BASIC COUNTING

[Basic Counting](#page-66-0)

K ロ → K 個 → K 君 → K 君 → 「君 → りなひ

Let $\phi(m, n)$ be the number of mappings from $[n]$ to $[m]$.

Theorem

$$
\phi(m,n)=m^n
$$

Proof By induction on *n*.

 $\phi(m, 0) = 1 = m^0$.

$$
\phi(m, n+1) = m\phi(m, n)
$$

= $m \times m^n$
= m^{n+1} .

 $\phi(m, n)$ is also the number of sequences $x_1 x_2 \cdots x_n$ where $x_i \in [m], i = 1, 2, \ldots, n.$ イロト イ押 トイヨ トイヨ トー

[Basic Counting](#page-0-0)

□

÷.

Let $\psi(n)$ be the number of subsets of $[n]$.

Theorem

$$
\psi(n)=2^n.
$$

Proof (1) By induction on *n*. $\psi(0) = 1 = 2^0.$

$\psi(n+1)$

- $=$ #{sets containing $n+1$ } + #{sets not containing $n+1$ }
- $=\psi(n)+\psi(n)$
- $= 2^n + 2^n$
- $= 2^{n+1}$.

KID KAP KE KE KE KE YAN

There is a general principle that if there is a 1-1 correspondence between two finite sets A, B then $|A| = |B|$. Here is a use of this principle.

Proof (2). For $A \subseteq [n]$ define the map $f_A : [n] \rightarrow \{0, 1\}$ by

$$
f_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}.
$$

f^A is the characteristic function of *A*.

Distinct *A*'s give rise to distinct *fA*'s and vice-versa.

Thus $\psi(n)$ is the number of choices for f_A , which is 2^n by Theorem [1.](#page-1-0) □

イロメ イ押 メイヨメ イヨメ

 QQ

Let $\psi_{\text{odd}}(n)$ be the number of odd subsets of $[n]$ and let $\psi_{even}(n)$ be the number of even subsets.

Theorem

$$
\psi_{\textit{odd}}(n)=\psi_{\textit{even}}(n)=2^{n-1}.
$$

Proof For $A \subseteq [n-1]$ define

$$
A' = \begin{cases} A & |A| \text{ is odd} \\ A \cup \{n\} & |A| \text{ is even} \end{cases}
$$

The map *A* → *A* ′ defines a bijection between [*n* − 1] and the odd subsets of $[n]$. So $2^{n-1} = \psi(n-1) = \psi_{\text{odd}}(n)$. Futhermore,

$$
\psi_{\text{even}}(n) = \psi(n) - \psi_{\text{odd}}(n) = 2^{n} - 2^{n-1} = 2^{n-1}.
$$

◆[□](#page-66-0)→ ◆ @ → ◆ @ → → @ → □ <mark>@</mark>

 QQ

Let ϕ1−1(*m*, *n*) be the number of 1-1 mappings from [*n*] to [*m*].

Theorem

$$
\phi_{1-1}(m,n) = \prod_{i=0}^{n-1} (m-i).
$$
 (1)

Proof Denote the RHS of [\(1\)](#page-5-0) by $\pi(m, n)$. If $m < n$ then $\phi_{1-1}(m, n) = \pi(m, n) = 0$. So assume that $m > n$. Now we use induction on *n*.

If $n = 0$ then we have $\phi_{1-1}(m, 0) = \pi(m, 0) = 1$. In general, if *n* < *m* then

$$
\begin{array}{rcl}\n\phi_{1-1}(m,n+1) & = & (m-n)\phi_{1-1}(m,n) \\
& = & (m-n)\pi(m,n) \\
& = & \pi(m,n+1).\n\end{array}
$$

[□](#page-66-0)

K ロ X K @ X K 경 X K 경 X

ϕ1−1(*m*, *n*) also counts the number of length *n* ordered sequences distinct elements taken from a set of size *m*.

$$
\phi_{1-1}(n,n) = n(n-1)\cdots 1 = n!
$$

is the number of ordered sequences of [*n*] i.e. the number of permutations of [*n*].

イロメ イ押 メイヨメ イヨメ

÷. QQ

Binomial Coefficients

$$
\binom{n}{k} = \frac{n!}{(n-k)!k!} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots 1}
$$

Let *X* be a finite set and let

$$
\binom{X}{k}
$$
 denote the collection of *k*-subsets of *X*.

Theorem

$$
\left| \binom{X}{k} \right| = \binom{|X|}{k}.
$$

Proof Let $n = |X|$,

$$
k!\,\binom{X}{k}\bigg| = \phi_{1-1}(n,k) = n(n-1)\cdots(n-k+1).
$$

K [□](#page-66-0) ▶ K □ ▶ K □ ▶ K □ ▶ K □ ▶ K □ ▶ K □ ▶ K □ ▶ K □ ▶ K □ ▶ K □ ▶ K □ ▶ V □ A Q ①

Let m, n be non-negative integers. Let Z_+ denote the non-negative integers. Let

$$
S(m,n)=\{(i_1,i_2,\ldots,i_n)\in Z_+^n:\ i_1+i_2+\cdots+i_n=m\}.
$$

Theorem

$$
|S(m,n)|=\binom{m+n-1}{n-1}.
$$

Proof imagine $m + n - 1$ points in a line. Choose positions $p_1 < p_2 < \cdots < p_{n-1}$ and color these points red. Let $p_0 = 0$, $p_n = m + 1$. The gap sizes between the red points

 $i_t = p_t - p_{t-1} - 1, t = 1, 2, \ldots, n$

form a sequence in $S(m, n)$ and vice-versa.

