Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2010: Test 1

Name:_____

Problem	Points	Score
1	40	
2	40	
3	20	
Total	100	

Q1: (40pts) Prove that for $1 \le k \le n$,

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^k \binom{n}{k} = (-1)^k \binom{n-1}{k}.$$

[Hint: Use induction on k.] Solution: When k = 1 we have

$$\binom{n}{0} - \binom{n}{1} = -(n-1) = -\binom{n-1}{1}$$

and the inductive hypothesis holds for k = 1. In general

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^k \binom{n}{k} + (-1)^{k+1} \binom{n}{k+1} =$$

$$(-1)^k \binom{n-1}{k} + (-1)^{k+1} \binom{n}{k+1}$$
 using the induction hypothesis
$$= (-1)^{k+1} \binom{n}{k+1} - \binom{n-1}{k}$$

$$= (-1)^{k+1} \binom{n-1}{k+1}$$
 using Pascal triangle identity.

Q2: (40pts)

Prove that there are $\frac{n}{k} \binom{n-2k-1}{k-1}$ ways of labelling the vertices of an *n*-cycle with n - k 0's and k 1's so that each 1 is separated by at least 2 0's. **Solution:** Choose a vertex of the cycle in n ways and then choose the spaces between the remaining k-1 1's as a_1, a_2, \ldots, a_k where $a_1+a_2+\cdots+a_k = n-k$ and $a_1, a_2, \ldots, a_k \ge 2$. There are $\binom{n-k-2k+k-1}{k-1}$ ways of choosing the a_i 's and each possible labelling of the cycle appears exactly k times this way. Q3: (20pts) How many solutions are there to

$$x_1 + x_2 + \dots + x_n = m$$

 $x_j \in \{0, 1, 2, \dots, B\}$ for $j = 1, 2, \dots, n$.

Justify your answer.

Solution: Let A be the set of all non-negative integer solutions to $x_1 + x_2 + \cdots + x_n = m$ and then let

$$A_i = \{ \mathbf{x} \in A : x_i \ge B + 1 \}$$

for i = 1, 2, ..., n. We want $\left|\bigcap_{i=1}^{n} \bar{A}_{i}\right|$. Now if |S| = s then

$$|A_S| = |\{\mathbf{y}: y_1 + y_2 + \dots + y_n = m - (B+1)s\} = \binom{m - (B+1)s + n - 1}{n - 1}.$$

So the answer is

$$\sum_{s=0}^{n} (-1)^{s} \binom{n}{s} \binom{m - (B+1)s + n - 1}{n - 1}.$$