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Basic Counting

Let φ(m,n) be the number of mappings from [n] to [m].

Theorem

φ(m,n) = mn

Proof By induction on n.

φ(m,0) = 1 = m0.

φ(m,n + 1) = mφ(m,n)

= m ×mn

= mn+1.

�
φ(m,n) is also the number of sequences x1x2 · · · xn where
xi ∈ [m], i = 1,2, . . . ,n. Covered so far



Let ψ(n) be the number of subsets of [n].

Theorem

ψ(n) = 2n.

Proof (1) By induction on n.
ψ(0) = 1 = 20.

ψ(n + 1)

= #{sets containing n + 1}+ #{sets not containing n + 1}
= ψ(n) + ψ(n)

= 2n + 2n

= 2n+1.
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There is a general principle that if there is a 1-1
correspondence between two finite sets A,B then |A| = |B|.
Here is a use of this principle.

Proof (2).
For A ⊆ [n] define the map fA : [n]→ {0,1} by

fA(x) =

{
1 x ∈ A
0 x /∈ A

.

fA is the characteristic function of A.

Distinct A’s give rise to distinct fA’s and vice-versa.

Thus ψ(n) is the number of choices for fA, which is 2n by
Theorem 48. �
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Let ψodd (n) be the number of odd subsets of [n] and let
ψeven(n) be the number of even subsets.

Theorem

ψodd (n) = ψeven(n) = 2n−1.

Proof For A ⊆ [n − 1] define

A′ =

{
A |A| is odd
A ∪ {n} |A| is even

The map A→ A′ defines a bijection between [n − 1] and the
odd subsets of [n]. So 2n−1 = ψ(n− 1) = ψodd (n). Futhermore,

ψeven(n) = ψ(n)− ψodd (n) = 2n − 2n−1 = 2n−1.

�
Covered so far



Let φ1−1(m,n) be the number of 1-1 mappings from [n] to [m].

Theorem

φ1−1(m,n) =
n−1∏
i=0

(m − i). (1)

Proof Denote the RHS of (1) by π(m,n). If m < n then
φ1−1(m,n) = π(m,n) = 0. So assume that m ≥ n. Now we use
induction on n.
If n = 0 then we have φ1−1(m,0) = π(m,0) = 1.
In general, if n < m then

φ1−1(m,n + 1) = (m − n)φ1−1(m,n)

= (m − n)π(m,n)

= π(m,n + 1).

�
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φ1−1(m,n) also counts the number of length n ordered
sequences distinct elements taken from a set of size m.

φ1−1(n,n) = n(n − 1) · · · 1 = n!

is the number of ordered sequences of [n] i.e. the number of
permutations of [n].
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Binomial Coefficients(
n
k

)
=

n!

(n − k)!k !
=

n(n − 1) · · · (n − k + 1)

k(k − 1) · · · 1
Let X be a finite set and let(

X
k

)
denote the collection of k -subsets of X .

Theorem ∣∣∣∣(X
k

)∣∣∣∣ =

(
|X |
k

)
.

Proof Let n = |X |,

k !

∣∣∣∣(X
k

)∣∣∣∣ = φ1−1(n, k) = n(n − 1) · · · (n − k + 1).

�
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Let m,n be non-negative integers. Let Z+ denote the
non-negative integers. Let

S(m,n) = {(i1, i2, . . . , in) ∈ Z n
+ : i1 + i2 + · · ·+ in = m}.

Theorem

|S(m,n)| =

(
m + n − 1

n − 1

)
.

Proof imagine m + n − 1 points in a line. Choose positions
p1 < p2 < · · · < pn−1 and color these points red. Let
p0 = 0, pn = m + 1. The gap sizes between the red points

it = pt − pt−1 − 1, t = 1,2, . . . ,n

form a sequence in S(m,n) and vice-versa. �
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|S(m,n)| is also the number of ways of coloring m
indistinguishable balls using n colors.

Suppose that we want to count the number of ways of coloring
these balls so that each color appears at least once i.e. to
compute |S(m,n)∗| where, if N = {1,2, . . . , }

S(m,n)∗ =

{(i1, i2, . . . , in) ∈ Nn : i1 + i2 + · · ·+ in = m}
= {(i1 − 1, i2 − 1, . . . , in − 1) ∈ Z n

+ :

(i1 − 1) + (i2 − 1) + · · ·+ (in − 1) = m − n}

Thus,

|S(m,n)∗| =

(
m − n + n − 1

n − 1

)
=

(
m − 1
n − 1

)
.
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Seperated 1’s on a cycle
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How many ways (patterns) are there of placing k 1’s and n − k
0’s at the vertices of a polygon with n vertices so that no two 1’s
are adjacent?
Choose a vertex v of the polygon in n ways and then place a 1
there. For the remainder we must choose a1, . . . ,ak ≥ 1 such
that a1 + · · ·+ ak = n − k and then go round the cycle
(clockwise) putting a1 0’s followed by a 1 and then a2 0’s
followed by a 1 etc..
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Each pattern π arises k times in this way. There are k choices
of v that correspond to a 1 of the pattern. Having chosen v
there is a unique choice of a1,a2, . . . ,ak that will now give π.

There are
(n−k−1

k−1

)
ways of choosing the ai and so the answer to

our question is
n
k

(
n − k − 1

k − 1.

)
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Theorem
Symmetry (

n
r

)
=

(
n

n − r

)

Proof Choosing r elements to include is equivalent to
choosing n − r elements to exclude. �
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Theorem
Pascal’s Triangle (

n
k

)
+

(
n

k + 1

)
=

(
n + 1
k + 1

)

Proof A k + 1-subset of [n + 1] either
(i) includes n + 1 ——

(n
k

)
choices or

(ii) does not include n + 1 —–
( n

k+1

)
choices.
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Pascal’s Triangle
The following array of binomial coefficents, constitutes the

famous triangle:
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

1 7 21 35 35 21 7 1
· · ·
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Theorem

(
k
k

)
+

(
k + 1

k

)
+

(
k + 2

k

)
+ · · ·+

(
n
k

)
=

(
n + 1
k + 1

)
. (2)

Proof 1: Induction on n for arbitrary k .
Base case: n = k ;

(k
k

)
=
(k+1

k+1

)
Inductive Step: assume true for n ≥ k .

n+1∑
m=k

(
m
k

)
=

n∑
m=k

(
m
k

)
+

(
n + 1

k

)
=

(
n + 1
k + 1

)
+

(
n + 1

k

)
Induction

=

(
n + 2
k + 1

)
. Pascal’s triangle
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Proof 2: Combinatorial argument.
If S denotes the set of k + 1-subsets of [n + 1] and Sm is the
set of k + 1-subsets of [n + 1] which have largest element
m + 1 then

Sk ,Sk+1, . . . ,Sn is a partition of S.
|Sk |+ |Sk+1|+ · · ·+ |Sn| = |S|.
|Sm| =

(m
k

)
.

�
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Theorem
Vandermonde’s Identity

k∑
r=0

(
m
r

)(
n

k − r

)
=

(
m + n

k

)
.

Proof Split [m + n] into A = [m] and B = [m + n] \ [m]. Let
S denote the set of k -subsets of [m + n] and let
Sr = {X ∈ S : |X ∩ A| = r}. Then

S0,S1, . . . ,Sk is a partition of S.
|S0|+ |S1|+ · · ·+ |Sk | = |S|.
|Sr | =

(m
r

)( n
k−r

)
.

|S| =
(m+n

k

)
.

�
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Theorem
Binomial Theorem

(1 + x)n =
n∑

r=0

(
n
r

)
x r .

Proof Coefficient x r in (1 + x)(1 + x) · · · (1 + x): choose x
from r brackets and 1 from the rest. �
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Applications of Binomial Theorem

x = 1: (
n
0

)
+

(
n
1

)
+ · · ·+

(
n
n

)
= (1 + 1)n = 2n.

LHS counts the number of subsets of all sizes in [n].
x = −1:(

n
0

)
−
(

n
1

)
+ · · ·+ (−1)n

(
n
n

)
= (1− 1)n = 0,

i.e.(
n
0

)
+

(
n
2

)
+

(
n
4

)
+ · · · =

(
n
1

)
+

(
n
3

)
+

(
n
5

)
+ · · ·

and number of subsets of even cardinality = number of
subsets of odd cardinality.
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n∑
k=0

k
(

n
k

)
= n2n−1.

Differentiate both sides of the Binomial Theorem w.r.t. x .

n(1 + x)n−1 =
n∑

k=0

k
(

n
k

)
xk−1.

Now put x = 1.
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Grid path problems

A monotone path is made up of segments
(x , y)→ (x + 1, y) or (x , y)→ (x , y + 1).

(a,b)→ (c,d))= {monotone paths from (a,b) to (c,d)}.

We drop the (a,b)→ for paths starting at (0,0).
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(a,b)

(0,0)
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We consider 3 questions: Assume a,b ≥ 0.

1. How large is PATHS(a,b)?

2. Assume a < b. Let PATHS>(a,b) be the set of paths in
PATHS(a,b) which do not touch the line x = y except at (0,0).
How large is PATHS>(a,b)?

3. Assume a ≤ b. Let PATHS≥(a,b) be the set of paths in
PATHS(a,b) which do not pass through points with x > y .
How large is PATHS≥(a,b)?
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1. STRINGS(a,b) = {x ∈ {R,U}∗ : x has a R’s and b U ’s}. 1

There is a natural bijection between PATHS(a,b) and
STRINGS(a,b):

Path moves to Right, add R to sequence.
Path goes up, add U to sequence.

So

|PATHS(a,b)| = |STRINGS(a,b)| =

(
a + b

a

)
since to define a string we have state which of the a + b places
contains an R.

1{R,U}∗ = set of strings of R’s and U ’s
Covered so far



2. Every path in PATHS>(a,b) goes through (0,1). So

|PATHS>(a,b)| =

|PATHS((0,1)→ (a,b))| − |PATHS 6>((0,1)→ (a,b))|.
Now

|PATHS((0,1)→ (a,b))| =

(
a + b − 1

a

)
and

|PATHS 6>((0,1)→ (a,b))| =

|PATHS((1,0)→ (a,b))| =

(
a + b − 1

a− 1

)
.

We explain the first equality momentarily. Thus

|PATHS>(a,b)| =

(
a + b − 1

a

)
−
(

a + b − 1
a− 1

)
=

b − a
a + b

(
a + b

a

)
.
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Suppose P ∈ PATHS 6>((0,1)→ (a,b)). We define
P ′ ∈ PATHS((1,0)→ (a,b)) in such a way that
P → P ′ is a bijection.

Let (c, c) be the first point of P, which lies on the line
L = {x = y} and let S denote the initial segment of P going
from (0,1) to (c, c).

P ′ is obtained from P by deleting S and replacing it by its
reflection S′ in L.

To show that this defines a bijection, observe that if
P ′ ∈ PATHS((1,0)→ (a,b))
then a similarly defined reverse reflection yields a
P ∈ PATHS6>((0,1)→ (a,b)).
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(a,b)

(0,0)

P

P’

Covered so far



3. Suppose P ∈ PATHS≥(a,b). We define
P” ∈ PATHS>(a,b + 1) in such a way that P → P” is a bijection.

Thus

|PATHS≥(a,b)| =
b − a + 1
a + b + 1

(
a + b + 1

a

)
.

In particular

|PATHS≥(a,a)| =
1

2a + 1

(
2a + 1

a

)
=

1
a + 1

(
2a
a

)
.

The final expression is called a Catalan Number.
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The bijection

Given P we obtain P” by raising it vertically one position and
then adding the segment (0,0)→ (0,1).

More precisely, if P = (0,0), (x1, y1), (x2, y2), . . . , (a,b) then
P” = (0,0), (0,1), (x1, y1 + 1), . . . , (a,b + 1).

This is clearly a 1− 1 onto function between PATHS≥(a,b) and
PATHS>(a,b + 1).
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(a,b)

(0,0)

P

P"
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Multi-sets

Suppose we allow elements to appear several times in a set:
{a,a,a,b,b, c, c, c,d ,d}.
To avoid confusion with the standard definition of a set we write
{3× a,2× b,3× c,2× d}.
How many distinct permutations are there of the multiset
{a1 × 1,a2 × 2, . . . ,an × n}?
Ex. {2× a,3× b}.
aabbb; ababb; abbab; abbba; baabb
babab; babba; bbaab; bbaba; bbbaa.
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Start with {a1,a2,b1,b2,b3} which has 5! = 120 permutations:
. . . a2b3a1b2b1 . . . a1b2a2b1b3 . . .
After erasing the subscripts each possible sequence e.g.
ababb occurs 2!× 3! times and so the number of permutations
is 5!/2!3! = 10.
In general if m = a1 + a2 + · · ·+ an then the number of
permutations is

m!

a1!a2! · · · an!

Covered so far



Multinomial Coefficients(
m

a1,a2, . . . ,an

)
=

m!

a1!a2! · · · an!

(x1 + x2 + · · ·+ xn)m =

∑
a1+a2+···+an=m

a1≥0,...,an≥0

(
m

a1,a2, . . . ,an

)
xa1

1 xa2
2 . . . xan

n .

E.g.

(x1 + x2 + x3)4 =

(
4

4,0,0

)
x4

1 +

(
4

3,1,0

)
x3

1 x2 +(
4

3,0,1

)
x3

1 x3 +

(
4

2,1,1

)
x2

1 x2x3 + · · ·

= x4
1 + 4x3

1 x2 + 4x3
1 x3 + 12x2

1 x2x3 + · · ·
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Contribution of 1 to the coefficient of
xa1

1 xa2
2 . . . xan

n from every permutation in
S = {x1 × a1, x2 × a2, . . . , xn × an}.
E.g.

(x1 + x2 + x3)6 = · · ·+ x2x3x2x1x1x3 + · · ·

where the displayed term comes by choosing x2 from first
bracket, x3 from second bracket etc.

Given a permutation i1i2 · · · im of S e.g. 331422 · · · we choose
x3 from the first 2 brackets, x1 from the 3rd bracket etc.
Conversely, given a choice from each bracket which contributes
to the coefficient of xa1

1 xa2
2 . . . xan

n we get a permutation of S.
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Inclusion-Exclusion

2 sets:
|A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2|

So if A1,A2 ⊆ A and Ai = A \ Ai , i = 1,2 then

|A1 ∩ A2| = |A| − |A1| − |A2|+ |A1 ∩ A2|

3 sets:

|A1 ∩ A2 ∩ A3| = |A| − |A1| − |A2| − |A3|
+|A1 ∩ A2|+ |A1 ∩ A3|+ |A2 ∩ A3|
−|A1 ∩ A2 ∩ A3|.
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General Case

A1,A2, . . . ,AN ⊆ A and each x ∈ A has a weight wx . (In our
examples wx = 1 for all x and so w(X ) = |X |.)

For S ⊆ [N], AS =
⋂

i∈S Ai and w(S) =
∑

x∈S wx .

E.g. A{4,7,18} = A4 ∩ A7 ∩ A18.

A∅ = A.