イロメ 不優 トメ ヨ メ ス ヨ メー

|*S*(*m*, *n*)| is also the number of ways of coloring *m indistinguishable* balls using *n* colors.

Suppose that we want to count the number of ways of coloring these balls so that each color appears at least once i.e. to compute $|S(m, n)^*|$ where, if $N = \{1, 2, ..., \}$

$$
S(m, n)^{*} =
$$

\n
$$
\{(i_1, i_2, ..., i_n) \in N^n : i_1 + i_2 + ... + i_n = m\}
$$

\n
$$
= \{(i_1 - 1, i_2 - 1, ..., i_n - 1) \in Z_+^n :
$$

\n
$$
(i_1 - 1) + (i_2 - 1) + ... + (i_n - 1) = m - n\}
$$

Thus,

$$
|S(m,n)^{*}| = {m-n+n-1 \choose n-1} = {m-1 \choose n-1}.
$$

K ロ ト K 伊 ト K ヨ ト K

÷.

Seperated 1's on a cycle

How many ways (patterns) are there of placing *k* 1's and *n* − *k* 0's at the vertices of a polygon with *n* vertices so that no two 1's are adjacent?

Choose a vertex *v* of the polygon in *n* ways and then place a 1 there. For the remainder we must choose $a_1, \ldots, a_k > 1$ such that $a_1 + \cdots + a_k = n - k$ and then go round the cycle (clockwise) putting a_1 0's followed by a 1 and then a_2 0's followed by a 1 etc..

K ロ ⊁ K 何 ⊁ K ヨ ⊁

Each pattern π arises *k* times in this way. There are *k* choices of *v* that correspond to a 1 of the pattern. Having chosen *v* there is a unique choice of a_1, a_2, \ldots, a_k that will now give π .

There are $\binom{n-k-1}{k-1}$ $\frac{-\kappa-1}{\kappa-1}$) ways of choosing the *a_i* and so the answer to our question is

$$
\frac{n}{k} {n-k-1 \choose k-1}
$$

Proof Choosing *r* elements to include is equivalent to choosing $n - r$ elements to exclude.

イロト イ団ト イヨト イヨト

÷.

Theorem

Pascal's Triangle

$$
\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}
$$

Proof A $k + 1$ -subset of $[n + 1]$ either (i) includes $n+1$ —— $\binom{n}{k}$ *k* choices or (ii) does not include $n+1$ —– $\binom{n}{k+1}$ $\binom{n}{k+1}$ choices.

[Basic Counting](#page-0-0)

重し

 200

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶ ...

Pascal's Triangle

The following array of binomial coefficents, constitutes the famous triangle:

· · ·

[Basic Counting](#page-0-0)

イロメ イ押 メイヨメ イヨメ

÷.

Theorem

$$
\binom{k}{k} + \binom{k+1}{k} + \binom{k+2}{k} + \cdots + \binom{n}{k} = \binom{n+1}{k+1}.
$$
 (2)

Proof 1: Induction on *n* for arbitrary *k*. *Base case:* $n = k$; $\binom{k}{k}$ $\binom{k}{k} = \binom{k+1}{k+1}$ $\binom{k+1}{k+1}$ *Inductive Step:* assume true for $n \geq k$.

$$
\sum_{m=k}^{n+1} {m \choose k} = \sum_{m=k}^{n} {m \choose k} + {n+1 \choose k}
$$

= ${n+1 \choose k+1} + {n+1 \choose k}$ Induction
= ${n+2 \choose k+1}$. Pascal's triangle

重。

 QQ

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

Proof 2: Combinatorial argument.

If *S* denotes the set of $k + 1$ -subsets of $[n + 1]$ and S_m is the set of $k + 1$ -subsets of $[n + 1]$ which have largest element $m + 1$ then

- \bullet *S_k*, *S*_{*k*+1}, . . . , *S*_{*n*} is a partition of *S*.
- $|S_k| + |S_{k+1}| + \cdots + |S_n| = |S|.$
- $|S_m| = {m \choose k}$.

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

□

重。 $2Q$

Theorem

Vandermonde's Identity

$$
\sum_{r=0}^k \binom{m}{r} \binom{n}{k-r} = \binom{m+n}{k}.
$$

Proof Split $[m + n]$ into $A = [m]$ and $B = [m + n] \setminus [m]$. Let *S* denote the set of *k*-subsets of $[m + n]$ and let $S_r = \{X \in S : |X \cap A| = r\}$. Then

- \bullet *S*₀, *S*₁, \dots , *S*_k is a partition of *S*.
- $|\mathcal{S}_0| + |\mathcal{S}_1| + \cdots + |\mathcal{S}_k| = |\mathcal{S}|.$
- $|S_r| = {m \choose r} {n \choose k-r}.$
- $|S| = \binom{m+n}{k}$.

