Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2015: Test 1

ame:			_

Problem	Points	Score
1 (a)	20	
1 (b)	20	
2	40	
3	20	
Total	100	

Q1: (40pts)

How many sequences $a_1, a_2, \ldots, a_m \in [n]$ satisfy $a_{i+1} - a_i \ge 2$ for $1 \le i < m$? **Solution:** Let $a_1 = 0$ and $a_{m+1} = n$ and $b_i = a_{i+1} - a_i, i = 1, 2, \ldots, m$. Then we have

$$b_0 + b_1 + \dots + b_m = n$$
 and $b_0 \ge 1, b_m \ge 0, b_i \ge 2, i = 2, 3, \dots, m - 1$.

There is a 1-1 correspondence between the two sequences $(a_i), (b_i)$ and the number of choices for the b_i 's is

$$\binom{m+n-1-2(m-1)-1}{m+1-1} = \binom{n-m}{m}.$$

Q2: (40pts)

Let G = (V, E) be a graph with |V| = n and minimum degree at least $\delta \geq 10$. Show that there is a set A of size at most $\frac{2 \log \delta + 1}{\delta} n$ such that each vertex not in A is adjacent to at least two vertices in A.

Solution: Choose S_1 from [n] by inclding each element independently with probability p. Then let S_2 be the set of elements, notin S_1 , with at most one neighbor in S_1 . Let $S = S_1 \cup S_2$. It satisfies the requirements of A. Then,

$$\mathbf{E}(|S|) \le np + n(1-p)((1-p)^{\delta} + \delta p(1-p)^{\delta-1}) \le np + ne^{-\delta p}(1+\delta p).$$

Putting $p = \frac{\log \delta}{\delta}$ gives

$$\mathbf{E}(|S|) \le n \frac{\log \delta}{\delta} + \frac{n}{\delta}(1 + \delta p) = \frac{2\log \delta + 1}{\delta}n.$$

This implies the existence of A.

Q3: (20pts)

A set A of $\{0,1\}$ strings of length n is said to be (n,k)-universal if for any subset of k coordinates $S = \{i_1, i_2, \dots, i_k\}$ the projection

$$A_S = \{(a_{i_1}, a_{i_2}, \dots, a_{i_k}) : (a_1, a_2, \dots, a_n) \in A\}$$

contains all possible 2^k strings of length k. Show that if $\binom{n}{k} 2^k (1 - 2^{-k})^r < 1$ then there is an (n, k)-universal set of size r.

Solution: Let A be a set or r random strings. If A is not (n, k)-universal then there exists a set S of size k and an $x \in \{0, 1\}^k$ that is not the projection of a string in A. Let $\mathcal{E}_{S,x}$ denote this event. The union bound implies that the probability of this is at most

$$\sum_{S} \sum_{x} \mathbf{P}(\mathcal{E}_{S,x}) = \binom{n}{k} 2^{k} \left(1 - \frac{1}{2^{k}}\right)^{r} < 1.$$

This implies the existence of an (n, k)-universal set of size r. by assumption.