Inclusion-Exclusion Formula:

w

(
N⋂

i=1

Ai

)
=
∑

S⊆[N]

(−1)|S|w(AS).
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Simple example. How many integers in [1000] are not divisible
by 5,6 or 8 i.e. what is the size of A1 ∩ A2 ∩ A3 below? Here we
take wx = 1 for all x .

A = A∅ = {1,2,3, . . . , } |A| = 1000
A1 = {5,10,15, . . . , } |A1| = 200
A2 = {6,12,18, . . . , } |A2| = 166
A3 = {8,16,24, . . . , } |A2| = 125

A{1,2} = {30,60,90, . . . , } |A{1,2}| = 33
A{1,3} = {40,80,120, . . . , } |A{1,3}| = 25
A{2,3} = {24,48,72, . . . , } |A{2,3}| = 41

A{1,2,3} = {120,240,360, . . . , } |A{1,2,3}| = 8

|A1 ∩ A2 ∩ A3| = 1000− (200 + 166 + 125)

+ (33 + 25 + 41)− 8
= 600.
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Derangements

A derangement of [n] is a permutation π such that

π(i) 6= i : i = 1,2, . . . ,n.

We must express the set of derangements Dn of [n] as the
intersection of the complements of sets.
We let Ai = {permutations π : π(i) = i} and then

|Dn| =

∣∣∣∣∣
n⋂

i=1

Ai

∣∣∣∣∣ .
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We must now compute |AS| for S ⊆ [n].

|A1| = (n − 1)!: after fixing π(1) = 1 there are (n − 1)! ways of
permuting 2,3, . . . ,n.

|A{1,2}| = (n − 2)!: after fixing π(1) = 1, π(2) = 2 there are
(n − 2)! ways of permuting 3,4, . . . ,n.

In general
|AS| = (n − |S|)!
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|Dn| =
∑

S⊆[n]

(−1)|S|(n − |S|)!

=
n∑

k=0

(−1)k
(

n
k

)
(n − k)!

=
n∑

k=0

(−1)k n!

k !

= n!
n∑

k=0

(−1)k 1
k !
.

When n is large,
n∑

k=0

(−1)k 1
k !
≈ e−1.

Covered so far



Proof of inclusion-exclusion formula

θx ,i =

{
1 x ∈ Ai
0 x /∈ Ai

(1− θx ,1)(1− θx ,2) · · · (1− θx ,N) =

{
1 x ∈

⋂N
i=1 Ai

0 otherwise

So

w

(
N⋂

i=1

Ai

)
=

∑
x∈A

wx (1− θx ,1)(1− θx ,2) · · · (1− θx ,N)

=
∑
x∈A

wx
∑

S⊆[N]

(−1)|S|
∏
i∈S

θx ,i

=
∑

S⊆[N]

(−1)|S|
∑
x∈A

wx
∏
i∈S

θx ,i

=
∑

S⊆[N]

(−1)|S|w(AS).
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Surjections

Fix n,m. Let
A = {f : [n]→ [m]}

Thus |A| = mn. Let

F (n,m) = {f ∈ A : f is onto [m]}.

How big is F (n,m)?
Let

Ai = {f ∈ F : f (x) 6= i , ∀x ∈ [n]}.

Then

F (n,m) =
m⋂

i=1

Ai .
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For S ⊆ [m]

AS = {f ∈ A : f (x) /∈ S, ∀x ∈ [n]}.
= {f : [n]→ [m] \ S}.

So
|AS| = (m − |S|)n.

Hence

F (n,m) =
∑

S⊆[m]

(−1)|S|(m − |S|)n

=
m∑

k=0

(−1)k
(

m
k

)
(m − k)n.

Covered so far



Scrambled Allocations

We have n boxes B1,B2, . . . ,Bn and 2n distinguishable balls
b1,b2, . . . ,b2n.
An allocation of balls to boxes, two balls to a box, is said to be
scrambled if there does not exist i such that box Bi contains
balls b2i−1,b2i . Let σn be the number of scrambled allocations.

Let Ai be the set of allocations in which box Bi contains
b2i−1,b2i . We show that

|AS| =
(2(n − |S|))!

2n−|S| .

Inclusion-Exclusion then gives

σn =
n∑

k=0

(−1)k
(

n
k

)
(2(n − k))!

2n−k .
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First consider A∅:

Each permutation π of [2n] yields an allocation of balls, placing
bπ(2i−1),bπ(2i) into box Bi , for i = 1,2, . . . ,n. The order of balls
in the boxes is immaterial and so each allocation comes from
exactly 2n distinct permutations, giving

|A∅| =
(2n)!

2n .

To get the formula for |AS| observe that the contents of 2|S|
boxes are fixed and so we are in essence dealing with n − |S|
boxes and 2(n − |S|) balls.
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Probléme des Ménages

In how many ways Mn can n male-female couples be seated
around a table, alternating male-female, so that no person is
seated next to their partner?

Let Ai be the set of seatings in which couple i sit together.

If |S| = k then
|AS| = 2k !(n − k)!2 × dk .

dk is the number of ways of placing k 1’s on a cycle of length
2n so that no two 1’s are adjacent. (Explanation below.)

2 choices for which seats are occupied by the men or women.
k ! ways of assigning the couples to the positions; (n − k)!2

ways of assigning the rest of the people.
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Assume that the odd positions in the table are reserved for
women. Given k 1’s we put one from each of the k selected
couples at the 1 (man or woman depending on the parity of the
position) and then put their partner in the succeeding position.

Conversely, given an assignment in AS we start at position 1
and we go round the table until we find the first of the k couples
and put a 1 followed by a 0. We repeat from there until we have
placed k 1’s.

dk =
2n
k

(
2n − k − 1

k − 1

)
=

2n
2n − k

(
2n − k

k

)
.

(See slides 11 and 12).
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Mn =
n∑

k=0

(−1)k
(

n
k

)
× 2k !(n − k)!2 × 2n

2n − k

(
2n − k

k

)

= 2n!
n∑

k=0

(−1)k 2n
2n − k

(
2n − k

k

)
(n − k)!.
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Recurrence Relations

Suppose a0,a1,a2, . . . ,an, . . . ,is an infinite sequence.
A recurrence recurrence relation is a set of equations

an = fn(an−1,an−2, . . . ,an−k ). (3)

The whole sequence is determined by (21) and the values of
a0,a1, . . . ,ak−1.
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Linear Recurrence

Fibonacci Sequence

an = an−1 + an−2 n ≥ 2.

a0 = a1 = 1.
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bn = |Bn| = |{x ∈ {a,b, c}n : aa does not occur in x}|.

b1 = 3 : a b c

b2 = 8 : ab ac ba bb bc ca cb cc

bn = 2bn−1 + 2bn−2 n ≥ 2.
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bn = 2bn−1 + 2bn−2 n ≥ 2.

Let
Bn = B(b)

n ∪ B(c)
n ∪ B(a)

n

where B(α)
n = {x ∈ Bn : x1 = α} for α = a,b, c.

Now |B(b)
n | = |B(c)

n | = |Bn−1|. The map f : B(b)
n → Bn−1,

f (bx2x3 . . . xn) = x2x3 . . . xn is a bijection.

B(a)
n = {x ∈ Bn : x1 = a and x2 = b or c}. The map

g : B(a)
n → B(b)

n−1 ∪ B(c)
n−1,

g(ax2x3 . . . xn) = x2x3 . . . xn is a bijection.

Hence, |B(a)
n | = 2|Bn−2|.
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Towers of Hanoi

Peg 1 Peg 2 Peg 3

Hn is the minimum number of moves needed to shift

n rings from Peg 1 to Peg 2. One is not allowed to 

place a larger ring on top of a smaller ring.
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xxx

H n-1 moves

1 move

H n-1 moves
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We see that H1 = 1 and Hn = 2Hn−1 + 1 for n ≥ 2.

So,
Hn

2n −
Hn−1

2n−1 =
1
2n .

Summing these equations give

Hn

2n −
H1

2
=

1
2n +

1
2n−1 + · · ·+ 1

4
=

1
2
− 1

2n .

So
Hn = 2n − 1.
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A has n dollars. Everyday A buys one of a Bun (1 dollar), an
Ice-Cream (2 dollars) or a Pastry (2 dollars). How many ways
are there (sequences) for A to spend his money?
Ex. BBPIIPBI represents “Day 1, buy Bun. Day 2, buy Bun etc.”.

un = number of ways
= un,B + un,I + un,P

where un,B is the number of ways where A buys a Bun on day
1 etc.
un,B = un−1, un,I = un,P = un−2.
So

un = un−1 + 2un−2,

and
u0 = u1 = 1.
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If a0,a1, . . . ,an is a sequence of real numbers then its
(ordinary) generating function a(x) is given by

a(x) = a0 + a1x + a2x2 + · · · anxn + · · ·

and we write

an = [xn]a(x).

For more on this subject see Generatingfunctionology by the
late Herbert S. Wilf. The book is available from
https://www.math.upenn.edu// wilf/DownldGF.html
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an = 1

a(x) =
1

1− x
= 1 + x + x2 + · · ·+ xn + · · ·

an = n + 1.

a(x) =
1

(1− x)2 = 1 + 2x + 3x2 + · · ·+ (n + 1)xn + · · ·

an = n.

a(x) =
x

(1− x)2 = x + 2x2 + 3x3 + · · ·+ nxn + · · ·
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Generalised binomial theorem:

an =
(
α
n

)
a(x) = (1 + x)α =

∞∑
n=0

(
α

n

)
xn.

where (
α

n

)
=
α(α− 1)(α− 2) · · · (α− n + 1)

n!
.

an =
(m+n−1

n

)
a(x) =

1
(1− x)m =

∞∑
n=0

(
−m
n

)
(−x)n =

∞∑
n=0

(
m + n − 1

n

)
xn.
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General view.

Given a recurrence relation for the sequence (an), we

(a) Deduce from it, an equation satisfied by the generating
function a(x) =

∑
n anxn.

(b) Solve this equation to get an explicit expression for the
generating function.

(c) Extract the coefficient an of xn from a(x), by expanding a(x)
as a power series.
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Solution of linear recurrences

an − 6an−1 + 9an−2 = 0 n ≥ 2.

a0 = 1,a1 = 9.

∞∑
n=2

(an − 6an−1 + 9an−2)xn = 0. (4)
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∞∑
n=2

anxn = a(x)− a0 − a1x

= a(x)− 1− 9x .
∞∑

n=2

6an−1xn = 6x
∞∑

n=2

an−1xn−1

= 6x(a(x)− a0)

= 6x(a(x)− 1).
∞∑

n=2

9an−2xn = 9x2
∞∑

n=2

an−2xn−2

= 9x2a(x).
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a(x)− 1− 9x − 6x(a(x)− 1) + 9x2a(x) = 0
or

a(x)(1− 6x + 9x2)− (1 + 3x) = 0.

a(x) =
1 + 3x

1− 6x + 9x2 =
1 + 3x

(1− 3x)2

=
∞∑

n=0

(n + 1)3nxn + 3x
∞∑

n=0

(n + 1)3nxn

=
∞∑

n=0

(n + 1)3nxn +
∞∑

n=0

n3nxn

=
∞∑

n=0

(2n + 1)3nxn.

an = (2n + 1)3n.
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Inhomogeneous problem

an − 3an−1 = n2 n ≥ 1.

a0 = 1.
∞∑

n=1

(an − 3an−1)xn =
∞∑

n=1

n2xn

∞∑
n=1

n2xn =
∞∑

n=2

n(n − 1)xn +
∞∑

n=1

nxn

=
2x2

(1− x)3 +
x

(1− x)2

=
x + x2

(1− x)3

∞∑
n=1

(an − 3an−1)xn = a(x)− 1− 3xa(x)

= a(x)(1− 3x)− 1.
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a(x) =
x + x2

(1− x)3(1− 3x)
+

1
1− 3x

=
A

1− x
+

B
(1− x)2 +

C
(1− x)3 +

D + 1
1− 3x

where

x + x2 ∼= A(1− x)2(1− 3x) + B(1− x)(1− 3x)

+ C(1− 3x) + D(1− x)3.

Then
A = −1/2, B = 0, C = −1, D = 3/2.
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So

a(x) =
−1/2
1− x

− 1
(1− x)3 +

5/2
1− 3x

= −1
2

∞∑
n=0

xn −
∞∑

n=0

(
n + 2

2

)
xn +

5
2

∞∑
n=0

3nxn

So

an = −1
2
−
(

n + 2
2

)
+

5
2

3n

= −3
2
− 3n

2
− n2

2
+

5
2

3n.
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General case of linear recurrence

an + c1an−1 + · · ·+ ckan−k = un, n ≥ k .

u0,u1, . . . ,uk−1 are given.∑
(an + c1an−1 + · · ·+ ckan−k − un) xn = 0

It follows that for some polynomial r(x),

a(x) =
u(x) + r(x)

q(x)

where

q(x) = 1 + c1x + c2x2 + · · ·+ ckxk =
k∏

i=1

(1− αix)

and α1, α2, . . . , αk are the roots of p(x) = 0 where
p(x) = xkq(1/x) = xk + c1xk−1 + · · ·+ c0.
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Products of generating functions

a(x) =
∞∑

n=0

anxn, b(x)) =
∞∑

n=0

bnxn.

a(x)b(x) = (a0 + a1x + a2x2 + · · · )×
(b0 + b1x + b2x2 + · · · )

= a0b0 + (a0b1 + a1b0)x +

(a0b2 + a1b1 + a2b0)x2 + · · ·

=
∞∑

n=0

cnxn

where

cn =
n∑

k=0

akbn−k .
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Derangements

n! =
n∑

k=0

(
n
k

)
dn−k .

Explanation:
(n

k

)
dn−k is the number of permutations with

exactly k cycles of length 1. Choose k elements (
(n

k

)
ways) for

which π(i) = i and then choose a derangement of the
remaining n − k elements.
So

1 =
n∑

k=0

1
k !

dn−k

(n − k)!

∞∑
n=0

xn =
∞∑

n=0

(
n∑

k=0

1
k !

dn−k

(n − k)!

)
xn. (5)
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Let

d(x) =
∞∑

m=0

dm

m!
xm.

From (5) we have

1
1− x

= exd(x)

d(x) =
e−x

1− x

=
∞∑

n=0

n∑
k=0

(
(−1)k

k !

)
xn.

So
dn

n!
=

n∑
k=0

(−1)k

k !
.
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Triangulation of n-gon

Let

an = number of triangulations of Pn+1

=
n∑

k=0

akan−k n ≥ 2 (6)

a0 = 0, a1 = a2 = 1.

+1

1
n+1

k
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Explanation of (6):
akan−k counts the number of triangulations in which edge
1,n + 1 is contained in triangle 1, k + 1,n + 1.
There are ak ways of triangulating 1,2, . . . , k + 1,1 and for
each such there are an−k ways of triangulating
k + 1, k + 2, . . . ,n + 1, k + 1.
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x +
∞∑

n=2

anxn = x +
∞∑

n=2

(
n∑

k=0

akan−k

)
xn.

But,

x +
∞∑

n=2

anxn = a(x)

since a0 = 0,a1 = 1.