K ロ ト K 御 ト K ヨ ト K

□

B ミト

つへへ

Theorem

Binomial Theorem

$$
(1+x)^n=\sum_{r=0}^n\binom{n}{r}x^r.
$$

Proof Coefficient x^r in $(1 + x)(1 + x) \cdots (1 + x)$: choose *x* from *brackets and 1 from the rest.*

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ⊙ Q @

Applications of Binomial Theorem

 $x = 1$ *n* 0 $\bigg) + \bigg(\begin{matrix} n \\ 4 \end{matrix} \bigg)$ 1 $\binom{n}{n} + \cdots + \binom{n}{n}$ *n* $\bigg(1 + 1)^n = 2^n.$

LHS counts the number of subsets of all sizes in [*n*]. $\bullet x = -1$:

$$
\binom{n}{0} - \binom{n}{1} + \cdots + (-1)^n \binom{n}{n} = (1-1)^n = 0,
$$

i.e.

 n 0 $\binom{n}{2}$ 2 $\binom{n}{4}$ 4 $+ \cdots = \binom{n}{4}$ 1 $\binom{n}{2} + \binom{n}{2}$ 3 $\bigg) + \bigg(\frac{n}{r} \bigg)$ 5 $\bigg) + \cdots$

and number of subsets of even cardinality $=$ number of subsets of odd cardinality. イロメ 不優 トメ ヨ メ ス ヨ メー

 290

$$
\sum_{k=0}^n k\binom{n}{k} = n2^{n-1}.
$$

Differentiate both sides of the Binomial Theorem w.r.t. *x*.

$$
n(1+x)^{n-1} = \sum_{k=0}^{n} k {n \choose k} x^{k-1}.
$$

Now put $x = 1$.

メロメメ 御きメ 老き メ 悪き し

 $E = \Omega Q$

Grid path problems

A *monotone path* is made up of segments $(x, y) \rightarrow (x + 1, y)$ or $(x, y) \rightarrow (x, y + 1)$.

 $(a, b) \rightarrow (c, d)$ = {monotone paths from (a, b) to (c, d) }.

We drop the $(a, b) \rightarrow$ for paths starting at $(0, 0)$.

[Basic Counting](#page-0-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ⊙ Q @

(0,0)

[Basic Counting](#page-0-0)

Kロメ K個 X K ミメ K ミメーミー の女々

We consider 3 questions: Assume *a*, *b* > 0.

1. How large is *PATHS*(*a*, *b*)?

2. Assume $a < b$. Let $PATHS_{>}(a, b)$ be the set of paths in *PATHS* (a, b) which do not touch the line $x = y$ except at $(0, 0)$. How large is *PATHS*>(*a*, *b*)?

3. Assume $a \leq b$. Let $PATHS_{>}(a, b)$ be the set of paths in *PATHS*(*a*, *b*) which do not pass through points with $x > y$. How large is *PATHS*≥(*a*, *b*)?

イロト イ押 トイヨ トイヨ トー

 QQ

1. *STRINGS* $(a, b) = \{x \in \{R, U\}^* : x \text{ has } a \text{ } R\text{'s} \text{ and } b \text{ } U\text{'s}\}.$ ¹

There is a natural bijection between *PATHS*(*a*, *b*) and *STRINGS*(*a*, *b*):

Path moves to Right, add *R* to sequence. Path goes up, add *U* to sequence.

So

 $|$ PATHS $(a, b)| = |$ STRINGS $(a, b)| = {a + b \choose a}$ *a* Λ

since to define a string we have state which of the $a + b$ places contains an *R*.

 $^{1}\{R,U\}^{*}$ = set of strings of *R*'s and *U*'s

イロト イ押 トイヨ トイヨ トー

 \equiv ΩQ

2. Every path in PATHS>(*a*, *b*) goes through (0,1). So

 $|$ *PATHS* $>(a, b)| =$ $|$ *PATHS*((0, 1) \rightarrow (*a*, *b*))| – |PATHS_{\times}((0, 1) \rightarrow (*a*, *b*))|.

Now

$$
|PATHS((0,1) \rightarrow (a,b))| = {a+b-1 \choose a}
$$

and

 $|$ *PATHS*_{\times} $((0, 1) \rightarrow (a, b))|$ = $|$ *PATHS*((1, 0) \rightarrow (a, b))| = $\binom{a+b-1}{a}$ *a* − 1 .

We explain the first equality momentarily. Thus

$$
|\text{PATHS}_{>(a,b)|} = \begin{pmatrix} a+b-1 \\ a \end{pmatrix} - \begin{pmatrix} a+b-1 \\ a-1 \end{pmatrix}
$$

$$
= \frac{b-a}{a+b} \begin{pmatrix} a+b \\ a \end{pmatrix}.
$$

噴く 200 Suppose $P \in \text{PATHS}_{\times}((0, 1) \rightarrow (a, b))$. We define $P' \in \text{PATHS}((1,0) \rightarrow (a,b))$ in such a way that $P \rightarrow P'$ is a bijection.

Let (*c*, *c*) be the first point of *P*, which lies on the line $L = \{x = y\}$ and let *S* denote the initial segment of *P* going from $(0, 1)$ to (c, c) .

P ′ is obtained from *P* by deleting *S* and replacing it by its reflection *S* ′ in *L*.

To show that this defines a bijection, observe that if $P' \in \text{PATHS}((1,0) \rightarrow (a,b))$ then a similarly defined *reverse reflection* yields a $P \in \text{PATHS}_{\times}((0, 1) \rightarrow (a, b)).$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

÷. QQ

[Basic Counting](#page-0-0)

Kロメ K個 X K ミメ K ミメーミー の女々

3. Suppose $P \in \text{PATHS}_{\geq}(a, b)$. We define $P'' \in \text{PATHS}_{>}(a, b+1)$ in such a way that $P \rightarrow P''$ is a bijection.

