Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2009: Test 2

Name:

Q1: (40pts)

The sequence $a_0, a_1, \ldots, a_n, \ldots$ satisfies the following: $a_0 = 1$ and

$$
a_n - 7a_{n-1} = 6^n
$$

for $n \geq 1$.

(a): Find the generating function $a(x) = \sum_{n=0}^{\infty} a_n x^n$. (b): Find an expression for a_n , $n \geq 0$.

[Hint: $\frac{1}{(1-7x)(1-6x)} = \frac{7}{1-7x} - \frac{6}{1-6}$ $\frac{6}{1-6x}$.] **Solution:** Multiply each equation by x^n and sum. We have

$$
\sum_{n=1}^{\infty} (a_n - 7a_{n-1})x^n = \sum_{n=1}^{\infty} 6^n x^n.
$$

\n
$$
(a(x) - 1) - 7xa(x) = \frac{1}{1 - 6x} - 1.
$$

\n
$$
a(x) = \frac{1}{(1 - 6x)(1 - 7x)}
$$

\n
$$
= \frac{7}{1 - 7x} - \frac{6}{1 - 6x}
$$

\n
$$
= \sum_{n=0}^{\infty} (7^{n+1} - 6^{n+1})x^n.
$$

So,

$$
a_n = 7^{n+1} - 6^{n+1}
$$

How many ways are there of k -coloring the squares of the above picture if the group acting is $e_0, e_1, e_2, e_3, p, q, r, s$ where e_j is rotation by $2\pi j/4$ and p, q, r, s are horizontal, vertical and diagonal reflections respectively.

Each arm has $n + 2$ squares, so that there are $4n + 5$ squares altogether. (All small squares are meant to be of the same size here). Solution:

$$
\begin{array}{ccccc}\ng & e_0 & e_1 & e_2 & e_3 & p & q & r & s \\
|Fix(g)| & k^{4n+5} & k^{n+2} & k^{2n+3} & k^{n+2} & k^{3n+2} & k^{3n+2} & k^{2n+3} & k^{2n+3} \\
\end{array}
$$

So the total number of colorings is

$$
\frac{k^{4n+5} + k^{n+2} + k^{2n+3} + k^{n+2} + k^{3n+2} + k^{3n+2} + k^{2n+3} + k^{2n+3}}{8}
$$

.

8

Q3: (20pts) Let G be a bipartite graph with n vertices in total. Each vertex v is given a set $C(v) \subseteq C$ of possible colors. Suppose that $|C(v)| > \log_2 n$. Show that it is possible to assign a color $c(v) \in C(v)$ for each $v \in V$ such that the coloring is proper. I.e. each edge of G joins vertices with different colors.

Solution: Let $G = (V, E)$ where $V = A \cup B$ and all edges have one end in A and the other in B. Randomly partition C into $C_A \cup C_B$. If the event

$$
\mathcal{E} = \{ C(v) \cap C_A \neq \emptyset \forall v \in A \text{ and } C(v) \cap C_B \neq \emptyset \forall v \in B \}
$$

occurs then we get a proper coloring by coloring $v \in A$ with a color in $C(v) \cap C_A$ and a vertex in B with a color in $C(v) \cap C_B$. Now

$$
\neg \mathcal{E} = \{ \exists v \in A : C(v) \subseteq C_B \} \cup \{ \exists v \in B : C(v) \subseteq C_A \}
$$

and so

$$
\Pr(\neg \mathcal{E}) \le \sum_{v \in V} \frac{1}{2^{|C(v)|}} < \frac{n}{2^{\log_2 n}} = 1
$$

and so $\mathcal E$ occurs with positive probability and we are done.