∞∑
n=2

(
n∑

k=0

ak an−k

)
xn =

∞∑
n=0

(
n∑

k=0

ak an−k

)
xn

= a(x)2.
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So
a(x) = x + a(x)2

and hence

a(x) =
1 +
√

1− 4x
2

or
1−
√

1− 4x
2

.

But a(0) = 0 and so

a(x) =
1−
√

1− 4x
2

=
1
2
− 1

2

(
1 +

∞∑
n=1

(−1)n−1

n22n−1

(
2n − 2
n − 1

)
(−4x)n

)

=
∞∑

n=1

1
n

(
2n − 2
n − 1

)
xn.

So

an =
1
n

(
2n − 2
n − 1

)
.
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1−
√

1− 4x
2

= −1
2

∞∑
n=1

(1
2
n

)
(−4x)n

= −1
2

∞∑
n=1

(1
2

) (1
2 − 1

)
· · ·
(1

2 − n + 1
)

n!
(−4x)n

=
∞∑

n=1

1 · 3 · 5 · · · (2n − 3)

2n+1n!
(4x)n

=
∞∑

n=1

(2n − 2)!

n!(n − 1)!
xn

=
∞∑

n=1

1
n

(
2n − 2
n − 1

)
xn.
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Colouring Problem

Theorem

Let A1,A2, . . . ,An be subsets of A and |Ai | = k for 1 ≤ i ≤ n. If
n < 2k−1 then there exists a partition A = R ∪ B such that

Ai ∩ R 6= ∅ and Ai ∩ B 6= ∅ 1 ≤ i ≤ n.

[R = Red elements and B= Blue elements.]

Proof Randomly colour A.
Ω = {R,B}A = {f : A→ {R,B}}, uniform distribution.

BAD = {∃i : Ai ⊆ R or Ai ⊆ B}.

Claim: Pr(BAD) < 1.
Thus Ω \ BAD 6= ∅ and this proves the theorem.
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BAD(i) = {Ai ⊆ R or Ai ⊆ B} and BAD =
n⋃

i=1

BAD(i).

Boole’s Inequality: if A1,A2, . . . ,AN are a collection of events,
then

Pr

(
N⋃

i=1

Ai

)
≤

N∑
i=1

Pr(Ai).

This easily proved by induction on N. When N = 2 we use

Pr(A1 ∪ A2) = Pr(A1) + Pr(A2)− Pr(A1 ∩ A2) ≤ Pr(A1 ∪ A2).

In general,

Pr

(
N⋃

i=1

Ai

)
≤ Pr

(
N−1⋃
i=1

Ai

)
+ Pr(AN) ≤

N−1∑
i=1

Pr(Ai) + Pr(AN).

The first inequality is the two event case and the second is by
induction on N.
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So,

Pr(BAD) ≤
n∑

i=1

Pr(BAD(i))

=
n∑

i=1

(
1
2

)k−1

= n/2k−1

< 1.
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Example of system which is not 2-colorable.

Let n =
(2k−1

k

)
and A = [2k − 1] and

{A1,A2, . . . ,An} =

(
[2k − 1]

k

)
.

Then in any 2-coloring of A1,A2, . . . ,An there is a set Ai all of
whose elements are of one color.

Suppose A is partitioned into 2 sets R,B. At least one of these
two sets is of size at least k (since (k − 1) + (k − 1) < 2k − 1).
Suppose then that R ≥ k and let S be any k -subset of R. Then
there exists i such that Ai = S ⊆ R.
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Theorem

Let A1,A2, . . . ,An be subsets of A and |Ai | = k ≥ 2 for
1 ≤ i ≤ n. If n < 2k−1k1/4/3 then there exists a partition
A = R ∪ B such that

Ai ∩ R 6= ∅ and Ai ∩ B 6= ∅ 1 ≤ i ≤ n.

[R = Red elements and B= Blue elements.]

Randomly order the elements of A as a1,a2, . . . ,aN .

Assume that we have colored a1,a2, . . . ,ai−1. Then we color ai
Red, unless there is an edge Ai for which Ai \ {ai} is all Red. In
which case, we color ai Blue.

We now argue that with a positive probability, this algorithm
colors A so that no set is mono-colored.
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If this fails then there exists j such that Aj is all Blue, by
construction. Let v be the first element of Aj to be colored.

Then there exists Ai such that (i) Ai ∩ Aj = {v} and (ii) v is the
last element of Ai to be colored.

Because v is Blue, it is the last element of Ai to be colored.
Also (i) holds because all other elements of Ai are Red.

Supppose that n = 2k−1`. Then the probability of (i), (ii) is at
most

(2k−1`)2 · 1
2k − 1

· 1(2k−2
k−1

) .
For such a pair Ai ,Aj we have |Ai ∪ Aj | = 2k − 1. The

probability that v is the middle element selected is 1/(2k − 1)
and given this the probability that the first k − 1 elements of
Ai ∪ Aj are Ai \ {v} is 1/

(2k−2
k−1

)
.
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(2k−1`)2 bounds the number of choices for i , j .

Using Stirling’s formula N! ∼ (2πN)(N/e)N we see that(2M
M

)
≥ 2M/(3M1/2) for all M.

It follows that the probability of failure is bounded by

22k−2`2 · 3(k − 1)1/2

22k−2(k − 1)
=

3`2

(k − 1)1/2 < 1,

if ` ≤ k1/4/3.
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A problem with hats

There are n people standing a circle. They are blind-folded and
someone places a hat on each person’s head. The hat has
been randomly colored Red or Blue.

They take off their blind-folds and everyone can see everyone
else’s hat. Each person then simultaneously declares (i) my hat
is red or (ii) my hat is blue or (iii) or I pass.

They win a big prize if the people who opt for (i) or (ii) are all
correct. They pay a big penalty if there is a person who
incorrectly guesses the color of their hat.

Is there a strategy which means they will win with probability
better than 1/2?
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Suppose that we partition Qn = {0,1}n into 2 sets W ,L which
have the property that L is a cover i.e. if
x = x1x2 · · · xn ∈W = Qn \ L then there is y1y2 · · · yn ∈ L such
that h(x , y) = 1 where

h(x , y) = |{j : xj 6= yj}|.

Hamming distance between x and y .

Assume that 0 ≡ Red and 1 ≡ Blue. Person i knows xj for j 6= i
(color of hat j) and if there is a unique value ξ of xi which places
x in W then person i will declare that their hat has color ξ.

The people assume that x ∈W and if indeed x ∈W then there
is at least one person who will be in this situation and any such
person will guess correctly.

Is there a small cover L?
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Let p = ln n
n . Choose L1 randomly by placing y ∈ Qn into L1 with

probability p.

Then let L2 be those z ∈ Qn which are not at Hamming
distance ≤ 1 from some member of L1.

Clearly L = L1 ∪ L2 is a cover and
E(|L|) = 2np + 2n(1− p)n+1 ≤ 2n(p + e−np) ≤ 2n 2 ln n

n .

So there must exist a cover of size at most 2n 2 ln n
n and the

players can win with probability at least 1− 2 ln n
n .
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Tournaments

n players in a tournament each play each other i.e. there are(n
2

)
games.

Fix some k . Is it possible that for every set S of k players there
is a person wS who beats everyone in S?
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Suppose that the results of the tournament are decided by a
random coin toss.

Fix S, |S| = k and let ES be the event that nobody beats
everyone in S.

The event
E =

⋃
S

ES

is that there is a set S for which wS does not exist.

We only have to show that Pr(E) < 1.
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Pr(E) ≤
∑
|S|=k

Pr(ES)

=

(
n
k

)
(1− 2−k )n−k

< nke−(n−k)2−k

= exp{k ln n − (n − k)2−k}
→ 0

since we are assuming here that k is fixed independent of n.
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Random Binary Search Trees

A binary tree consists of a set of nodes, one of which is the root.
Each node is connected to 0,1 or 2 nodes below it and every
node other than the root is connected to exactly one node
above it. The root is the highest node.
The depth of a node is the number of edges in its path to the
root.
The depth of a tree is the maximum over the depths of its
nodes.
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Starting with a tree T0 consisting of a single root r , we grow a
tree Tn as follows:

The n’th particle starts at r and flips a fair coin. It goes left (L)
with probability 1/2 and right (R) with probability 1/2.

It tries to move along the tree in the chosen direction. If there is
a node below it in this direction then it goes there and continues
its random moves. Otherwise it creates a new node where it
wanted to move and stops.
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Let Dn be the depth of this tree.
Claim: for any t ≥ 0,

Pr(Dn ≥ t) ≤ (n2−(t−1)/2)t .

Proof The process requires at most n2 coin flips and so we let
Ω = {L,R}n2

– most coin flips will not be needed most of the
time.

DEEP = {Dn ≥ t}.

For P ∈ {L,R}t and S ⊆ [n], |S| = t let
DEEP(P,S) = {the particles S = {s1, s2, . . . , st} follow P in the
tree i.e. the first i moves of si are along P, 1 ≤ i ≤ t}.

DEEP =
⋃
P

⋃
S

DEEP(P,S).
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4

8

17

11

13

t=5 and DEEP(P,S) occurs if 

17 goes LRR...

11 goes LRRL...

13 goes LRRLR...

4   goes L...

8   goes LR...

                    S={4,8,11,13,17}
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Pr(DEEP)≤
∑

P

∑
S

Pr(DEEP(P,S))

=
∑

P

∑
S

2−(1+2+···+t)

=
∑

P

∑
S

2−t(t+1)/2

= 2t
(

n
t

)
2−t(t+1)/2

≤ 2tnt2−t(t+1)/2

= (n2−(t−1)/2)t .

So if we put t = A log2 n then

Pr(Dn ≥ A log2 n) ≤ (2n1−A/2)A log2 n

which is very small, for A > 2.
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Intersection Safe Families

Let A be a family of sub-sets of [n]. We say that A is
Intersection Safe if for distinct A,B,C ∈ A we have C 6⊇ A ∩ B.
We use the probabilistic method to show the existence of an
Intersection Safe family of exponential size.
Suppose that A consists of p randomly and independently
chosen sets X1,X2, . . . ,Xp. Let Z denote the number of 3-tples
i , j , k such that Xi ∩ Xj ⊆ Xk . Then

E(Z ) = p(p−1)(p−2)Pr(Xi ∩Xj ⊆ Xk ) = p(p−1)(p−2)

(
7
8

)n

.

(Observe that Pr(x ∈ (Xi ∩ Xj) \ Xk = 1/8.)
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So if p ≤ (8/7)n/3 then

Pr(Z ≥ 1) ≤ E(Z ) < p3
(

7
8

)n

≤ 1

implying that there exists a union free family of size p.

There is a small problem here in that we might have repetitions
Xi = Xj for i 6= j . Then our set will not be of size p.

But if Z1 denotes the number of pairs i , j such that Xi = Xj then

Pr(Z1 6= 0) ≤ E(Z1) =

(
p
2

)
2−n

and so we should really choose p so that
Pr(Z + Z1 6= 0) ≤ E(Z ) + E(Z1) < p3 (7

8

)n
+ p2 (1

2

)n ≤ 1.
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Application: Suppose that we have a central storage containing
n keys {k1, k2, . . . , kn}.

We must distribute sets of keys to p people. Person i will get
the set Ki = {kj : j ∈ Xi}. The sets X1,X2, . . . ,Xp are public
knowledge.

If person r wishes to communicate with person s then he/she
will send them {kj : j ∈ Xr ∩ Xs} as a means of proving their
identity.

If the sets X1,X2, . . . ,Xp are intersection safe, then person t
cannot pretend to be person r .

It is possible therefore to have a “secure“ system with p people
that requires each person to get O(ln p) keys.
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Graph Crossing Number

The crossing number of a graph G is the minimum number of
edge crossings of a drawing of G in the plane.

Euler’s forula implies that a planar graph with n vertices has at
most 3n edges.

This implies that a graph G = (V ,E) requires at least |E | − 3|V |
crossings.

Theorem

If |E | > 4|V | then G has crossing number Ω(|E |3/|V |2).

If |E | ≈ |V |3/2 then this gives Ω(|V |5/2) whereas
|E | − 3|V | = O(|V |3/2).
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Proof

Suppose that G has a drawing with k crossings and let
0 < p < 1.

Let Gp = (Vp,Ep) denote the subgraph of G obtained by
including each vertex in Vp independently with probability p.

Ep is then the set of edges {x , y} such that x , y ∈ Vp.

E(|Vp|) = p|V | and E(|Ep|) = p2|E |.

Also,

E(number of crossings in the drawing of Gp) = p4k .
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So,
p4k ≥ E(|Ep| − 3|Vp|) = p2|E | − 3p|V |.

So

k ≥ p2|E | − 3p|V |
p4 .

Maximising the RHS over p ≤ 1 gives p = 4|V |/|E | and

k ≥ |E |3

64|V |2
.
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Symmetric Local Lemma: We consider the following situation.
X = {x1, x2, . . . , xN} is a collection of independent random
variables. Suppose that we have events Ei , i = 1,2, . . . ,m
where Ei depends only on the set Xi ⊆ X . Thus if Xi ∩ Xj = ∅
then Ei and Ej are independent.
The dependency graph Γ has vertex set [m] and an edge (i , j)
iff Xi ∩ Xj 6= ∅.

Theorem

Let

p = max
i

Pr(Ei) and let d be the maximum degree of Γ.

4dp ≤ 1 implies that Pr

(
m⋂

i=1

Ēi

)
≥ (1− 2p)m > 0.
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Proof: We prove by induction on |S| that for any i ,

Pr

Ei

∣∣∣∣ ⋂
j∈S

Ēj

 ≤ 2p. (7)

Notice that this suffices, since

Pr

(
m⋂

i=1

Ēi

)
=

m∏
i=1

Pr

Ēi

∣∣∣∣ i−1⋂
j=1

Ēj


The base case |S| = 0 for (7) is trivial.
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Inductive Step: Renumber for convenience so that
i = n,S = [s] and (i , x) /∈ Γ for x > d . Now

Pr

(
En

∣∣∣∣ s⋂
i=1

Ēi

)
=

Pr
(
En ∩

⋂d
i=1 Ēi

∣∣∣∣⋂s
i=d+1 Ēi

)
Pr
(⋂d

i=1 Ēi

∣∣∣∣⋂s
i=d+1 Ēi

) , (8)

≤
Pr
(
En

∣∣∣∣⋂s
i=d+1 Ēi

)
Pr
(⋂d

i=1 Ēi

∣∣∣∣⋂s
i=d+1 Ēi

) , (9)

≤
Pr
(
En

∣∣∣∣⋂s
i=d+1 Ēi

)
1−

∑d
i=1 Pr

(
Ei

∣∣∣∣⋂s
i=d+1 Ēi

) . (10)
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Now

Pr

(
En

∣∣∣∣ s⋂
i=d+1

Ēi

)
= Pr(En) ≤ p, (11)

since En is independent of Ed+1, . . . , Es.