Thus

$$
|PATHS_{\ge}(a,b)| = \frac{b-a+1}{a+b+1}\binom{a+b+1}{a}.
$$

In particular

$$
|\text{PATHS}_{\ge}(a, a)| = \frac{1}{2a+1} {2a+1 \choose a} \\ = \frac{1}{a+1} {2a \choose a}.
$$

The final expression is called a *Catalan Number*.

[Basic Counting](#page-0-0)

イロメ イ押 メイヨメ イヨメ

÷.

The bijection

Given *P* we obtain *P*" by *raising it vertically one position and then adding the segment* $(0, 0) \rightarrow (0, 1)$.

More precisely, if $P = (0, 0)$, (x_1, y_1) , (x_2, y_2) , ..., (a, b) then $P'' = (0, 0), (0, 1), (x_1, y_1 + 1), \ldots, (a, b + 1).$

This is clearly a 1 − 1 onto function between PATHS≥(*a*, *b*) and $PATHS_{>}(a, b+1)$.

KED KAP KED KED E YORO

[Basic Counting](#page-0-0)

Kロメ K個 X K ミメ K ミメーミー の女々

Multi-sets

Suppose we allow elements to appear several times in a set: {*a*, *a*, *a*, *b*, *b*, *c*, *c*, *c*, *d*, *d*}.

To avoid confusion with the standard definition of a set we write

 ${3 \times a, 2 \times b, 3 \times c, 2 \times d}$

How many distinct permutations are there of the multiset

 ${a_1 \times 1, a_2 \times 2, \ldots, a_n \times n}$?

Ex. $\{2 \times a, 3 \times b\}$.

aabbb; *ababb*; *abbab*; *abbba*; *baabb*

babab; *babba*; *bbaab*; *bbaba*; *bbbaa*.

 Ω

Start with $\{a_1, a_2, b_1, b_2, b_3\}$ which has $5! = 120$ permutations: \ldots $a_2b_3a_1b_2b_1\ldots a_1b_2a_2b_1b_3\ldots$

After erasing the subscripts each possible sequence e.g. *ababb* occurs $2! \times 3!$ times and so the number of permutations is $5!/2!3! = 10$.

In general if $m = a_1 + a_2 + \cdots + a_n$ then the number of permutations is

m! $\overline{a_1! a_2! \cdots a_n!}$

イロン イ何ン イヨン イヨン・ヨー

Multinomial Coefficients *m*!

$$
\binom{m}{a_1, a_2, \ldots, a_n} = \frac{m!}{a_1! a_2! \cdots a_n!}
$$

 $(x_1 + x_2 + \cdots + x_n)^m =$

$$
\sum_{\substack{a_1+a_2+\cdots+a_n=m\\a_1\geq 0,\ldots,a_n\geq 0}}\binom{m}{a_1,a_2,\ldots,a_n}x_1^{a_1}x_2^{a_2}\ldots x_n^{a_n}.
$$

E.g.

$$
(x_1 + x_2 + x_3)^4 = {4 \choose 4, 0, 0} x_1^4 + {4 \choose 3, 1, 0} x_1^3 x_2 +
$$

$$
{4 \choose 3, 0, 1} x_1^3 x_3 + {4 \choose 2, 1, 1} x_1^2 x_2 x_3 + \cdots
$$

$$
= x_1^4 + 4x_1^3 x_2 + 4x_1^3 x_3 + 12x_1^2 x_2 x_3 + \cdots
$$

K ロ → K 個 → K 君 → K 君 → 「君 → りなひ

Contribution of 1 to the coefficient of $x_1^{a_1} x_2^{a_2} \dots x_n^{a_n}$ from every permutation in $S = \{x_1 \times a_1, x_2 \times a_2, \ldots, x_n \times a_n\}.$ E.g. $(x_1 + x_2 + x_3)^6 = \cdots + x_2x_3x_2x_1x_1x_3 + \cdots$

where the displayed term comes by choosing x_2 from first bracket, x_3 from second bracket etc.

Given a permutation $i_1 i_2 \cdots i_m$ of S e.g. $331422 \cdots$ we choose x_3 from the first 2 brackets, x_1 from the 3rd bracket etc. Conversely, given a choice from each bracket which contributes to the coefficient of $x_1^{a_1}x_2^{a_2}\ldots x_n^{a_n}$ we get a permutation of S.

イロト イ伊 トイヨ トイヨ トー

ほい QQ

Balls in boxes

m distinguishable balls are placed in *n* distinguishable boxes. Box *i* gets *bⁱ* balls.

ways is
$$
\binom{m}{b_1, b_2, \ldots, b_n}
$$
.

 $m = 7, n = 3, b₁ = 2, b₂ = 2, b₃ = 3$ No. of ways is

 $7!/(2!2!3!) = 210$

 $[1, 2][3, 4][5, 6, 7]$ $[1, 2][3, 5][4, 6, 7]$ \cdots $[6, 7][4, 5][1, 2, 3]$

3 1 3 2 1 3 2 Ball 1 goes in box 3, Ball 2 goes in box 1, etc.

