Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2010: Test 4

Name:

Q1: (40pts)

How many ways are there of k -coloring the squares of the above picture if the group acting is $e_0, e_1, e_2, e_3, p, q, r, s$ where e_j is rotation by $2\pi j/4$ and p, q, r, s are horizontal, vertical and diagonal reflections respectively. (All small squares are meant to be of the same size here). Solution

$$
\begin{array}{ccccc}\ng & e_0 & e_1 & e_2 & e_3 & p & q & r & s \\
|Fix(g)| & k^{12} & k^3 & k^6 & k^3 & k^6 & k^6 & k^9 & k^9\n\end{array}
$$

So the total number of colorings is

$$
\frac{k^{12}+k^3+k^6+k^3+k^6+k^6+k^9+k^9}{8}.
$$

Q2: (40pts)

Consider the following take-away game: There is a pile of n chips. A move consists of removing 2 or 3 chips. Determine the Sprague-Grundy numbers $g(n)$ for $n \geq 0$ and prove that they are what you claim.

Solution: After looking at the first few numbers $0, 0, 1, 1, 2, 0, 0, 1, 1, 2, \ldots$ one sees that

$$
g(n) = \begin{cases} 0 & n = 0, 1 \mod 5 \\ 1 & n = 2, 3 \mod 5 \\ 2 & n = 4 \mod 5 \end{cases}
$$

We verify this by induction. It is true for $n \leq 10$ by inspection. For $n > 10$ we have that if $n = 5m + s$ then

$$
g(n) = mex{g(n-3), g(n-2)} = mex{g(5(m-1)+s+2), g(5(m-1)+s+3)}
$$

So, by induction

$$
g(n) = \begin{cases} \n\max\{g(5(m-1)+2), g(5(m-1)+3)\} = \max\{1, 1\} = 0 & s = 0 \\
\max\{g(5(m-1)+3), g(5(m-1)+4)\} = \max\{1, 2\} = 0 & s = 1 \\
\max\{g(5(m-1)+4), g(5m)\} = \max\{2, 0\} = 1 & s = 2 \\
\max\{g(5m), g(5m+1)\} = \max\{0, 0\} = 1 & s = 3 \\
\max\{g(5m+1), g(5m+2)\} = \max\{0, 1\} = 2 & s = 4\n\end{cases}
$$

The result follows by induction.

Q3: (20pts)

- (a) Let $G = (X \cup Y, E)$ be a bipartite graph with bipartition X, Y. A (2,1)matching is a set of edges M such that each $x \in X$ is incident with two edges of M and each $y \in Y$ is incident with at most one edge of M. Show that G contains a (2,1)-matching iff $|N(S)| \ge 2|S|$ for all $S \subseteq X$.
- (b) A and B play the following game: W_1, W_2, \ldots, W_m are subsets of W. A starts and they take turns coloring the elements of W. A uses Red and B uses Blue. A wins if he manages to color all the elements of one of the W_i 's Red. B wins if she prevents this.

 $|W_i| \ge a$ for $i = 1, 2, ..., m$ and each $w \in W$ is in at most b of these sets and $2b \leq a$. Show that B can win.

Solution:

(a) It follows from Hall's Theorem that G contains a matching M_1 that covers X. Let $G_1 = (X \cup Y, E \setminus M_1)$. Then if $N_1(S)$ denotes the neighborhood of $S \subseteq X$ in G_1 ,

$$
|N_1(S)| \ge |N(S)| - |S| \ge |S|
$$

since we delete one edge incident with each $x \in X$. Re-applying Hall's theorem we see that G_2 contains a matching M_2 that covers X and then $M_1 \cup M_2$ is a (2,1)-matching in G.

(b) Let G be the bipartite graph with $X = [m]$ and $Y = W$ and $E =$ $\{(i, w) : w \in W_i\}$. For $S \subseteq X$ let e_S denote the number of edges of G that are incident with S. Then we have

$$
a|S| \le e_S \le b|N(S)|
$$

and so $|N(S)| \ge 2|S|$. Applying (a) we see that G contains a (2,1)matching. So, for each i there is a set $X_i \subseteq W_i$, $|X_i| = 2$ such that $X_i \cap X_j = \emptyset$ for $i \neq j$.

B plays as follows: If A colors x Red and $x \in X_i = \{x, y\}$ then she immediately colors y Blue. Otherwise, she can color an arbitrary element Blue. In this way, A cannot color a whole W_i Red, because he cannot color a whole X_i red.