Furthermore, we can assume that d > 0, else the events
E1, . . . , Em are independent and the result is trivial. So, by
induction, we have that

1−
d∑

i=1

Pr

(
Ei

∣∣∣∣ s⋂
i=d+1

Ēi

)
≥ 1− 2dp ≥ 1

2
. (12)

The induction is now completed by using (11) and (12) in (10).
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For the next application, let D = (V ,E) be a k -regular digraph.
By this we mean that each vertex has exactly k in-neighbors
and k out-neighbors.

Theorem

Every k-regular digraph has a collection of bk/(4 log k)c vertex
disjoint cycles.

Proof: Let r = bk/(4 log k)c and color the vertices of D with
colors [r ]. For v ∈ V , let Ev be the event that there is a color
missing at the out-neighbors of v . We will show that
Pr
(⋂

v∈V Ēv
)
> 0.

Suppose then that none of the events Ev , v ∈ V occur.
Consider the graph Dj induced by a single color j ∈ [r ]. Note
that Dj is not the empty graph. Let Pj = (v1, v2, . . . , vm) be a
longest directed path in Dj . Let w be an out-neighbor of vm of
color j . We must have w ∈ {v1, . . . , vm}, else Pj is not a longest
path in Dj . Thus each Dj , j ∈ [r ] contains a cycle and these
cycles are vertex disjoint.
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We first estimate

Pr(Ev ) ≤ r
(

1− 1
r

)k

≤ ke−k/r ≤ ke−4 log k = k−3.

On the other hand, if N+(v) denotes the out-neighbors of v
plus v then Ev is independent of all events Ew for which
N+(v) ∩ N+(w) = ∅. It follows that

d ≤ k2.

To apply Theorem 15 we need to have 4k−3k2 ≤ 1. This is true
for k ≥ 4. For k ≤ 3 we have r = 1 and the local lemma is not
needed.
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Let Pn = {A : A ⊆ [n]} denote the power set of [n].

A ⊆ Pn is a Sperner family if A,B ∈ A implies that A 6⊆ B and
B 6⊆ A

Theorem

If A ⊆ Pn is a Sperner family |A| ≤
( n
bn/2c

)
.

Proof We will show that∑
A∈A

1( n
|A|
) ≤ 1. (13)

Now
(n

k

)
≤
( n
bn/2c

)
for all k and so

1 ≥
∑
A∈A

1( n
bn/2c

) =
|A|( n
bn/2c

) .
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Proof of (21): Let π be a random permutation of [n].

For a set A ∈ A let EA be the event

{π(1), π(2), . . . , π(|A|)} = A.

If A,B ∈ A then the events EA, EB are disjoint.

So ∑
A∈A

Pr(EA) ≤ 1.

On the other hand, if A ∈ A then

Pr(EA) =
|A|!(n − |A|)!

n!
=

1( n
|A|
)

and (21) follows. �
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The set of all sets of size bn/2c is a Sperner family and so the
bound in the above theorem is best possible.

Inequality (21) can be generalised as follows: Let s ≥ 1 be
fixed. Let A be a family of subsets of [n] such that there do not
exist distinct A1,A2, . . . ,As+1 ∈ A such that
A1 ⊆ A2 ⊆ · · · ⊆ As+1.

Theorem ∑
A∈A

1( n
|A|
) ≤ s.

Proof Let π be a random permutation of [n].

Let E(A) be the event {π(1), π(2), . . . , π(|A|) = A}}.
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Let

Zi =

{
1 E(Ai) occurs.
0 otherwise.

and let Z =
∑

i Zi be the number of events E(Ai) that occur.

Now our family is such that Z ≤ s for all π and so

E(Z ) =
∑

i

E(Zi) =
∑

i

Pr(E(Ai)) ≤ s.

On the other hand, A ∈ A implies that Pr(E(A)) = 1
( n
|A|)

and the

required inequality follows. �
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Intersecting Families

A family A ⊆ Pn is an intersecting family if A,B ∈ A implies
A ∩ B 6= ∅.

Theorem

If A is an intersecting family then |A| ≤ 2n−1.

Proof Pair up each A ∈ Pn with its complement
Ac = [n] \ A. This gives us 2n−1 pairs altogether.
Since A is intersecting it can contain at most one member of
each pair. �

If A = {A ⊆ [n] : 1 ∈ A} then A is intersecting and |A| = 2n−1

and so the above theorem is best possible.
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Theorem
If A is an intersecting family and A ∈ A implies that
|A| = k ≤ bn/2c then

|A| ≤
(

n − 1
k − 1

)

Proof If π is a permutation of [n] and A ⊆ [n] let

θ(π,A) =

{
1 ∃s : {π(s), π(s + 1), . . . , π(s + k − 1)} = A
0 otherwise

where π(i) = π(i − n) if i > n.

We will show that for any permutation π,∑
A∈A

θ(π,A) ≤ k . (14)
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Assume (14). We first observe that if π is a random permutation
then

E(θ(π,A)) = n
k !(n − k)!

n!
=

k(n−1
k−1

)
and so, from (14),

k ≥ E(
∑
A∈A

θ(π,A)) =
∑
A∈A

k( n−1
|A|−1

)
Hence

|A| ≤
(

n − 1
k − 1

)
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Assume w.l.o.g. that π is the identity permutation.

Let At = {t , t + 1, . . . , t + k − 1} and suppose that As ∈ A.

All of the other sets At that intersect As can be partitioned into
pairs As−i ,As+k−i , 1 ≤ i ≤ k − 1 and the members of each pair
are disjoint. Thus A can contain at most one from each pair.
This verifies (14).

Covered so far



10/4/2023

Covered so far



Kraft’s Inequality

Let x1, x2, . . . , xm be a collection of sequences over an alphabet
Σ of size s. Let xi have length ni and let
n = max{n1,n2, . . . ,nm}.

Assume next that no sequence is a prefix of any other
sequence: Sequence xi = a1a2 · · · ani is a prefix of
xj = b1b2 · · · bnj if ai = bi for i = 1,2, . . . ,ni .

Theorem
m∑

i=1

r−ni ≤ 1.
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Proof: Let x be a random sequence of length n. Let Ei be the
event xi is a prefix of x . Then

(a) Pr(Ei) = r−ni .
(b) The event Ei , i = 1,2, . . . ,m are disjoint.

(If Ei and Ej both occur and ni ≤ nj then xi is a
prefix of xj .

Property (b) implies that

Pr

(
m⋃

i=1

Ei

)
= Pr(E1) + Pr(E2) + · · ·+ Pr(Em) ≤ 1.

The theorem now follows from Property (a). �
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Sunflowers

A sunflower of size r is a family of sets A1,A2, . . . ,Ar such that
every element that belongs to more than one of the sets
belongs to all of them.

Let f (k , r) be the maximum size of a family of k -sets without a
sunflower of size r .

Theorem

f (k , r) ≤ (r − 1)kk !.

Proof Let F be a family of k -sets without a sunflower of
size r . Let A1,A2, . . . ,At be a maximum subfamily of pairwise
disjoint subsets in F .

Since a family of pairwise disjoint is a sunflower, we must have
t < r .
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Now let A =
⋃t

i=1 Ai . For every a ∈ A consider the family
Fa = {S \ {a} : S ∈ F ,a ∈ S}.

Now the size of A is at most (r − 1)k .

The size of each Fa is at most f (k − 1, r). This is because a
sunflower in Fa is a sunflower in F .

So,

f (k , r) ≤ (r − 1)k × f (k − 1, r) ≤ (r − 1)k × (r − 1)k−1(k − 1)!,

by induction. �
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Distinct Distances

Suppose that X1,X2, . . . ,Xn are n points in the plane. We put
bounds on the number of distinct distances among |XiXj |.

Let f (n) denote the minimum among all sets of n points.

Lower bound: f (n) ≥ (n − 3/4)1/2 − 1/2.

Assume that X1 is a vertex of the least (in y value) convex
polygon contained in the points. Let K be the number of distinct
values among {|X1Xi | : i ≥ 2}.

If N is the maximum number of times the same distance occurs
then KN ≥ n − 1.
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If r is a distance that occurs N times then there are N points on
the circle with center X1 and radius r . They all lie on a
semi-circle.

Going round the circle, let these points be Q1,Q2, . . . ,QN . Then
|Q1Q2| < |Q1Q3| · · · < |Q1QN |.

Thus f (n) ≥ max{(n − 1)/N,N − 1}. N(N − 1) minimises this
lower bound and gives us what we claim.

Upper bound: we consider the integer points {(x , y)} where
0 ≤ x , y ≤ n1/2. These have distance of the form (u2 + v2)1/2

and cn/ log1/2 n is a bound on the number of integers of the
form 0 ≤ u2 + v2 ≤ 2n.
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Linear Algebraic methods
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Oddtown

Proof Suppose that the clubs are C1,C2, . . . ,Cm ⊆ [n].

Let ν̄i = (vi,1, vi,2, . . . , vi,n) denote the incidence vector of Ci for
1 ≤ i ≤ m i.e. vi,j = 1 iff j ∈ Ci . We treat these vectors as being
over the two element field F2.

We claim that ν̄1, ν̄2, . . . , ν̄m are linearly independent and the
theorem will follow.

The rules imply that (i) ν̄i · ν̄i = 1 and (ii) ν̄i · ν̄j = 0 for
1 ≤ i 6= j ≤ m.
(Remember that we are working over F2.)
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Oddtown

Suppose then that

c1ν̄1 + c2ν̄2 + · · ·+ cmν̄m = 0.

We show that c1 = c2 = · · · = cm = 0.

Indeed, we have

0 = ν̄j · (c1ν̄1 + c2ν̄2 + · · ·+ cmν̄m)

= c1ν̄1 · ν̄j + c2ν̄2 · ν̄j + · · ·+ cmν̄m · ν̄j

= cj ,

for j = 1,2, . . . ,m. �
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Lighting problem

Let G = (V ,E) be an arbitrary graph. Suppose that each vertex
contains a light bulb and `(v) = 1 indicates that the light bulb
on v is on and `(v) = 0 indicates that it is off.

Suppose that for v ∈ V , the transformation T (v) flips the values
at v and all of its neighbors. I.e. T (v) switches on a
neighboring light bulb if it is off and turns it off if it is on.

Suppose that initially, `(v) = 0 for all v ∈ V , i.e. all light bulbs
are off. We show that there exists a set S ⊆ V such that
applying T (v), v ∈ S in any order makes `(v) = 1 for v ∈ V .
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Lighting problem

Observe first that applying T (v) and then T (w) achieves the
same effect as applying T (w) and then T (v) i.e. the order of
application of the transformations does not matter.
(The value of `(u) is flipped by the two transformations iff it is
adjacent to exactly one of {v ,w}.)

Let A be the 0-1 adjacency matrix of G i.e. let A(v ,w) = 1 iff
w ∈ N(v). In addition put A(v , v) = 1 for v ∈ V .

The set of transformations corresponding to S will turn on all of
the lights iff A1S = 1V where 1S is the 0-1 vector indexed by V
such that there is a 1 in component v iff v ∈ S.
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Lighting problem

Our claim amounts to saying that there exists S such that
A1S = 1V where calculations are done in the binary field.

If there is no such 1S then basic linear algebra theory tells us
that there exists x such that xT A = 0 and xT 1V 6= 0.

Since A is symmetric, this means that Ax = 0 as well. Let
x = 1S. Then S has the following properties:

(a) |S ∩ N(v)| is odd for all v ∈ V . This is a consequence of
Ax = 0.

(b) |S| is odd. This is a consequence of xT 1V 6= 0.
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Lighting problem

Now consider the sub-graph of G induced by S.

Every vertex has odd degree by (a). But in any graph, the
number of odd vertices is even. Contradiction.
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Decomposing Kn into bipartite subgraphs

Here we show

Theorem
If Gk , k = 1,2, . . . ,m is a collection of complete bipartite graphs
with vertex partitions Ak ,Bk , such that every edge of Kn is in
exactly one subgraph, then m ≥ n − 1. (Note that Ak ∩ Bk = ∅
here.)

Proof This is tight since we can take
Ak = {k},Bk = {k + 1, . . . ,n} for k = 1,2, . . . ,n − 1.

Define n × n matrices Mk where Mk (i , j) = 1 if i ∈ Ak , j ∈ Bk
and Mk (i , j) = 0 otherwise.

Let S = M1 + M2 + · · ·+ Mm. Then S + ST = Jn − In where In is
the identity matrix and Jn is the all ones matrix.
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Decomposing Kn into bipartite subgraphs

We show next that rank(S) ≥ n − 1 and then the theorem
follows from

rank(S) ≤ rank(M1) + rank(M2) + · · ·+ rank(Mm) ≤ m.

Suppose then that rank(S) ≤ n − 2 so that there exists a
non-zero solution x = (x1, x2, . . . , xn)T to the system of
equations

Sx = 0,
n∑

i=1

xi = 0.

But then, Jnx = 0 and ST x = −x and −|x|2 = −xT ST x = 0,
contradiction. �
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If f : [m]→ [n] then there exists i ∈ [n] such that

|f−1(i)| ≥ dm/ne.

Informally: If m pigeons are to be placed in n pigeon-holes, at
least one hole will end up with at leat dm/ne pigeons.
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We have two disks, each partitioned into 200 sectors of the
same size. 100 of the sectors of Disk 1 are coloured Red and
100 are colored Blue. The 200 sectors of Disk 2 are arbitrarily
coloured Red and Blue.

It is always possible to place Disk 2 on top of Disk 1 so that the
centres coincide, the sectors line up and at least 100 sectors of
Disk 2 have the same colour as the sector underneath them.

Fix the position of Disk 1. There are 200 positions for Disk 2
and let qi denote the number of matches if Disk 2 is placed in
position i . Now for each sector of Disk 2 there are 100 positions
i in which the colour of the sector underneath it coincides with
its own.
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Therefore
q1 + q2 + · · ·+ q200 = 200× 100 (15)

and so there is an i such that qi ≥ 100.

Explanation of (21).
Consider 0-1 200× 200 matrix A(i , j) where A(i , j) = 1 iff sector
j lies on top of a sector with the same colour when in position i .
Row i of A has qi 1’s and column j of A has 100 1’s. The LHS of
(21) counts the number of 1’s by adding rows and the RHS
counts the number of 1’s by adding columns.
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Alternative solution: Place Disk 2 randomly on Disk 1 so that
the sectors align. For i = 1,2, . . . ,200 let

Xi =

{
1 sector i of disk 2 is on sector of disk 1 of same color
0 otherwise

We have

E(Xi) = 1/2 for i = 1,2, . . . ,200.

So if X = X1 + · · ·+ X200 is the number of sectors sitting above
sectors of the same color, then E(X ) = 100 and there must
exist at least one way to achieve 100.
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Theorem
(Erdős-Szekeres) An arbitrary sequence of integers
(a1,a2, . . . ,ak2+1) contains a monotone subsequence of length
k + 1.

Proof. Let (ai ,a1
i ,a

2
i , . . . ,a

`−1
i ) be the longest monotone

increasing subsequence of (a1, . . . ,ak2+1) that starts with
ai , (1 ≤ i ≤ k2 + 1), and let `(ai) be its length.

If for some 1 ≤ i ≤ k2 + 1, `(ai) ≥ k + 1, then
(ai ,a1

i ,a
2
i , . . . ,a

l−1
i ) is a monotone increasing subsequence of

length ≥ k + 1.