KED KAPD KED KED E YORG

Conversely, given an allocation of balls to boxes:

メロトメ 御 トメ 差 トメ 差 トー

高山 2990

3212331

[Basic Counting](#page-0-0)

How many trees? – Cayley's Formula

[Basic Counting](#page-0-0)

Prüfer's Correspondence

There is a 1-1 correspondence ϕ*^V* between spanning trees of K_V (the complete graph with vertex set V) and sequences *V*^{*n*−2}. Thus for *n* ≥ 2

> $\tau(K_n) = n^{n-2}$ *Cayley's Formula.*

Assume some arbitrary ordering $V = \{v_1 < v_2 < \cdots < v_n\}$. $\phi_V(T)$ **begin** $T_1 := T_1$ **for** $i = 1$ **to** $n - 2$ **do begin** $s_i :=$ neighbour of least leaf ℓ_i of \mathcal{T}_i . $T_{i+1} = T_i - \ell_i$. **end** $\phi_V(T) = s_1 s_2 \dots s_{n-2}$ **end** KOD KAP KED KED E LORO

6,4,5,14,2,6,11,14,8,5,11,4,2

[Basic Counting](#page-0-0)

 $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1}$

÷.

Lemma

v ∈ *V*(*T*) *appears exactly* $d_T(v)$ − 1 *times in* $\phi_V(T)$.

Proof Assume $n = |V(T)| \ge 2$. By induction on *n*. $n = 2$: $\phi_V(T) = \Lambda$ = empty string. Assume $n > 3$:

 ϕ *∨***(***T***)** = $s_1 \phi$ ′_{*V*1}</sub> (*T*₁) where $V_1 = V - \{s_1\}$. *s*₁ appears $d_{\mathcal{T}_1}(s_1) - 1 + 1 = d_{\mathcal{T}}(s_1) - 1$ times – induction. *v* \neq *s*₁ appears *d*_{*T*₁}(*v*) − 1 = *d_{<i>T*}(*v*) − 1 times – induction. □

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

重。 QQ

Construction of ϕ_V^{-1} *V*

Inductively assume that for all $|X| < n$ there is an inverse function ϕ_X^{-1} $\frac{1}{x}$ (True for $n = 2$). Now define ϕ_V^{-1} \overline{V}^{\perp} by

$$
\phi_V^{-1}(s_1 s_2 \dots s_{n-2}) = \phi_{V_1}^{-1}(s_2 \dots s_{n-2}) \text{ plus edge } s_1 \ell_1,
$$

where $\ell_1 = \min\{s \in V : s \notin \{s_1, s_2, \dots s_{n-2}\}\}\$ and

$$
V_1 = V - \{\ell_1\}.
$$
 Then

$$
\phi_V(\phi_V^{-1}(s_1 s_2 \dots s_{n-2})) = s_1 \phi_{V_1}(\phi_{V_1}^{-1}(s_2 \dots s_{n-2}))
$$

$$
= s_1 s_2 \dots s_{n-2}.
$$

Thus ϕ_V has an inverse and the correspondence is established.

K ロ ト K 御 ト K ヨ ト K

B

 QQ

 $n = 10$ $s = 5, 3, 7, 4, 4, 3, 2, 6$.

[Basic Counting](#page-0-0)

メロメメ 御きメモ メモ おく

重。

Number of trees with a given degree sequence

Corollary

If $d_1 + d_2 + \cdots + d_n = 2n - 2$ *then the number of spanning trees of* K_n *with degree sequence* d_1, d_2, \ldots, d_n *is*

$$
\binom{n-2}{d_1-1, d_2-1, \ldots, d_n-1} = \frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}.
$$

Proof From Prüfer's correspondence this is the number of sequences of length $n-2$ in which 1 appears $d_1 - 1$ times, 2 appears d_2 − 1 times and so on.

K ロ ⊁ K 伊 ⊁ K ミ ⊁

つへへ

Inclusion-Exclusion

2 sets:

 $|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$ So if $A_1, A_2 \subseteq A$ and $A_i = A \setminus A_i$, $i = 1, 2$ then $|\overline{A}_1 \cap \overline{A}_2| = |A| - |A_1| - |A_2| + |A_1 \cap A_2|$

3 sets:

$$
|\overline{A}_1 \cap \overline{A}_2 \cap \overline{A}_3| = |A| - |A_1| - |A_2| - |A_3|
$$

+|A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3|
-|A_1 \cap A_2 \cap A_3|.

 \equiv ΩQ

イロト イ押 トイヨ トイヨ トー

General Case

*A*₁, *A*₂, , *A*^{*N*} ⊆ *A* and each *x* ∈ *A* has a weight *w*_{*x*}. (In our examples $w_x = 1$ for all x and so $w(X) = |X|$.)

 $\mathsf{For} \ \mathcal{S} \subseteq [\mathcal{N}], \ \mathcal{A}_\mathcal{S} = \bigcap_{i \in \mathcal{S}} \mathcal{A}_i \ \text{and} \ \mathcal{W}(\mathcal{S}) = \sum_{x \in \mathcal{S}} w_x.$

E.g. $A_{\{4,7,18\}} = A_4 ∩ A_7 ∩ A_{18}$.

 $A_{\emptyset} = A$.

Inclusion-Exclusion Formula:

$$
w\left(\bigcap_{i=1}^N \overline{A}_i\right) = \sum_{S \subseteq [N]} (-1)^{|S|} w(A_S).
$$

KOD KAP KED KED E YA G

Simple example. How many integers in [1000] are not divisible by 5,6 or 8 i.e. what is the size of $\overline{A}_1 \cap \overline{A}_2 \cap \overline{A}_3$ below? Here we take $w_x = 1$ for all x.

