Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2012: Test 3

Name:_____

Andrew ID:_____

Write your name and Andrew ID on every page.

Problem	Points	Score
1	40	
2	40	
3	20	
Total	100	

In a sequence a_1, a_2, \ldots, a_n of real numbers, let p be the maximum number of times a value is repeated, let q be the maximum length of a strictly monotone increasing sub-sequence and let r be the maximum length of a strictly monotone decreasing sub-sequence. Prove that $pqr \ge n$.

A subsequence $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ where $i_1 < i_2 < \cdots < i_k$ is strictly monotone increasing (resp. decreasing) if $a_{i_1} < a_{i_2} < \cdots < a_{i_k}$ (resp. $a_{i_1} > a_{i_2} > \cdots > a_{i_k}$).

Answer: By the pigeon hole principle there must be at least $\lceil n/p \rceil$ distinct values in the sequence. Prune the sequence to remove repetitions. By the Erdős-Szekerés theorem, as applied to this sub-sequence, we have $qr \ge \lceil n/p \rceil$.

Q2: (40pts)

Let R(p, q, r) denote the minimum n such that if the edges of K_n are colored Red, Blue or Green, then there exists a Red K_p or a Blue K_q or a Green K_r (inclusive or).

(a) Prove that

$$R(p,q,r) \le R(p-1,q,r) + R(p,q-1,r) + R(p,q,r-1).$$

(b) Deduce from (a) that $R(p,q,r) \leq 3^{p+q+r}$.

Answer:

(a) Let n = R(p-1,q,r) + R(p,q-1,r) + R(p,q,r-1). We apply induction on p+q+r. The base case p=q=1 is trivial.

Consider the coloring of the edges incident with vertex 1. Let V_R, V_B, V_G be the neighbors of 1 whose edges to 1 are colored Red, Blue, Green respectively. Then, $|V_R| \ge R(p-1,q,r)$ or $|V_B| \ge R(p,q-1,r)$ or $|V_G| \ge R(p,q,r-1)$. Assume without loss that $|V_R| \ge R(p-1,q,r)$. Consider the coloring of the edges contained in V_R . Either there is a Red K_{p-1} which with 1 makes a Red K_p or there is a Blue K_q or a Green K_r .

(b) It follows by induction on p + q + r that

$$R(p,q,r) \le 3^{p-1+q+r} + 3^{p+q-1+r} + 3^{p+q+r-1} = 3^{p+q+r}.$$

Q3: (20pts)

Let R_k denote the minimum value of n such that if the edges of K_n are colored with k colors then there must be a monochromatic path of length two. Prove that

$$R_k \le \begin{cases} k+1 & k \text{ even} \\ k+2 & k \text{ odd} \end{cases}$$

Answer: Suppose that we color K_n with k colors and $n \ge k+2$ then vertex 1 is incident with more than k edges and so two edges incident with vertex 1 are of the same color. This implies that there is a monochromatic path. So, $R_k \le k+2$.

Suppose now that k is even and n = k + 1. Then each vertex has degree k and to avoid a monochromatic path, each vertex is incident to a vertex of each color and edges of the same color form a matching. In particular, every vertex is incident with an edge of color 1. But, since n = k + 1 is odd, there are no perfect matchings and so $R_k \leq k + 1$.