So assume that `(ai) ≤ k holds for every 1 ≤ i ≤ k2 + 1.
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Consider k holes 1,2, . . . , k and place i into hole `(ai).

There are k2 + 1 subsequences and ≤ k non-empty holes
(different lengths), so by the pigeon-hole principle there will
exist `∗ such that there are (at least) k + 1 indices
i1 < i2 < · · · < ik+1 such that `(ait ) = `∗ for 1 ≤ t ≤ k + 1.

Then we must have ai1 ≥ ai2 ≥ · · · ≥ aik+1 .

Indeed, assume to the contrary that aim < ain for some
1 ≤ m < n ≤ k + 1. Then aim ≤ ain ≤ a1

in ≤ a2
in ≤ · · · ≤ a`

∗−1
in ,

i.e., `(aim ) ≥ `∗ + 1, a contradiction. �
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The sequence

n,n−1, . . . ,1,2n,2n−1, . . . ,n + 1, . . . ,n2,n2−1, . . . ,n2−n + 1

has no monotone subsequence of length n + 1 and so the
Erdős-Szekerés result is best possible.
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Ramsey’s Theorem

Suppose we 2-colour the edges of K6 of Red and Blue. There
must be either a Red triangle or a Blue triangle.

This is not true for K5.
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1

2

3

4

5

6

R

R

R

There are 3 edges of the same colour incident with vertex 1,
say (1,2), (1,3), (1,4) are Red. Either (2,3,4) is a blue triangle or
one of the edges of (2,3,4) is Red, say (2,3). But the latter
implies (1,2,3) is a Red triangle.
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Ramsey’s Theorem

For all positive integers k , ` there exists R(k , `) such that if
N ≥ R(k , `) and the edges of KN are coloured Red or Blue then
then either there is a “Red k -clique” or there is a “Blue `-clique.
A clique is a complete subgraph and it is Red if all of its edges
are coloured red etc.

R(1, k) = R(k ,1) = 1
R(2, k) = R(k ,2) = k
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Theorem

R(k , `) ≤ R(k , `− 1) + R(k − 1, `).

Proof Let N = R(k , `− 1) + R(k − 1, `).

1

V

V

Red

edges

Blue

edges

R

B

VR = {(x : (1, x) is coloured Red} and VB = {(x : (1, x) is
coloured Blue}.
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|VR| ≥ R(k − 1, `) or |VB| ≥ R(k , `− 1).

Since

|VR|+ |VB| = N − 1
= R(k , `− 1) + R(k − 1, `)− 1.

Suppose for example that |VR| ≥ R(k − 1, `). Then either VR
contains a Blue `-clique – done, or it contains a Red
k − 1-clique K . But then K ∪ {1} is a Red k -clique.
Similarly, if |VB| ≥ R(k , `− 1) then either VB contains a Red
k -clique – done, or it contains a Blue `− 1-clique L and then
L ∪ {1} is a Blue `-clique. �
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Theorem

R(k , `) ≤
(

k + `− 2
k − 1

)
.

Proof Induction on k + `. True for k + ` ≤ 5 say. Then

R(k , `) ≤ R(k , `− 1) + R(k − 1, `)

≤
(

k + `− 3
k − 1

)
+

(
k + `− 3

k − 2

)
=

(
k + `− 2

k − 1

)
.

�
So, for example,

R(k , k) ≤
(

2k − 2
k − 1

)
≤ 4k
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Theorem

R(k , k) > 2k/2

Proof We must prove that if n ≤ 2k/2 then there exists a
Red-Blue colouring of the edges of Kn which contains no Red
k -clique and no Blue k -clique. We can assume k ≥ 4 since we
know R(3,3) = 6.
We show that this is true with positive probability in a random
Red-Blue colouring. So let Ω be the set of all Red-Blue edge
colourings of Kn with uniform distribution. Equivalently we
independently colour each edge Red with probability 1/2 and
Blue with probability 1/2.

Covered so far



Let
ER be the event: {There is a Red k -clique} and
EB be the event: {There is a Blue k -clique}.
We show

Pr(ER ∪ EB) < 1.

Let C1,C2, . . . ,CN , N =
(n

k

)
be the vertices of the N k -cliques

of Kn.

Let ER,j be the event: {Cj is Red} and let EB,j be the event: {Cj is
Blue}.
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Pr(ER ∪ EB) ≤ Pr(ER) + Pr(EB) = 2Pr(ER)

= 2Pr

 N⋃
j=1

ER,j

 ≤ 2
N∑

j=1

Pr(ER,j)

= 2
N∑

j=1

(
1
2

)(k
2)

= 2
(

n
k

)(
1
2

)(k
2)

≤ 2
nk

k !

(
1
2

)(k
2)

≤ 2
2k2/2

k !

(
1
2

)(k
2)

=
21+k/2

k !
< 1.
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Very few of the Ramsey numbers are known exactly. Here are a
few known values.

R(3,3) = 6
R(3,4) = 9
R(4,4) = 18
R(4,5) = 25

43 ≤ R(5,5) ≤ 49
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Ramsey’s Theorem in general

Remember that the elements of
(S

r

)
are the r -subsets of S

Theorem
Let r , s ≥ 1, qi ≥ r , 1 ≤ i ≤ s be given. Then there exists
N = N(q1,q2, . . . ,qs; r) with the following property: Suppose
that S is a set with n ≥ N elements. Let each of the elements of(S

r

)
be given one of s colors. .

Then there exists i and a qi -subset T of S such that all of the
elements of

(T
r

)
are colored with the ith color.

Proof First assume that s = 2 i.e. two colors, Red, Blue.
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Ramsey’s Theorem in general

Note that

(a) N(p,q; 1) = p + q − 1
(b) N(p, r ; r) = p(≥ r)

N(r ,q; r) = q(≥ r)

We proceed by induction on r . It is true for r = 1 and so
assume r ≥ 2 and it is true for r − 1 and arbitrary p,q.
Now we further proceed by induction on p + q. It is true for
p + q = 2r and so assume it is true for r and all p′,q′ with
p′ + q′ < p + q.
Let

p1 = N(p − 1,q; r)

p2 = N(p,q − 1; r)

These exist by induction.
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Ramsey’s Theorem in general

Now we prove that

N(p,q; r) ≤ 1 + N(p1,q1; r − 1)

where the RHS exists by induction.

Suppose that n ≥ 1 + N(p1,q1; r − 1) and we color
([n]

r

)
with 2

colors. Call this coloring σ.

From this we define a coloring τ of
([n−1]

r−1

)
as follows: If

X ∈
([n−1]

r−1

)
then give it the color of X ∪ {n} under σ.

Now either (i) there exists A ⊆ [n − 1], |A| = p1 such that
(under τ ) all members of

( A
r−1

)
are Red or (ii) there exists

B ⊆ [n − 1], |A| = q1 such that (under τ ) all members of
( B

r−1

)
are Blue.
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Ramsey’s Theorem in general

Assume w.l.o.g. that (i) holds.

|A| = p1 = N(p − 1,q; r).

Then either

(a) ∃B ⊆ A such that |B| = q and under σ all of
(B

r

)
is Blue,

or

(b) ∃A′ ⊆ A such that |A′| = p − 1 and all of
(A′

r

)
is Red. But

then all of
(A′∪{n}

r

)
is Red. If X ⊆ A′, |X | = r − 1 then τ colors X

Red, since A′ ⊆ A. But then σ will color X ∪ {n} Red.
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Schur’s Theorem

Let rk = N(3,3, . . . ,3; 2) be the smallest n such that if we
k -color the edges of Kn then there is a mono-chromatic triangle.

Theorem
For all partitions S1,S2, . . . ,Sk of [rk ], there exist i and
x , y , z ∈ Si such that x + y = z.

Proof Given a partition S1,S2, . . . ,Sk of [n] where n ≥ rk
we define a coloring of the edges of Kn by coloring (u, v) with
color j where |u − v | ∈ Sj .

There will be a mono-chromatic triangle i.e. there exist j and
x < y < z such that u = y − x , v = z − x , w = z − y ∈ Sj .
But u + v = w . �
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Convex Polygons

A set of points X in the plane is in general position if no 3 points
of X are collinear.

Theorem
If n ≥ N(k , k ; 3) and X is a set of n points in the plane which
are in general position then X contains a k-subset Y which
form the vertices of a convex polygon.

Proof We first observe that if every 4-subset of Y ⊆ X
forms a convex quadrilateral then Y itself induces a convex
polygon.

Now label the points in S from X1 to Xn and then color each
triangle T = {Xi ,Xj ,Xk}, i < j < k as follows: If traversing
triangle XiXjXk in this order goes round it clockwise, color T
Red, otherwise color T Blue.
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Convex Polygons

Now there must exist a k -set T such that all triangles formed
from T have the same color. All we have to show is that T does
not contain the following configuration:

a b

c

d
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Convex Polygons

Assume w.l.o.g. that a < b < c which implies that XiXjXk is
colored Blue.

All triangles in the previous picture are colored Blue.

So the possibilities are
adc

bcd dbc

abd dab

and all are impossible.
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A partially ordered set or poset is a set P and a binary
relation � such that for all a,b, c ∈ P

1 a � a (reflexivity).
2 a � b and b � c implies a � c (transitivity).
3 a � b and b � a implies a = b. (anti-symmetry).

Examples
1 P = {1,2, . . . , } and a ≤ b has the usual meaning.
2 P = {1,2, . . . , } and a � b if a divides b.
3 P = {A1,A2, . . . ,Am} where the Ai are sets and �=⊆.
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A pair of elements a,b are comparable if a � b or b � a.
Otherwise they are incomparable.

A poset without incomparable elements (Example 1) is a linear
or total order.

We write a < b if a � b and a 6= b.

A chain is a sequence a1 < a2 < · · · < as.

A set A is an anti-chain if every pair of elements in A are
incomparable.

Thus a Sperner family is an anti-chain in our third example.
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Theorem
Let P be a finite poset, then
min{m : ∃ anti-chains A1,A2, . . . ,Aµ with P =

⋃µ
i=1 Ai}=

max{|C| : A is a chain}.

The minimum number of anti-chains needed to cover P is at
least the size of any chain, since a chain can contain at most
one element from each anti-chain.
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We prove the converse by induction on the maximum length µ
of a chain. We have to show that P can be partitioned into µ
anti-chains.

If µ = 1 then P itself is an anti-chain and this provides the basis
of the induction.

So now suppose that C = x1 < x2 < · · · < xµ is a maximum
length chain and let A be the set of maximal elements of P.

(An element is x maximal if 6 ∃y such that y > x . )

A is an anti-chain.

Covered so far



Now consider P ′ = P \ A. P ′ contains no chain of length µ. If it
contained y1 < y2 < · · · < yµ then since yµ /∈ A, there exists
a ∈ A such that P contains the chain y1 < y2 < · · · < yµ < a,
contradiction.

Thus the maximum length of a chain in P ′ is µ− 1 and so it can
be partitioned into anti-chains A1 ∪ A2 ∪ · · ·Aµ−1. Putting
Aµ = A completes the proof. �
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Suppose that C1,C2, . . . ,Cm are a collection of chains such
that P =

⋃m
i=1 Ci .

Suppose that A is an anti-chain. Then m ≥ |A| because if
m < |A| then by the pigeon-hole principle there will be two
elements of A in some chain.

Theorem
(Dilworth) Let P be a finite poset, then
min{m : ∃ chains C1,C2, . . . ,Cm with P =

⋃m
i=1 Ci}=

max{|A| : A is an anti-chain}.
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We have already argued that max{|A|} ≤ min{m}.

We will prove there is equality here by induction on |P|.

The result is trivial if |P| = 0.

Now assume that |P| > 0 and that µ is the maximum size of an
anti-chain in P. We show that P can be partitioned into µ
chains.

Let C = x1 < x2 < · · · < xp be a maximal chain in P i.e. we
cannot add elements to it and keep it a chain.

Case 1 Every anti-chain in P \ C has ≤ µ− 1 elements. Then
by induction P \ C =

⋃µ−1
i=1 Ci and then P = C ∪

⋃µ−1
i=1 Ci and

we are done.
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Case 2

There exists an anti-chain A = {a1,a2, . . . ,aµ} in P \ C. Let
P− = {x ∈ P : x � ai for some i}.
P+ = {x ∈ P : x � ai for some i}.

Note that
1 P = P− ∪ P+. Otherwise there is an element x of P which

is incomparable with every element of A and so µ is not the
maximum size of an anti-chain.

2 P− ∩ P+ = A. Otherwise there exists x , i , j such that
ai < x < aj and so A is not an anti-chain.

3 xp /∈ P−. Otherwise xp < ai for some i and the chain C is
not maximal.
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Applying the inductive hypothesis to P− (|P−| < |P| follows
from 3) we see that P− can be partitioned into µ chains
C−1 ,C

−
2 , . . . ,C

−
µ .

Now the elements of A must be distributed one to a chain and
so we can assume that ai ∈ C−i for i = 1,2, . . . , µ.

ai must be the maximum element of chain C−i , else the
maximum of C−i is in (P− ∩ P+) \ A, which contradicts 2.

Applying the same argument to P+ we get chains
C+

1 ,C
+
2 , . . . ,C

+
µ with ai as the minimum element of C+

i for
i = 1,2, . . . , µ.

Then from 2 we see that P = C1 ∪ C2 ∪ · · · ∪ Cµ where
Ci = C−i ∪ C+

i is a chain for i = 1,2, . . . , µ. �
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Three applications of Dilworth’s Theorem

(i) Another proof of

Theorem
Erdős and Szekerés
a1,a2, . . . ,an2+1 contains a monotone subsequence of length
n + 1.

Let P = {(i ,ai) : 1 ≤ i ≤ n2 + 1} and let say (i ,ai) � (j ,aj) if
i < j and ai ≤ aj .

A chain in P corresponds to a monotone increasing
subsequence. So, suppose that there are no monotone
increasing sequences of length n + 1. Then any cover of P by
chains requires at least n + 1 chains and so, by Dilworths
theorem, there exists an anti-chain A of size n + 1.
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Let A = {(it ,ait ) : 1 ≤ t ≤ n + 1} where i1 < i2 ≤ · · · < in+1.

Observe that ait > ait+1 for 1 ≤ t ≤ n, for otherwise
(it ,ait ) � (it+1,ait+1) and A is not an anti-chain.

Thus A defines a monotone decreasing sequence of length
n + 1. �
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Matchings in bipartite graphs

Re-call that a matching is a set of vertex disjoint edges.

P

Covered so far



Let G = (A ∪ B,E) be a bipartite graph with bipartition A,B.
For S ⊆ A let N(S) = {b ∈ B : ∃a ∈ S, (a,b) ∈ E}.

a1

a2

a3

a4

b1

b2

b3

b4

N

Clearly, |M| ≤ |A|, |B| for any matching M of G.
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Theorem
(Hall) G contains a matching of size |A| iff

|N(S)| ≥ |S| ∀S ⊆ A.

a1

a2

a3

a4

b1

b2

b3

b4

N({a1,a2,a3}) = {b1,b2} and so at most 2 of a1,a2,a3 can be
saturated by a matching.
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If G contains a matching M of size |A| then
M = {(a, f (a)) : a ∈ A}, where f : A→ B is a 1-1 function.