$A = A_0$	$= \{1, 2, 3, \ldots, \}$	$ A = 1000$
A_1	$= \{5, 10, 15, \ldots, \}$	$ A_1 = 200$
A_2	$= \{6, 12, 18, \ldots, \}$	$ A_2 = 166$
A_3	$= \{8, 16, 24, \ldots, \}$	$ A_2 = 125$
$A_{\{1,2\}}$	$= \{30, 60, 90, \ldots, \}$	$ A_{\{1,2\}} = 33$
$A_{\{1,3\}}$	$= \{40, 80, 120, \ldots, \}$	$ A_{\{1,2\}} = 25$
$A_{\{2,3\}}$	$= \{24, 48, 72, \ldots, \}$	$ A_{\{2,3\}} = 41$
$A_{\{1,2,3\}}$	$= \{120, 240, 360, \ldots, \}$	$ A_{\{1,2,3\}} = 8$

 $|\overline{A}_1 \cap \overline{A}_2 \cap \overline{A}_3|$ = 1000 – (200 + 166 + 125) $+ (33 + 25 + 41) - 8$ $= 600.$

イロト イ押 トイヨ トイヨ トーヨー

Derangements

A derangement of $[n]$ is a permutation π such that

 $\pi(i) \neq i$: $i = 1, 2, ..., n$.

We must express the set of derangements *Dⁿ* of [*n*] as the intersection of the complements of sets. We let $A_i = \{$ permutations $\pi : \pi(i) = i\}$ and then

> $|D_n|=$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array}$ \bigcap^n *i*=1 *Ai* $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array}$.

> > [Basic Counting](#page-0-0)

メロトメ 御 トメ 差 トメ 差 トー

重し QQ We must now compute $|A_s|$ for $S \subseteq [n]$.

 $|A_1| = (n-1)!$: after fixing $\pi(1) = 1$ there are $(n-1)!$ ways of permuting 2, 3, . . . , *n*.

 $|{\cal A}_{\{1,2\}}| = (n-2)!$: after fixing $\pi(1) = 1, \pi(2) = 2$ there are (*n* − 2)! ways of permuting 3, 4, . . . , *n*.

In general

$$
|A_S|=(n-|S|)!
$$

KO KARK KEK KEK E YOKA

 $|D_n| = \sum_{n=1}^{\infty} (-1)^{|S|} (n-|S|)!$ *S*⊆[*n*] $=$ $\sum_{n=1}^{n}$ *k*=0 $(-1)^k$ $\binom{n}{k}$ *k* $\binom{n-k}{k}$ $=\sum_{n=0}^{n}(-1)^{k}\frac{n!}{n!}$ *k*=0 *k*! $=$ $n! \sum_{n=1}^{n}$ *k*=0 $(-1)^k \frac{1}{k}$ $\frac{1}{k!}$

When *n* is large,

 $\sum_{k=1}^{n}(-1)^{k}\frac{1}{k}$ *k*=0 $\frac{1}{k!} \approx e^{-1}.$

KO KARK KEK KEK E YOKA

Proof of inclusion-exclusion formula

$$
\theta_{x,i} = \begin{cases} 1 & x \in A_i \\ 0 & x \notin A_i \end{cases}
$$

$$
(1 - \theta_{x,1})(1 - \theta_{x,2}) \cdots (1 - \theta_{x,N}) = \begin{cases} 1 & x \in \bigcap_{i=1}^N \overline{A}_i \\ 0 & \text{otherwise} \end{cases}
$$

So

$$
w\left(\bigcap_{i=1}^{N} \overline{A}_{i}\right) = \sum_{x \in A} w_{x} (1 - \theta_{x,1}) (1 - \theta_{x,2}) \cdots (1 - \theta_{x,N})
$$

\n
$$
= \sum_{x \in A} w_{x} \sum_{S \subseteq [N]} (-1)^{|S|} \prod_{i \in S} \theta_{x,i}
$$

\n
$$
= \sum_{S \subseteq [N]} (-1)^{|S|} \sum_{x \in A} w_{x} \prod_{i \in S} \theta_{x,i}
$$

\n
$$
= \sum_{S \subseteq [N]} (-1)^{|S|} w(A_{S}).
$$

Euler's Function ϕ(*n*)**.**

Let $\phi(n)$ be the number of positive integers $x \leq n$ which are mutually prime to *n* i.e. have no common factors with *n*, other than 1.

 $\phi(12) = 4$. Let $n = \rho_1^{\alpha_1} \rho_2^{\alpha_2} \rho_1^{\alpha_2} \cdots \rho_k^{\alpha_k}$ be the prime factorisation of *n*.

