Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2015: Test 2

Name:_____

Problem	Points	Score
1	20	
2	40	
3	40	
Total	100	

Q1: (20pts)

Use the Pigeon-Hole Principle to show that if n is odd and π is a permutation of [n] then the product $\prod_{i=1}^{n} (i - \pi(i))$ is even.

Solution: Let n = 2m + 1. There are m + 1 odd numbers in [n] and m even numbers. By the PHP there must be an odd i such that $\pi(i)$ is also odd. But then $i - \pi(i)$ is even and the product itself is even.

Let G = (V, E) be a graph of maximum degree d. Let V_1, V_2, \ldots, V_r be a partition of V such that $|V_i| \ge 10d$ for $i = 1, 2, \ldots, r$. Use the local lemma to show that G contains a set S such that (i) $|S \cap V_i| = 1$ for $i = 1, 2, \ldots, r$ and (ii) S is independent, i.e. contains no edges of G.

Solution: We can remove vertices from each V_i if needed and so we can assume w.l.o.g. that $|V_i| = 10d$ for i = 1, 2, ..., r. Choose v_i randomly from V_i for i = 1, 2, ..., r and let $S = \{v_1, v_2, ..., v_r\}$. For an edge $e = \{x, y\} \in E$ we let \mathcal{E}_e be the event that both $x, y \in S$. Thus $\mathbf{P}(\mathcal{E}_e) \leq p = \frac{1}{100d^2}$. An event \mathcal{E}_e depends only on events \mathcal{E}_f for which e and f shae a common vertex. Thus the dependency graph has degree at most $20d^2$. So, $4dp \leq \frac{80d^2}{100d^2} < 1$.

(a) Show that in any 3-coloring of the edges of K_{17} there is a monochromatic triangle.

Solution: Vertex 1 has degree 16 and so at least one color is used at least 6 times. Let this color be red and suppose that $\{1, j\}$ is red for j = 2, 3, ..., 7. If there is a red edge $\{x, y\}$ in [2, 7] then $\{1, x, y\}$ is a red triangle. Otherwise [2, 7] is 2-colored and because R(3, 3) = 6 it must contain a monochromatic triangle.

(b) Give a 3-coloring of the edges of K_{10} without a monochromatic triangle. **Solution:** Partition [10] into two 5-sets S_1, S_2 . Color the edges between S_1, S_2 with color 1. This does not create a triangle of color 1. Then because R(3,3) = 6, we can use colors 2,3 to color the edges in each V_i without creating a monochromatic triangle.