But then,
|N(S)| ≥ |f (S)| = S

for all S ⊆ A.
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Let G = (A ∪ B,E) be a bipartite graph which satisfies Hall’s
condition. Define a poset P = A ∪ B and define < by a < b only
if a ∈ A,b ∈ B and (a,b) ∈ E .

Suppose that the largest anti-chain in P is
A = {a1,a2, . . . ,ah,b1,b2, . . . ,bk} and let s = h + k .

Now
N({a1,a2, . . . ,ah}) ⊆ B \ {b1,b2, . . . ,bk}

for otherwise A will not be an anti-chain.

From Hall’s condition we see that

|B| − k ≥ h or equivalently|B| ≥ s.

Covered so far



Now by Dilworth’s theorem, P is the union of s chains:

A matching M of size m, |A| −m members of A and |B| −m
members of B.

But then
m + (|A| −m) + (|B| −m) = s ≤ |B|

and so m ≥ |A|. �
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Marriage Theorem

Theorem
Suppose G = (A ∪ B,E) is k-regular. (k ≥ 1) i.e. dG(v) = k for
all v ∈ A ∪ B. Then G has a perfect matching.

Proof
k |A| = |E | = k |B|

and so |A| = |B|.
Suppose S ⊆ A. Let m be the number of edges incident with S.
Then

k |S| = m ≤ k |N(S)|.

So Hall’s condition holds and there is a matching of size |A| i.e.
a perfect matching.
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A network consists of a loopless digraph D = (V ,A) plus a
function c : A→ R+. Here c(x , y) for (x , y) ∈ A is the capacity
of the edge (x , y).

We use the following notation: if φ : A→ R and S,T are (not
necessarily disjoint) subsets of V then

φ(S,T ) =
∑
x∈S
y∈T

φ(x , y).

Let s, t be distinct vertices. An s − t flow is a function f : A→ R
such that

f (v ,V \ {v}) = f (V \ {v}, v) for all v 6= s, t .

In words: flow into v equals flow out of v .
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An s − t flow is feasible if

0 ≤ f (x , y) ≤ c(x , y) for all (x , y) ∈ A.

An s − t cut is a partition of V into two sets S, S̄ such that
s ∈ S and t ∈ S̄.

The value vf of the flow f is given by

vf = f (s,V \ {s})− f (V \ {s}, s).

Thus vf is the net flow leaving s.

The capacity of the cut S : S̄ is equal to c(S, S̄).
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Max-Flow Min-Cut Theorem

Theorem

max vf = min c(S, S̄)

where the maximum is over feasible s − t flows and the
minimum is over s − t cuts.

Proof We observe first that

f (S, S̄)− f (S̄,S) = (f (S,V )− f (S,S))− (f (V ,S)− f (S,S))

= f (S,V )− f (V ,S)

= vf +
∑

v∈S\{s}

(f (v ,V )− f (V , v))

= vf .

So,
vf ≤ f (S, S̄) ≤ c(S, S̄).

�
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This implies that
max vf ≤ min c(S, S̄). (16)

Given a flow f we define a flow augmenting path P to be a
sequence of distinct vertices x0 = s, x1, x2, . . . , xk = t such that
for all i , either

F1 (xi , xi+1) ∈ A and f (xi , xi+1) < c(xi , xi+1), or
F2 (xi+1, xi) ∈ A and f (xi+1, xi) > 0.

If P is such a sequence, then we define θP > 0 to be the
minimum over i of c(xi , xi+1)− f (xi , xi+1) (Case (F1)) and
f (xi+1, xi) (Case (F2)).
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Claim 1: f is a maximum value flow, iff there are no flow
augmenting paths.
Proof If P is flow augmenting then define a new flow f ′ as
follows:

1 f ′(xi , xi+1) = f (xi , xi+1) + θP or
2 f ′(xi+1, xi) = f (xi+1, xi)− θP

3 For all other edges, (x , y), we have f ′(x , y) = f (x , y).

xi

−θP +θP

+θP −θP

+θP +θP

−θP −θP

We can see
that the flow

stays balanced at xi .
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We can see then that if there is a flow augmenting path then
the new flow satisfies

vf ′ = vf + θP > vf .

Let Sf denote the set of vertices v for which there is a
sequence x0 = s, x1, x2, . . . , xk = v which satisfies F1, F2 of the
definition of flow augmenting paths.

If t ∈ Sf then the associated sequence defines a flow
augmenting path. So, assume that t /∈ Sf . Then we have,

1 s ∈ Sf .
2 If x ∈ Sf , y ∈ S̄f , (x , y) ∈ A then f (x , y) = c(x , y), else we

would have y ∈ Sf .
3 If x ∈ Sf , y ∈ S̄f , (y , x) ∈ A then f (y , x) = 0, else we would

have y ∈ Sf .
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We therefore have

vf = f (Sf , S̄f )− f (S̄f ,S)

= c(S, S̄f ).

We see from this and (16) that f is a flow of maximum value
and that the cut Sf : S̄f is of minimum capacity.

This finishes the proof of Claim 1 and the Max-Flow Min-Cut
theorem.

Note also that we can construct Sf by beginning with Sf = {s}
and then repeatedly adding any vertex y /∈ Sf for which there is
x ∈ Sf such that F1 or F2 holds. (A simple inductive argument
based on sequence length shows that all of Sf is constructed in
this way.)
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Note also that we can construct Sf by beginning with Sf = {s}
and then repeatedly adding any vertex y /∈ Sf for which there is
x ∈ Sf such that F1 or F2 holds.

This defines an algorithm for finding a maximum flow. The
construction either finishes with t ∈ Sf and we can augment the
flow.

Or, we find that t /∈ Sf and we have a maximum flow.

Note, that if all the capacities c(x , y) are integers and we start
with the all zero flow then we find that θf is always a positive
integer (formally one can use induction to verify this).

It follows that in this case, there is always a maximum flow that
only takes integer values on the edges.
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Graph orientation problem

Let G = (V ,E) be a graph. When is it possible to orient the
edges of G to create a digraph Γ = (V ,A) so that every vertex
has out-degree at least d . We say that G is d-orientable.

Theorem
G is d-orientable iff

|{e ∈ E : e ∩ S 6= ∅}| ≥ d |S| for all S ⊆ V . (17)

Proof If G is d-orientable then

|{e ∈ E : e ∩ S 6= ∅}| ≥ |{(x , y) ∈ A : x ∈ S}| ≥ d |S|.
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Suppose now that (17) holds. Define a network D as follows;
the vertices are s, t ,V ,E – yes, D has a vertex for each edge of
G.

There is an edge of capacity d from s to each v ∈ V and an
edge of capacity one from each e ∈ E to t . There is an edge of
infinite capacity from v ∈ V to each edge e that contains v .

Consider an integer flow f . Suppose that e = {v ,w} ∈ E and
f (e, t) = 1. Then either f (v ,e) = 1 or f (w ,e) = 1. In the former
we interpret this as orienting the edge e from v to w and in the
latter from w to v .

Under this interpretation, G is d-orientable iff D has a flow of
value d |V |.
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Let X : X̄ be an s − t cut in N. Let S = X ∩ V and T = X ∩ E .

To have a finite capacity, there must be no x ∈ S and e ∈ E \ T
such that x ∈ e.

So, the capacity of a finite capacity cut is at least

d(|V | − |S|) + |{e ∈ E : e ∩ S 6= ∅}|

And this is at least d |V | if (17) holds.

Covered so far



11/10/2023

Covered so far



Game 1

Start with n chips. Players A,B alternately take 1,2,3 or 4 chips
until there are none left. The winner is the person who takes
the last chip:

Example

A B A B A
n = 10 3 2 4 1 B wins
n = 11 1 2 3 4 1 A wins

What is the optimal strategy for playing this game?

Covered so far



Game 2

Chip placed at point (m,n). Players can move chip to (m′,n) or
(m,n′) where 0 ≤ m′ < m and 0 ≤ n′ < n. The player who
makes the last move and puts the chip onto (0,0) wins.

What is the optimal strategy for this game?

Game 2a Chip placed at point (m,n). Players can move chip to
(m′,n) or (m,n′) or to (m − a,n − a) where 0 ≤ m′ < m and
0 ≤ n′ < n and 0 ≤ a ≤ min{m,n}. The player who makes the
last move and puts the chip onto (0,0) wins.

What is the optimal strategy for this game?
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Game 3

W is a set of words. A and B alternately remove words
w1,w2, . . . , from W . The rule is that the first letter of wi+1 must
be the same as the last letter of wi . The player who makes the
last legal move wins.

Example
W = {England ,France,Germany ,Russia,Bulgaria, . . .}

What is the optimal strategy for this game?
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Abstraction

Represent each position of the game by a vertex of a digraph
D = (X ,A).
(x , y) is an arc of D iff one can move from position x to position
y .

We assume that the digraph is finite and that it is acyclic i.e.
there are no directed cycles.

The game starts with a token on vertex x0 say, and players
alternately move the token to x1, x2, . . . , where xi+1 ∈ N+(xi),
the set of out-neighbours of xi . The game ends when the token
is on a sink i.e. a vertex of out-degree zero. The last player to
move is the winner.
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Abstraction

Example 1: V (D) = {0,1, . . . ,n} and (x , y) ∈ A iff
x − y ∈ {1,2,3,4}.

Example 2: V (D) = {0,1, . . . ,m} × {0,1, . . . ,n} and
(x , y) ∈ N+((x ′, y ′))) iff x = x ′ and y > y ′ or x > x ′ and y = y ′.

Example 2a: V (D) = {0,1, . . . ,m} × {0,1, . . . ,n} and
(x , y) ∈ N+((x ′, y ′))) iff x = x ′ and y > y ′ or x > x ′ and y = y ′

or x − x ′ = y − y ′ > 0.

Example 3: V (D) = {(W ′,w) : W ′ ⊆W \ {w}}. w is the last
word used and W ′ is the remaining set of unused words.
(X ′,w ′) ∈ N+((X ,w)) iff w ′ ∈ X and w ′ begins with the last
letter of w . Also, there is an arc from (W , ·) to (W \ {w},w) for
all w , corresponding to the games start.
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Abstraction

We will first argue that such a game must eventually end.

A topological numbering of digraph D = (X ,A) is a map
f : X → [n], n = |X | which satisfies (x , y) ∈ A implies
f (x) < f (y).

Theorem
A finite digraph D = (X ,A) is acyclic iff it admits at least one
topological numbering.

Proof Suppose first that D has a topological numbering.
We show that it is acyclic.

Suppose that C = (x1, x2, . . . , xk , x1) is a directed cycle. Then
f (x1) < f (x2) < · · · < f (xk ) < f (x1), contradiction.
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Abstraction

Suppose now that D is acyclic. We first argue that D has at
least one sink.

Thus let P = (x1, x2, . . . , xk ) be a longest simple path in D. We
claim that xk is a sink.

If D contains an arc (xk , y) then either y = xi ,1 ≤ i ≤ k − 1 and
this means that D contains the cycle (xi , xi+1, . . . , xk , xi),
contradiction or y /∈ {x1, x2, . . . , xk} and then (P, y) is a longer
simple path than P, contradiction.
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Abstraction

We can now prove by induction on n that there is at least one
topological numbering.

If n = 1 and X = {x} then f (x) = 1 defines a topological
numbering.

Now asssume that n > 1. Let z be a sink of D and define
f (z) = n. The digraph D′ = D − z is acyclic and by the
induction hypothesis it admits a topological numbering,
f : X \ {z} → [n − 1].

The function we have defined on X is a topological numbering.
If (x , y) ∈ A then either x , y 6= z and then f (x) < f (y) by our
assumption on f , or y = z and then f (x) < n = f (z) (x 6= z
because z is a sink). �
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Abstraction

The fact that D has a topological numbering implies that the
game must end. Each move increases the f value of the
current position by at least one and so after at most n moves a
sink must be reached.

The positions of a game are partitioned into 2 sets:
P-positions: The next player cannot win. The previous
player can win regardless of the current player’s strategy.
N-positions: The next player has a strategy for winning the
game.

Thus an N-position is a winning position for the next player and
a P-position is a losing position for the next player.

The main problem is to determine N and P and what the
strategy is for winning from an N-position.
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Abstraction

Let the vertices of D be x1, x2, . . . , xn, in topological order.

Labelling procedure
1 i ← n, Label xn with P. N ← ∅, P ← ∅.
2 i ← i − 1. If i = 0 STOP.
3 Label xi with N, if N+(xi) ∩ P 6= ∅.
4 Label xi with P, if N+(xi) ⊆ N.
5 goto 2.

The partition N,P satisfies

x ∈ N iff N+(x) ∩ P 6= ∅

To play from x ∈ N, move to y ∈ N+(x) ∩ P.
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Abstraction

In Game 1, P = {5k : k ≥ 0}.

In Game 2, P = {(x , x) : x ≥ 0}.

Lemma
The partition into N,P satisfying x ∈ N iff N+(x) ∩ P 6= ∅ is
unique.

Proof If there were two partitions Ni ,Pi , i = 1,2, let xi be
the vertex of highest topological number which is not in
(N1 ∩ N2) ∪ (P1 ∩ P2). Suppose that xi ∈ N1 \ N2.

But then xi ∈ N1 implies N+(xi) ∩ P1 ∩ {xi+1, . . . , xn} 6= ∅ and
xi ∈ P2 implies N+(xi) ∩ P2 ∩ {xi+1, . . . , xn} = ∅.

But P1 ∩ {xi+1, . . . , xn} = P2 ∩ {xi+1, . . . , xn}. �
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Sums of games

Suppose that we have p games G1,G2, . . . ,Gp with digraphs
Di = (Xi ,Ai), i = 1,2, . . . ,p.
The sum G1 ⊕G2 ⊕ · · · ⊕Gp of these games is played as
follows. A position is a vector
(x1, x2, . . . , xp) ∈ X = X1 × X2 × · · · × Xp. To make a move, a
player chooses i such that xi is not a sink of Di and then
replaces xi by y ∈ N+

i (xi). The game ends when each xi is a
sink of Di for i = 1,2, . . . ,n.

Knowing the partitions Ni ,Pi for game i = 1,2, . . . ,p does not
seem to be enough to determine how to play the sum of the
games.

We need more information. This will be provided by the
Sprague-Grundy Numbering
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Sums of games

Example
Nim In a one pile game, we start with a ≥ 0 chips and while
there is a positive number x of chips, a move consists of
deleting y ≤ x chips. In this game the N-positions are the
positive integers and the unique P-position is 0.

In general, Nim consists of the sum of n single pile games
starting with a1,a2, . . . ,an > 0. A move consists of deleting
some chips from a non-empty pile.

Example 2 is Nim with 2 piles.
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Sprague-Grundy (SG) Numbering

For S ⊆ {0,1,2, . . . , } let

mex(S) = min{x ≥ 0 : x /∈ S}.