 $A_i = \{x \in [n]: p_i \text{ divides } x\}, \qquad 1 \le i \le k.$

 $\phi(n) =$ \cap *k i*=1 *Ai*

[Basic Counting](#page-0-0)

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

 $E = \Omega Q$

$$
\begin{array}{rcl}\n\phi(n) & = & \sum_{S \subseteq [k]} (-1)^{|S|} \frac{n}{\prod_{i \in S} p_i} \\
& = & n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \cdots \left(1 - \frac{1}{p_k} \right)\n\end{array}
$$

[Basic Counting](#page-0-0)

K ロ > K 伊 > K ミ > K ミ > 「ミ → の Q Q >

Surjections

$$
F(n,m)=\bigcap_{i=1}^m \overline{A}_i.
$$

KO KARK KEK KEK E YOKA

For *S* ⊆ [*m*]

$$
A_S = \{f \in A : f(x) \notin S, \forall x \in [n]\}.
$$

= $\{f : [n] \rightarrow [m] \setminus S\}.$

So

$$
|A_S|=(m-|S|)^n.
$$

Hence

$$
F(n, m) = \sum_{S \subseteq [m]} (-1)^{|S|} (m - |S|)^n
$$

=
$$
\sum_{k=0}^m (-1)^k {m \choose k} (m - k)^n.
$$

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ │ 聖 │ 約 9 0 º

Scrambled Allocations

We have *n* boxes B_1, B_2, \ldots, B_n and $2n$ distinguishable balls b_1, b_2, \ldots, b_{2n} An allocation of balls to boxes, two balls to a box, is said to be *scrambled* if there does **not** exist *i* such that box *Bⁱ* contains balls *b*2*i*−1, *b*2*ⁱ* . Let σ*ⁿ* be the number of scrambled allocations.

Let *Aⁱ* be the set of allocations in which box *Bⁱ* contains *b*2*i*−1, *b*2*ⁱ* . We show that

$$
|A_S|=\frac{(2(n-|S|))!}{2^{n-|S|}}.
$$

Inclusion-Exclusion then gives

$$
\sigma_n = \sum_{k=0}^n (-1)^k \binom{n}{k} \frac{(2(n-k))!}{2^{n-k}}.
$$

[Basic Counting](#page-0-0)

È. QQ First consider *A*_∅:

Each permutation π of $[2n]$ yields an allocation of balls, placing $b_{\pi(2i-1)}, b_{\pi(2i)}$ into box B_i , for $i=1,2,\ldots,n.$ The order of balls in the boxes is immaterial and so each allocation comes from exactly 2 *ⁿ* distinct permutations, giving

$$
|A_{\emptyset}|=\frac{(2n)!}{2^n}.
$$

To get the formula for |*AS*| observe that the contents of 2|*S*| boxes are fixed and so we are in essence dealing with *n* − |*S*| boxes and $2(n - |S|)$ balls.

イロメ イ押 メイヨメ イヨメ

つへへ

Probléme des Ménages

In how many ways *Mⁿ* can *n* male-female couples be seated around a table, alternating male-female, so that no person is seated next to their partner?

Let A_i be the set of seatings in which couple *i* sit together.

If $|\mathcal{S}| = k$ then

 $|A_S| = 2k!(n-k)!^2 \times d_k$.

 d_k is the number of ways of placing k 1's on a cycle of length 2*n* so that no two 1's are adjacent. (We place a person at each 1 and his/her partner on the succeeding 0).

2 choices for which seats are occupied by the men or women. *k*! ways of assigning the couples to the positions; $(n - k)!^2$ ways of assigning the rest of the people. $(1 + 4)$ \equiv

 299

$$
d_k=\frac{2n}{k}\binom{2n-k-1}{k-1}=\frac{2n}{2n-k}\binom{2n-k}{k}.
$$

(See slides 11 and 12).

$$
M_n = \sum_{k=0}^n (-1)^k {n \choose k} \times 2k! (n-k)!^2 \times \frac{2n}{2n-k} {2n-k \choose k} \\
= 2n! \sum_{k=0}^n (-1)^k \frac{2n}{2n-k} {2n-k \choose k} (n-k)!.
$$

K ロ → K 個 → K 君 → K 君 → 「君 → りなひ

The weight of elements in exactly *k* **sets:** Observe that

 $\prod \theta_{x,i} \prod (1-\theta_{x,i}) = 1$ iff $x \in A_i, i \in S$ and $x \notin A_i, i \notin S$. *i*∈*S i*∈/*S*

 W_k is the total weight of elements in exactly *k* of the A_i :

$$
W_k = \sum_{x \in A} w_x \sum_{|S|=k} \prod_{i \in S} \theta_{x,i} \prod_{i \notin S} (1 - \theta_{x,i})
$$

=
$$
\sum_{|S|=k} \sum_{x \in A} w_x \prod_{i \in S} \theta_{x,i} \prod_{i \notin S} (1 - \theta_{x,i})
$$

=
$$
\sum_{|S|=k} \sum_{T \supseteq S} \sum_{x \in A} w_x (-1)^{|T \setminus S|} \prod_{i \in T} \theta_{x,i}
$$

=
$$
\sum_{|S|=k} \sum_{T \supseteq S} (-1)^{|T \setminus S|} w(A_T)
$$

=
$$
\sum_{\ell=k}^{N} \sum_{|T|= \ell} (-1)^{\ell-k} { \ell \choose k} w(A_T).
$$

[Basic Counting](#page-0-0)

ă, QQ As an example. Let D_{nk} denote the number of permutations π of $[n]$ for which there are exactly *k* indices *i* for which $\pi(i) = i$. Then

$$
D_{n,k} = \sum_{\ell=k}^{n} {n \choose \ell} (-1)^{\ell-k} {(\ell \choose k} (n-\ell)! = \sum_{\ell=k}^{n} \frac{n!}{\ell!(n-\ell)!} (-1)^{\ell-k} \frac{\ell!}{k!(\ell-k)!} (n-\ell)! = \frac{n!}{k!} \sum_{\ell=k}^{n} \frac{(-1)^{\ell-k}}{(\ell-k)!} = \frac{n!}{k!} \sum_{r=0}^{n-k} \frac{(-1)^r}{r!} \approx \frac{n!}{ek!}
$$

when *n* is large and *k* is constant.

