constant.
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Bonferroni Inequalities

For x ∈ {0,1, ∗}N let

Ax = A(x1)
1 ∩ A(x2)

2 ∩ · · · ∩ A(xN)
n .

Here

A(x)
i =


Ai x = 1
Āi x = 0
A x = ∗

.

So,
A0,1,0,∗ = Ā1 ∩ A2 ∩ Ā3 ∩ A = Ā1 ∩ A2 ∩ Ā3.
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Suppose that X ⊆ {0,1, ∗}N and

∆ = ∆(A1,A2, . . . ,AN) =
∑
x∈X

αx|Ax|.

Here αx ∈ R for αx ∈ X .

Theorem (Rényi)
∆ ≥ 0 for all A1,A2, . . . ,AN ⊆ A iff ∆ ≥ 0 whenever Ai = A or
Ai = ∅ for i = 1,2, . . . ,N.

Corollary ∣∣∣∣∣
N⋂

i=1

Āi

∣∣∣∣∣−
k∑

i=0

∑
|S|=i

(−1)i |AS|

{
≤ 0 k even
≥ 0 k odd
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Proof of corollary: Suppose that A1 = A2 = · · · = Aℓ = A and
Aℓ+1 = · · · = AN = ∅. If ℓ = 0 then ∆ = 0 and if 0 < ℓ ≤ N then

∆ = 0 −
k∑

i=0

(−1)i
(
ℓ

i

)
|A|

= |A|

{
0 k ≥ ℓ

(−1)k+1(ℓ−1
k

)
k < ℓ.

where the identity

k∑
i=0

(−1)i
(
ℓ

i

)
= (−1)k

(
ℓ− 1

k

)
can be proved by induction on k for ℓ ≥ 1 fixed.
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It follows from the corollary that if Dn denotes the number of
derangements of [n] then

n!
2k−1∑
i=0

(−1)i 1
i!

≤ Dn ≤ n!
2k∑
i=0

(−1)i 1
i!
,

for all k ≥ 0.
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Proof of Rényi’s Theorem: We begin by reducing to the case
where X ⊆ {0,1}N . I.e. we get rid of *-components.

Consider x = (0,1, ∗,1). We have

Ax = A(0,1,0,1) ∪ A(0,1,1,1) and A(0,1,0,1) ∩ A(0,1,1,1) = ∅.

So,
|A(0,1,∗,1)| = |A(0,1,0,1)|+ |A(0,1,1,1)|.

A similar argument gives

|A(∗,1,∗,1)| = |A(0,1,0,1)|+ |A(0,1,1,1)|+ |A(1,1,0,1)|+ |A(1,1,1,1)|.

Repeating this we can write

∆ =
∑
y∈Y

αy|Ay| where Y ⊆ {0,1}N .
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We claim now that ∆(A1,A2, . . . ,AN) ≥ 0 for all
A1,A2, . . . ,AN ⊆ A iff αy ≥ 0 for all y ∈ Y .

Suppose then that ∃y = (y1, y2, . . . , yN) ∈ Y such that αy < 0.
Now let

Ai =

{
A yi = 1.
∅ yi = 0.

Then in this case

∆(A1,A2, . . . ,AN) = αy|A| < 0, contradiction.

For if y′ = (y ′
1, y

′
2, . . . , y

′
N) and y ′

i ̸= yi for some i then A(y ′
i ) = ∅

and so Ay′ = ∅ too.
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