Now given an acyclic digraph D = X ,A with topological
ordering x1, x2, . . . , xn define g iteratively by

1 i ← n, g(xn) = 0.
2 i ← i − 1. If i = 0 STOP.
3 g(xi) = mex({g(x) : x ∈ N+(xi)}).
4 goto 2.
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Lemma

x ∈ P ↔ g(x) = 0.

Proof Because

x ∈ N iff N+(x) ∩ P 6= ∅

all we have to show is that

g(x) > 0 iff ∃y ∈ N+(y) such that g(y) = 0.

But this is immediate from g(x) = mex({g(y) : y ∈ N+(x)}) �
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Another one pile subtraction game.
A player can remove any even number of chips, but not the
whole pile.
A player can remove the whole pile if it is odd.

The terminal positions are 0 or 2.

Lemma
g(0) = 0, g(2k) = k − 1 and g(2k − 1) = k for k ≥ 1.
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Sums of games

Proof 0,2 are terminal postions and so g(0) = g(2) = 0.
g(1) = 1 because the only position one can move to from 1 is
0. We prove the remainder by induction on k .

Assume that k > 1.

g(2k) = mex{g(2k − 2),g(2k − 4), . . . ,g(2)}
= mex{k − 2, k − 3, . . . ,0}
= k − 1.

g(2k − 1) = mex{g(2k − 3),g(2k − 5), . . . ,g(1),g(0)}
= mex{k − 1, k − 2, . . . ,0}
= k .

�

Covered so far



11 /15/2023

Covered so far



Sums of games

We now show how to compute the SG numbering for a sum of
games.

For binary integers a = amam−1 · · · a1a0 and
b = bmbm−1 · · · b1b0 we define a⊕ b = cmcm−1 · · · c1c0 by

ci =

{
1 if ai 6= bi

0 if ai = bi

for i = 1,2, . . . ,m.

So 11⊕ 5 = 14.
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Sums of games

Theorem
If gi is the SG function for game Gi , i = 1,2, . . . ,p then the SG
function g for the sum of the games G = G1 ⊕G2 ⊕ · · · ⊕Gp is
defined by

g(x) = g1(x1)⊕ g2(x2)⊕ · · · ⊕ gp(xp)

where x = (x1, x2, . . . , xp).

For example if in a game of Nim, the pile sizes are x1, x2, . . . , xp
then the SG value of the position is

x1 ⊕ x2 ⊕ · · · ⊕ xp
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Sums of games

Proof It is enough to show this for p = 2 and then use
induction on p.

Write G = H ⊕Gp where H = G1 ⊕G2 ⊕ · · · ⊕Gp−1. Let h be
the SG numbering for H. Then, if y = (x1, x2, . . . , xp−1),

g(x) = h(y)⊕ gp(xp) assuming theorem for p = 2
= g1(x1)⊕ g2(x2)⊕ · · · ⊕ gp−1(xp−1)⊕ gp(xp)

by induction.
It is enough now to show, for p = 2, that

A1 If x ∈ X and g(x) = b > a then there exists
x ′ ∈ N+(x) such that g(x ′) = a.

A2 If x ∈ X and g(x) = b and x ′ ∈ N+(x) then
g(x ′) 6= g(x).

A3 If x ∈ X and g(x) = 0 and x ′ ∈ N+(x) then
g(x ′) 6= 0

Covered so far



Sums of games

A1. Write d = a⊕ b. Then

a = d ⊕ b = d ⊕ g1(x1)⊕ g2(x2). (18)

Now suppose that we can show that either

(i) d ⊕g1(x1) < g1(x1) or (ii) d ⊕g2(x2) < g2(x2) or both. (19)

Assume that (i) holds.

Then since g1(x1) = mex(N+
1 (x1)) there must exist x ′1 ∈ N+

1 (x1)
such that g1(x ′1) = d ⊕ g1(x1).

Then from (21) we have

a = g1(x ′1)⊕ g2(x2) = g(x ′1, x2).

Furthermore, (x ′1, x2) ∈ N+(x) and so we will have verified A1.
Covered so far
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Let us verify (19).

Suppose that 2k−1 ≤ d < 2k .

Then d has a 1 in position k and no higher.

Since dk = ak ⊕ bk and a < b we must have ak = 0 and bk = 1.

So either (i) g1(x1) has a 1 in position k or (ii) g2(x2) has a 1 in
position k . Assume (i).

But then d ⊕ g1(x1) < g1(x1) since d “destroys” the k th bit of
g1(x1) and does not change any higher bit.
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A2. Suppose without loss of generality that g(x ′1, x2) = g(x1, x2)
where x ′1 ∈ N+(x1).

Then g1(x ′1)⊕ g2(x2) = g1(x1)⊕ g2(x2) implies that
g1(x ′1) = g1(x1), contradition. �

A3. Suppose that g1(x1)⊕ g2(x2) = 0 and g1(x ′1)⊕ g2(x2) = 0
where x ′1 ∈ N+(x1).

Then g1(x1) = g1(x ′1), contradicting
g1(x1) = mex{g1(x) : x ∈ N+(x1)}.
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If we apply this theorem to the game of Nim then if the position
x consists of piles of xi chips for i = 1,2, . . . ,p then
g(x) = x1 ⊕ x2 ⊕ · · · ⊕ xp.

In our first example, g(x) = x mod 5 and so for the sum of p
such games we have

g(x1, x2, . . . , xp) = (x1 mod 5)⊕(x2 mod 5)⊕· · ·⊕(xp mod 5).
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A more complicated one pile game

Start with n chips. First player can remove up to n − 1 chips.

In general, if the previous player took x chips, then the next
player can take y ≤ x chips.

Thus a games position can be represented by (n, x) where n is
the current size of the pile and x is the maximum number of
chips that can be removed in this round.

Theorem

Suppose that the position is (n, x) where n = m2k and m is
odd. Then,

(a) This is an N-position if x ≥ 2k .
(b) This is a P-position if m = 1 and x < n.
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A more complicated one pile game

Proof For a non-negative integer n = m2k , let ones(n)
denote the number of ones in the binary expansion of n and let
k = ρ(n) determine the position of the right-most one in this
expansion.

We claim that the following strategy is a win for the player in a
postion described in (a):

Remove y = 2k chips.

Suppose this player is A.

If m = 1 then x ≥ n and A wins.
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A more complicated one pile game

Otherwise, after such a move the position is (n′, y) where
ρ(n′) > ρ(n).

Note first that ones(n′) = ones(n)− 1 > 0 and ρ(n′) > k .
B cannot remove more than 2k chips and so B cannot win at
this point.

If B moves the position to (n′′, x ′′) then ones(n′′) > ones(n′)
and furthermore, x ′′ ≥ 2ρ(n

′′), since x ′′ must have a 1 in position
ρ(n′′). ( ρ(n′′) is the least significant bit of x ′′.)

Thus, by induction, A is in an N-position and wins the game.

To prove (b), note that after the first move, the position satisfies
the conditions of (a). �.

Covered so far



11/17/2023

Covered so far



Geography

Start with a chip sitting on a vertex v of a graph or digraph G.
A move consists of moving the chip to a neighbouring vertex.

In edge geography, moving the chip from x to y deletes the
edge (x , y). In vertex geography, moving the chip from x to y
deletes the vertex x .

The problem is given a position (G, v), to determine whether
this is a P or N position.

Complexity Both edge and vertex geography are Pspace-hard
on digraphs. Edge geography is Pspace-hard on an undirected
graph. Only vertex geography on a graph is polynomial time
solvable.
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Undirected Vertex Geography

We need some simple results from the theory of matchings on
graphs.
A matching M of a graph G = (V ,E) is a set of edges, no two
of which are incident to a common vertex.

P
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Undirected Vertex Geography

M-alternating path

M M M M Mnot not

a

b

c

d

e

f

(a,b,c,d,e,f) is an

M-alternating path

An M-alternating path joining 2 M-unsaturated vertices is called
an M-augmenting path.
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Undirected Vertex Geography

M is a maximum matching of G if no matching M ′ has more
edges.

Theorem
M is a maximum matching iff M admits no M-augmenting paths.

Proof Suppose M has an augmenting path
P = (a0,b1,a1, . . . ,ak ,bk+1) where
ei = (ai−1,bi) /∈ M, 1 ≤ i ≤ k + 1 and
fi = (bi ,ai) ∈ M, 1 ≤ i ≤ k .

0

1

1

2

2

a

b

a

b

a

b 3

Let M ′ = M − {f1, f2, . . . , fk}+ {e1,e2, . . . ,ek+1}.
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|M ′| = |M|+ 1.
M ′ is a matching

For x ∈ V let dM(x) denote the degree of x in matching M, So
dM(x) is 0 or 1.

dM′(x) =


dM(x) x 6∈ {a0,b1, . . . ,bk+1}
dM(x) x ∈ {b1, . . . ,ak}
dM(x) + 1 x ∈ {a0,bk+1}

So if M has an augmenting path it is not maximum.
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Suppose M is not a maximum matching and |M ′| > |M|.
Consider H = G[M∇M ′] where M∇M ′ = (M \M ′) ∪ (M ′ \M) is
the set of edges in exactly one of M,M ′.
Maximum degree of H is 2 – ≤ 1 edge from M or M ′. So H is a
collection of vertex disjoint alternating paths and cycles.

M

M’

x

y

(a) (b)

(c) (d)

x,y M-unsaturated

|M ′| > |M| implies that there is at least one path of type (d).
Such a path is M-augmenting �
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Theorem
(G, v) is an N-position in UVG iff every maximum matching of
G covers v.

Proof (i) Suppose that M is a maximum matching of G
which covers v . Player 1’s strategy is now: Move along the
M-edge that contains the current vertex.

If Player 1 were to lose, then there would exist a sequence of
edges e1, f1, . . . ,ek , fk such that v ∈ e1, e1,e2, . . . ,ek ∈ M,
f1, f2, . . . , fk /∈ M and fk = (x , y) where y is the current vertex for
Player 1 and y is not covered by M.

But then if A = {e1,e2, . . . ,ek} and B = {f1, f2, . . . , fk} then
(M \ A) ∪ B is a maximum matching (same size as M) which
does not cover v , contradiction.
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(ii) Suppose now that there is some maximum matching M
which does not cover v . If (v ,w) is Player 1’s move,then w

must be covered by M, else M is not a maximum matching.

Player 2’s strategy is now: Move along the M-edge that
contains the current vertex. If Player 2 were to lose then there
exists e1 = (v ,w), f1, . . . ,ek , fk ,ek+1 = (x , y) where y is the
current vertex for Player 2 and y is not covered by M.

But then we have defined an augmenting path from v to y and
so M is not a maximum matching, contradiction. �
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Note that we can determine whether or not v is covered by all
maximum matchings as follows: Find the size σ of the
maximum matching G.

This can be done in O(n3) time on an n-vertex graph. Find the
size σ′ of a maximum matching in G − v . Then v is covered by
all maximum matchings of G iff σ 6= σ′.
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Tic Tac Toe

We consider the following multi-dimensional version of Tic Tac
Toe (Noughts and Crosses to the English).

The board consists of [n]d . A point on the board is therefore a
vector (x1, x2, . . . , xd ) where 1 ≤ xi ≤ n for 1 ≤ i ≤ d .

A line is a set points (x (1)
j , x (2)

j , . . . , x (d)
j ), j = 1,2, . . . ,n where

each sequence x (i) is either (i) of the form k , k , . . . , k for some
k ∈ [n] or is (ii) 1,2, . . . ,n or is (iii) n,n − 1, . . . ,1. Finally, we
cannot have Case (i) for all i .

Thus in the (familiar) 3× 3 case, the top row is defined by
x (1) = 1,1,1 and x (2) = 1,2,3 and the diagonal from the
bottom left to the top right is defined by x (1) = 3,2,1 and
x (2) = 1,2,3
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Lemma

The number of winning lines in the (n,d) game is (n+2)d−nd

2 .

Proof In the definition of a line there are n choices for k in
(i) and then (ii), (iii) make it up to n + 2. There are d
independent choices for each i making (n + 2)d .

Now delete nd choices where only Case (i) is used. Then divide
by 2 because replacing (ii) by (iii) and vice-versa whenever
Case (i) does not hold produces the same set of points
(traversing the line in the other direction). �
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Tic Tac Toe

The game is played by 2 players. The Red player (X player)
goes first and colours a point red. Then the Blue player (0
player) colours a different point blue and so on.

A player wins if there is a line, all of whose points are that
players colour. If neither player wins then the game is a draw.
The second player does not have a wnning strategy:

Lemma

Player 1 can always get at least a draw.
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Proof We prove this by considering strategy stealing.

Suppose that Player 2 did have a winning strategy. Then Player
1 can make an arbitrary first move x1. Player 2 will then move
with y1. Player 1 will now win playing the winning strategy for
Player 2 against a first move of y1.

This can be carried out until the strategy calls for move x1 (if at
all). But then Player 1 can make an arbitrary move and
continue, since x1 has already been made. �

The Hales-Jewett Theorem of Ramsey Theory implies that
there is a winner in the (n,d) game, when n is large enough
with respect to d . The winner is of course Player 1.
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
11 1 8 1 12
6 2 2 9 10
3 7 ∗ 9 3
6 7 4 4 10

12 5 8 5 11


The above array gives a strategy for Player 2 in the 5× 5 game
(d = 2,n = 5).

For each of the 12 lines there is an associated pair of positions.
If Player 1 chooses a position with a number i , then Player 2
responds by choosing the other cell with the number i .

This ensures that Player 1 cannot take line i . If Player 1
chooses the * then Player 2 can choose any cell with an
unused number.
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So, later in the game if Player 1 chooses a cell with j and Player
2 already has the other j , then Player 2 can choose an arbitrary
cell.

Player 2’s strategy is to ensure that after all cells have been
chosen, he/she will have chosen one of the numbered cells
asociated with each line. This prevents Player 1 from taking a
whole line. This is called a pairing strategy.
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We now generalise the game to the following: We have a family
F = A1,A2, . . . ,AN ⊆ A. A move consists of one player, taking
an uncoloured member of A and giving it his colour.

A player wins if one of the sets Ai is completely coloured with
his colour.

A pairing strategy is a collection of distinct elements
X = {x1, x2, . . . , x2N−1, x2N} such that x2i−1, x2i ∈ Ai for i ≥ 1.

This is called a draw forcing pairing. Player 2 responds to
Player 1’s choice of x2i+δ, δ = 0,1 by choosing x2i+3−δ. If Player
1 does not choose from X , then Player 2 can choose any
uncoloured element of X .
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In this way, Player 2 avoids defeat, because at the end of the
game Player 2 will have coloured at least one of each of the
pairs x2i−1, x2i and so Player 1 cannot have completely
coloured Ai for i = 1,2, . . . ,N.
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Theorem

If ∣∣∣∣∣ ⋃
X∈G

X

∣∣∣∣∣ ≥ 2|G| ∀G ⊆ F (20)

then there is a draw forcing pairing.

Proof We define a bipartite graph Γ. A will be one side of
the bipartition and B = {b1,b2, . . . ,b2N}. Here b2i−1 and b2i
both represent Ai in the sense that if a ∈ Ai then there is an
edge (a,b2i−1) and an edge (a,b2i).

