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Q1: (40pts)

How many ways are there of k-coloring the squares of the above picture if
the group acting is e0, e1, e2, e3, p, q, r, s where ej is rotation by 2πj/4 and
p, q, r, s are horizontal, vertical and diagonal reflections respectively.
(All small squares are meant to be of the same size here).
Solution

g e0 e1 e2 e3 p q r s
|Fix(g)| k12 k3 k6 k3 k6 k6 k9 k9

So the total number of colorings is

k12 + k3 + k6 + k3 + k6 + k6 + k9 + k9

8
.
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Q2: (40pts)
Consider the following take-away game: There is a pile of n chips. A move
consists of removing 2 or 3 chips. Determine the Sprague-Grundy numbers
g(n) for n ≥ 0 and prove that they are what you claim.
Solution: After looking at the first few numbers 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, . . .
one sees that

g(n) =











0 n = 0, 1 mod 5

1 n = 2, 3 mod 5

2 n = 4 mod 5

We verify this by induction. It is true for n ≤ 10 by inspection. For n > 10
we have that if n = 5m+ s then

g(n) = mex{g(n−3), g(n−2)} = mex{g(5(m−1)+s+2), g(5(m−1)+s+3)}

So, by induction

g(n) =































mex{g(5(m− 1) + 2), g(5(m− 1) + 3)} = mex{1, 1} = 0 s = 0

mex{g(5(m− 1) + 3), g(5(m− 1) + 4)} = mex{1, 2} = 0 s = 1

mex{g(5(m− 1) + 4), g(5m)} = mex{2, 0} = 1 s = 2

mex{g(5m), g(5m+ 1)} = mex{0, 0} = 1 s = 3

mex{g(5m+ 1), g(5m+ 2)} = mex{0, 1} = 2 s = 4

The result follows by induction.
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Q3: (20pts)

(a) Let G = (X ∪Y,E) be a bipartite graph with bipartition X, Y . A (2,1)-
matching is a set of edges M such that each x ∈ X is incident with two
edges of M and each y ∈ Y is incident with at most one edge of M .
Show that G contains a (2,1)-matching iff |N(S)| ≥ 2|S| for all S ⊆ X.

(b) A and B play the following game: W1,W2, . . . ,Wm are subsets of W . A
starts and they take turns coloring the elements of W . A uses Red and
B uses Blue. A wins if he manages to color all the elements of one of
the Wi’s Red. B wins if she prevents this.

|Wi| ≥ a for i = 1, 2, . . . ,m and each w ∈ W is in at most b of these
sets and 2b ≤ a. Show that B can win.

Solution:

(a) It follows from Hall’s Theorem that G contains a matching M1 that
covers X. Let G1 = (X ∪ Y,E \ M1). Then if N1(S) denotes the
neighborhood of S ⊆ X in G1,

|N1(S)| ≥ |N(S)| − |S| ≥ |S|

since we delete one edge incident with each x ∈ X. Re-applying Hall’s
theorem we see that G2 contains a matching M2 that covers X and
then M1 ∪M2 is a (2,1)-matching in G.

(b) Let G be the bipartite graph with X = [m] and Y = W and E =
{(i, w) : w ∈ Wi}. For S ⊆ X let eS denote the number of edges of G
that are incident with S. Then we have

a|S| ≤ eS ≤ b|N(S)|

and so |N(S)| ≥ 2|S|. Applying (a) we see that G contains a (2,1)-
matching. So, for each i there is a set Xi ⊆ Wi, |Xi| = 2 such that
Xi ∩Xj = ∅ for i 6= j.

B plays as follows: If A colors x Red and x ∈ Xi = {x, y} then
she immediately colors y Blue. Otherwise, she can color an arbitrary
element Blue. In this way, A cannot color a whole Wi Red, because he
cannot color a whole Xi red.
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