イロト イ団ト イヨト イヨト

 \mathbb{R}^+ 299

Bonferroni Inequalities

For $x \in \{0, 1, *\}^N$ let

$$
A_{\mathbf{x}} = A_1^{(x_1)} \cap A_2^{(x_2)} \cap \cdots \cap A_n^{(x_N)}.
$$

Here

$$
A_i^{(x)} = \begin{cases} A_i & x = 1 \\ \bar{A}_i & x = 0 \\ A & x = * \end{cases}.
$$

So,

 $A_{0,1,0,*} = \bar{A}_1 \cap A_2 \cap \bar{A}_3 \cap A = \bar{A}_1 \cap A_2 \cap \bar{A}_3.$

[Basic Counting](#page-0-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Suppose that $X \subseteq \{0, 1, *\}^N$ and

$$
\Delta = \Delta(A_1, A_2, \ldots, A_N) = \sum_{\mathbf{x} \in X} \alpha_{\mathbf{x}} |A_{\mathbf{x}}|.
$$

Here $\alpha_{\mathbf{x}} \in \mathbf{R}$ for $\alpha_{\mathbf{x}} \in X$.

Theorem (Rényi)

 Δ ≥ 0 *for all* $A_1, A_2, ..., A_N$ ⊆ *A iff* Δ ≥ 0 *whenever* A_i = *A or* $A_i = \emptyset$ *for* $i = 1, 2, ..., N$.

Corollary

$$
\left|\bigcap_{i=1}^N \bar{A}_i\right| - \sum_{i=0}^k \sum_{|S|=i} (-1)^i |A_S| \begin{cases} \leq 0 & k \text{ even} \\ \geq 0 & k \text{ odd} \end{cases}
$$

[Basic Counting](#page-0-0)

KO KARK KEK KEK E YOKA

Proof of corollary: Suppose that $A_1 = A_2 = \cdots = A_\ell = A$ and $A_{\ell+1} = \cdots = A_N = \emptyset$. If $\ell = 0$ then $\Delta = 0$ and if $0 < \ell < N$ then

$$
\Delta = 0 - \sum_{i=0}^{k} (-1)^{i} { \ell \choose i} |A|
$$

= |A|
$$
\begin{cases} 0 & k \geq \ell \\ (-1)^{k+1} { \ell - 1 \choose k} & k < \ell. \end{cases}
$$

where the identity

$$
\sum_{i=0}^k (-1)^i \binom{\ell}{i} = (-1)^k \binom{\ell-1}{k}
$$

can be proved by induction on *k* for $\ell \geq 1$ fixed.

重し

 $2Q$

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

It follows from the corollary that if D_n denotes the number of derangements of [*n*] then

$$
n! \sum_{i=0}^{2k-1} (-1)^i \frac{1}{i!} \le D_n \le n! \sum_{i=0}^{2k} (-1)^i \frac{1}{i!},
$$

for all $k \geq 0$.

メロトメ 御 トメ 君 トメ 君 トッ

 \equiv 990

Proof of Rényi's Theorem: We begin by reducing to the case where $X \subseteq \{0,1\}^N$. I.e. we get rid of *-components.

Consider $\mathbf{x} = (0, 1, \ast, 1)$. We have

 $A_{\mathbf{x}} = A_{(0,1,0,1)} \cup A_{(0,1,1,1)}$ and $A_{(0,1,0,1)} \cap A_{(0,1,1,1)} = \emptyset$.

So,

$$
|A_{(0,1,*,1)}| = |A_{(0,1,0,1)}| + |A_{(0,1,1,1)}|.
$$

A similar argument gives

$$
|A_{(*,1,*,1)}| = |A_{(0,1,0,1)}| + |A_{(0,1,1,1)}| + |A_{(1,1,0,1)}| + |A_{(1,1,1,1)}|.
$$

Repeating this we can write

$$
\Delta = \sum_{\mathbf{y} \in Y} \alpha_{\mathbf{y}} |A_{\mathbf{y}}| \text{ where } Y \subseteq \{0, 1\}^N.
$$

KOD KAP KED KED E YA G

We claim now that $\Delta(A_1, A_2, \ldots, A_N) \geq 0$ for all $A_1, A_2, \ldots, A_N \subseteq A$ iff $\alpha_{\mathbf{v}} \geq 0$ for all $\mathbf{v} \in Y$.

Suppose then that $\exists y = (y_1, y_2, \ldots, y_N) \in Y$ such that $\alpha_y < 0$. Now let

$$
A_i = \begin{cases} A & y_i = 1. \\ \emptyset & y_i = 0. \end{cases}
$$

Then in this case

 $\Delta(A_1, A_2, \ldots, A_N) = \alpha_v |A| < 0$, contradiction.

For if $\mathbf{y}' = (y'_1, y'_2, \dots, y'_N)$ and $y'_i \neq y_i$ for some *i* then $A^{(y'_i)} = \emptyset$ and so $A_{\mathbf{y}'} = \emptyset$ too.

KOD KAP KED KED E YA G