A draw forcing pairing corresponds to a complete matching of B
into A and the condition (20) implies that Hall’s condition is
satisfied. �
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Corollary

If |Ai | ≥ n for i = 1,2, . . . ,n and every x ∈ A is contained in at
most n/2 sets of F then there is a draw forcing pairing.

Proof The degree of a ∈ A is at most 2(n/2) in Γ and the
degree of each b ∈ B is at least n. This implies (via Hall’s
condition) that there is a complete matching of B into A. �
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Consider Tic tac Toe when d = 2. If n is even then every array
element is in at most 3 lines (one row, one column and at most
one diagonal) and if n is odd then every array element is in at
most 4 lines (one row, one column and at most two diagonals).

Thus there is a draw forcing pairing if n ≥ 6, n even and if
n ≥ 9, n odd. (The cases n = 4,7 have been settled as draws.
n = 7 required the use of a computer to examine all possible
strategies.)
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In general we have

Lemma

If n ≥ 3d − 1 and n is odd or if n ≥ 2d − 1 and n is even, then
there is a draw forcing pairing of (n,d) Tic tac Toe.

Proof We only have to estimate the number of lines
through a fixed point c = (c1, c2, . . . , cd ).

If n is odd then to choose a line L through c we specify, for each
index i whether L is (i) constant on i , (ii) increasing on i or (iii)
decreasing on i .

This gives 3d choices. Subtract 1 to avoid the all constant case
and divide by 2 because each line gets counted twice this way.
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When n is even, we observe that once we have chosen in
which positions L is constant, L is determined.

Suppose c1 = x and 1 is not a fixed position. Then every other
non-fixed position is x or n − x + 1. Assuming w.l.o.g. that
x ≤ n/2 we see that x < n − x + 1 and the positions with x
increase together at the same time as the positions with
n − x + 1 decrease together.

Thus the number of lines through c in this case is bounded by∑d−1
i=0

(d
i

)
= 2d − 1. �
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Quasi-probabilistic method

We now prove a theorem of Erdős and Selfridge.

Theorem

If |Ai | ≥ n for i ∈ [N] and N < 2n−1, then Player 2 can get a
draw in the game defined by F .

Proof At any point in the game, let Cj denote the set of
elements in A which have been coloured with Player j ’s colour,
j = 1,2 and U = A \ C1 ∪ C2. Let

Φ =
∑

i:Ai∩C2=∅

2−|Ai∩U|.

Suppose that the players choices are x1, y1, x2, y2, . . . ,. Then
we observe that immediately after Player 1’s first move,
Φ < N2−(n−1) < 1.
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Quasi-probabilistic method

We will show that Player 2 can keep Φ < 1 through out. Then at
the end, when U = ∅, Φ =

∑
i:Ai∩C2=∅ 1 < 1 implies that

Ai ∩ C2 6= ∅ for all i ∈ [N].

So, now let Φj be the value of Φ after the choice of x1, y1, . . . , xj .
then if U,C1,C2 are defined at precisely this time,

Φj+1 − Φj = −
∑

i:Ai∩C2=∅
yj∈Ai

2−|Ai∩U| +
∑

i:Ai∩C2=∅
yj /∈Ai ,xj+1∈Ai

2−|Ai∩U|

≤ −
∑

i:Ai∩C2=∅
yj∈Ai

2−|Ai∩U| +
∑

i:Ai∩C2=∅
xj+1∈Ai

2−|Ai∩U|
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Quasi-probabilistic method

We deduce that Φj+1 − Φj ≤ 0 if Player 2 chooses yj to
maximise

∑
i:Ai∩C2=∅

y∈Ai

2−|Ai∩U| over y .

In this way, Player 2 keeps Φ < 1 and obtains a draw. �

In the case of (n,d) Tic Tac Toe, we see that Player 2 can force
a draw if

(n + 2)d − nd

2
< 2n−1

which is implied, for n large, by

n ≥ (1 + ε)d log2 d

where ε > 0 is a small positive constant.

Covered so far



11/27/2023

Covered so far



Polya’s Theory of Counting

Example 1 A disc lies in a plane. Its centre is fixed but it is free
to rotate. It has been divided into n sectors of angle 2π/n. Each
sector is to be colored Red or Blue. How many different
colorings are there?

One could argue for 2n.

On the other hand, what if we only distinguish colorings which
cannot be obtained from one another by a rotation. For
example if n = 4 and the sectors are numbered 0,1,2,3 in
clockwise order around the disc, then there are only 6 ways of
coloring the disc – 4R, 4B, 3R1B, 1R3B, RRBB and RBRB.
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Example 2

Now consider an n × n “chessboard” where n ≥ 2. Here we
color the squares Red and Blue and two colorings are different
only if one cannot be obtained from another by a rotation or a
reflection. For n = 2 there are 6 colorings.

The general scenario that we consider is as follows: We have a
set X which will stand for the set of colorings when
transformations are not allowed. (In example 1, |X | = 2n and in
example 2, |X | = 2n2

).

In addition there is a set G of permutations of X . This set will
have a group structure:

Given two members g1,g2 ∈ G we can define their composition
g1 ◦ g2 by g1 ◦ g2(x) = g1(g2(x)) for x ∈ X . We require that G is
closed under composition i.e. g1 ◦ g2 ∈ G if g1,g2 ∈ G.
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We also have the following:
A1 The identity permutation 1X ∈ G.
A2 (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3) (Composition is

associative).
A3 The inverse permutation g−1 ∈ G for every g ∈ G.

(A set G with a binary relation ◦ which satisfies A1,A2,A3 is
called a Group).
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In example 1 D = {0,1,2, . . . ,n − 1}, X = 2D and the group is
G1 = {e0,e1, . . . ,en−1} where ej ∗ x = x + j mod n stands for
rotation by 2jπ/n.

In example 2, X = 2[n]2 . We number the squares 1,2,3,4 in
clockwise order starting at the upper left and represent X as a
sequence from {r ,b}4 where for example rrbr means color
1,2,4 Red and 3 Blue. G2 = {e,a,b, c,p,q, r , s} is in a sense
independent of n. e,a,b, c represent a rotation through
0,90,180,270 degrees respectively. p,q represent reflections
in the vertical and horizontal and r , s represent reflections in the
diagonals 1,3 and 2,4 respectively.
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e a b c p q r s
rrrr rrrr rrrr rrrr rrrr rrrr rrrr rrrr rrrr
brrr brrr rbrr rrbr rrrb rbrr rrrb brrr rrbr
rbrr rbrr rrbr rrrb brrr brrr rrbr rrrb rbrr
rrbr rrbr rrrb brrr rbrr rrrb rbrr rrbr brrr
rrrb rrrb brrr rbrr rrbr rrbr brrr rbrr rrrb
bbrr bbrr rbbr rrbb brrb bbrr rrbb brrb rbbr
rbbr rbbr rrbb brrb bbrr brrb rbbr rrbb bbrr
rrbb rrbb brrb bbrr rbbr rrbb bbrr rbbr brrb
brrb brrb bbrr rbbr rrbb rbbr brrb bbrr rrbb
rbrb rbrb brbr rbrb brbr brbr brbr rbrb rbrb
brbr brbr rbrb brbr rbrb rbrb rbrb brbr brbr
bbbr bbbr rbbb brbb bbrb bbrb rbbb brbb bbbr
bbrb bbrb bbbr rbbb brbb bbbr brbb bbrb rbbb
brbb brbb bbrb bbbr rbbb brbb bbrb bbbr brbb
rbbb rbbb brbb bbrb bbbr brbb bbbr rbbb bbrb
bbbb bbbb bbbb bbbb bbbb bbbb bbbb bbbb bbbb
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From now on we will write g ∗ x in place of g(x).
Orbits: If x ∈ X then its orbit
Ox = {y ∈ X : ∃g ∈ G such that g ∗ x = y}.
Lemma 1 The orbits partition X .
Proof x = 1X ∗ x and so x ∈ Ox and so X =

⋃
x∈X Ox .

Suppose now that Ox ∩Oy 6= ∅ i.e. ∃g1,g2 such that
g1 ∗ x = g2 ∗ y . But then for any g ∈ G we have

g ∗ x = (g ◦ (g−1
1 ◦ g2)) ∗ y ∈ Oy

and so Ox ⊆ Oy . Similarly Oy ⊆ Ox . Thus Ox = Oy whenever
Ox ∩Oy 6= ∅. �
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The two problems we started with are of the following form:
Given a set X and a group of permutations acting on X ,
compute the number of orbits i.e. distinct colorings.

A subset H of G is called a sub-group of G if it satisfies axioms
A1,A2,A3 (with G replaced by H).

The stabilizer Sx of the element x is {g : g ∗ x = x}. It is a
sub-group of G.

A1: 1X ∗ x = x .
A3: g,h ∈ Sx implies (g ◦ h) ∗ x = g ∗ (h ∗ x) = g ∗ x = x .

A2 holds for any subset.

Covered so far



Lemma 2
If x ∈ X then |Ox | |Sx | = |G|.
Proof Fix x ∈ X and define an equivalence relation ∼ on G
by

g1 ∼ g2 if g1 ∗ x = g2 ∗ x .

Let the equivalence classes be A1,A2, . . . ,Am. We first argue
that

|Ai | = |Sx | i = 1,2, . . . ,m. (21)

Fix i and g ∈ Ai . Then

h ∈ Ai ↔ g ∗ x = h ∗ x ↔ (g−1 ◦ h) ∗ x = x

↔ (g−1 ◦ h) ∈ Sx ↔ h ∈ g ◦ Sx

where g ◦ Sx = {g ◦ σ : σ ∈ Sx}.
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Thus |Ai | = |g ◦ Sx |. But |g ◦ Sx | = |Sx | since if σ1, σ2 ∈ Sx and
g ◦ σ1 = g ◦ σ2 then

g−1 ◦ (g ◦ σ1) = (g−1 ◦ g) ◦ σ1 = σ1 = g−1 ◦ (g ◦ σ2) = σ2.

This proves (21).

Finally, m = |Ox | since there is a distinct equivalence class for
each distinct g ∗ x . �
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x Ox Sx
rrrr {rrrr} G
brrr {brrr,rbrr,rrbr,rrrb} {e0} E
rbrr {brrr,rbrr,rrbr,rrrb} {e0} x
rrbr {brrr,rbrr,rrbr,rrrb} {e0} a
rrrb {brrr,rbrr,rrbr,rrrb} {e0} m
bbrr {bbrr,rbbr,rrbb,brrb} {e0} p
rbbr {bbrr,rbbr,rrbb,brrb} {e0} l
rrbb {bbrr,rbbr,rrbb,brrb} {e0} e
brrb {bbrr,rbbr,rrbb,brrb} {e0}
rbrb {rbrb,brbr} {e0,e2} 1
brbr {rbrb,brbr} {e0,e2}
bbbr {bbbr,rbbb,brbb,bbrb} {e0} n = 4
bbrb {bbbr,rbbb,brbb,bbrb} {e0}
brbb {bbbr,rbbb,brbb,bbrb} {e0}
rbbb {bbbr,rbbb,brbb,bbrb} {e0}
bbbb {bbbb} G
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x Ox Sx
rrrr {e} G
brrr {brrr,rbrr,rrbr,rrrb} {e,r} E
rbrr {brrr,rbrr,rrbr,rrrb} {e,s} x
rrbr {brrr,rbrr,rrbr,rrrb} {e,r} a
rrrb {brrr,rbrr,rrbr,rrrb} {e,s} m
bbrr {bbrr,rbbr,rrbb,brrb} {e,p} p
rbbr {bbrr,rbbr,rrbb,brrb} {e,q} l
rrbb {bbrr,rbbr,rrbb,brrb} {e,p} e
brrb {bbrr,rbbr,rrbb,brrb} {e,q}
rbrb {rbrb,brbr} {e,b,r,s} 2
brbr {rbrb,brbr} {e,b,r,s}
bbbr {bbbr,rbbb,brbb,bbrb} {e,s}
bbrb {bbbr,rbbb,brbb,bbrb} {e,r}
brbb {bbbr,rbbb,brbb,bbrb} {e,s}
rbbb {bbbr,rbbb,brbb,bbrb} {e,r}
bbbb {e} G
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Let νX ,G denote the number of orbits.
Theorem 1

νX ,G =
1
|G|

∑
x∈X

|Sx |.

Proof

νX ,G =
∑
x∈X

1
|Ox |

=
∑
x∈X

|Sx |
|G|

,

from Lemma 1. �
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Thus in example 1 we have

νX ,G =
1
4

(4+1+1+1+1+1+1+1+1+2+2+1+1+1+1+4) = 6.

In example 2 we have

νX ,G =
1
8

(8+2+2+2+2+2+2+2+2+4+4+2+2+2+2+8) = 6.

Theorem 1 is hard to use if |X | is large, even if |G| is small.

For g ∈ G let Fix(g) = {x ∈ X : g ∗ x = x}.
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Theorem 2
(Frobenius, Burnside)

νX ,G =
1
|G|

∑
g∈G

|Fix(g)|.

Proof Let A(x ,g) = 1g∗x=x . Then

νX ,G =
1
|G|

∑
x∈X

|Sx |

=
1
|G|

∑
x∈X

∑
g∈G

A(x ,g)

=
1
|G|

∑
g∈G

∑
x∈X

A(x ,g)

=
1
|G|

∑
g∈G

|Fix(g)|.

�
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Let us consider example 1 with n = 6. We compute

g e0 e1 e2 e3 e4 e5
|Fix(g)| 64 2 4 8 4 2

Applying Theorem 2 we obtain

νX ,G =
1
6

(64 + 2 + 4 + 8 + 4 + 2) = 14.
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Cycles of a permutation

Let π : D → D be a permutation of the finite set D. Consider the
digraph Γπ = (D,A) where A = {(i , π(i)) : i ∈ D}. Γπ is a
collection of vertex disjoint cycles. Each x ∈ D being on a
unique cycle. Here a cycle can consist of a loop i.e. when
π(x) = x .
Example: D = [10].

i 1 2 3 4 5 6 7 8 9 10
π(i) 6 2 7 10 3 8 9 1 5 4

The cycles are (1,6,8), (2), (3,7,9,5), (4,10).

Covered so far



In general consider the sequence i , π(i), π2(i), . . . ,.

Since D is finite, there exists a first pair k < ` such that
πk (i) = π`(i). Now we must have k = 0, since otherwise putting
x = πk−1(i) 6= y = π`−1(i) we see that π(x) = π(y),
contradicting the fact that π is a permutation.

So i lies on the cycle C = (i , π(i), π2(i), . . . , πk−1(i), i).

If j is not a vertex of C then π(j) is not on C and so we can
repeat the argument to show that the rest of D is partitioned
into cycles.
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Suppose now that X is the set of colorings of D.

Observe that if coloring x is fixed by g ∈ G then the elements
on the same cycle Ci must be colored the same.

Thus if c(g) denotes the number of cycles of g and q is the
number of colors, then |Fix(g)| = qc(g).
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