Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2010: Test 3

Name:

Q1: (40pts)

Let $\pi(1), \pi(2), \ldots, \pi(n)$ be an arbitrary permutation of [n]. Show that there exists i such that

$$
\pi(i) + \pi(i+1) + \pi(i+2) \ge \left\lceil \frac{3(n+1)}{2} \right\rceil.
$$
 (1)

(Here $\pi(n + 1) = \pi(1)$ etc.). (Hint: Consider the sum of $LHS(1)$ over i). **Solution:** Let $L_i = \pi(i) + \pi(i+1) + \pi(i+2)$. Then

$$
\sum_{i=1}^{n} L_i = 3(1 + 2 + \dots + n) = 3\frac{n(n+1)}{2}.
$$

So there must exist i such that $L(i) \geq 3(n+1)/2$ and we can round this up.

Q2: (40pts)

Let G_1 be a fixed graph. Let $r(G_1, G_1)$ be the smallest integer N such that if we two-color the edges of the complete graph K_N Red or Blue then there is a Red copy of G_1 or a Blue copy of G_1 , or both. Show that if P_3 denotes a path of three edges then $r(P_3, P_3) = 5$. Note that a triangle is not a path of three edges.

Solution:

 $R(P_3, P_3) > 4$: We color edges incident with 1 Red and the remaining edges $\{(2, 3), (3, 4), (4, 1)\}\$ Blue. There is no mono-chromatic P_3 .

 $R(P_3, P_3) \leq 5$: There must be two edges of the same color incident with 1. Assume then that $(1, 2), (1, 3)$ are both Red. If any of $(2, 4), (2, 5), (3, 4), (3, 5)$ are Red then we have a Red P_3 . If all four of these edges are Blue then $(4, 2, 5, 3)$ is Blue.

Q3: (20pts) Let A be a subset of $\binom{[n]}{k}$ i.e a collection of k-subsets of $[n]$. Let $\partial \mathcal{A} = \left\{ X \in \binom{[n]}{k} \right\}$ $\left\{\begin{matrix}[n] \\ k-1\end{matrix}\right\}$: $\exists Y \in \mathcal{A} \ s.t. \ X \subseteq Y$. Show that

$$
\frac{|\mathcal{A}|}{\binom{n}{k}} \le \frac{|\partial \mathcal{A}|}{\binom{n}{k-1}}.
$$

Solution: For $S \in \binom{[n]}{k-1}$ $\binom{[n]}{k-1}$ and $T \in \binom{[n]}{k}$ we let $a(S,T) = 1$ if $S ⊆ T$ and $a(S,T) = 0$ otherwise. Then

$$
k|\mathcal{A}| = \sum_{\substack{S \in \partial \mathcal{A} \\ T \in \mathcal{A}}} a(S, T) \le (n - k + 1)|\partial \mathcal{A}|
$$

The = follows from the fact that each $T \in \mathcal{A}$ has exactly k sub-sets in $\partial \mathcal{A}$ and the \leq follows from the fact that there are $n - k + 1$ k-sets containing any $(k-1)$ -set. It follows that

$$
\frac{|\partial \mathcal{A}|}{|\mathcal{A}|}\geq \frac{k}{n-k+1}=\frac{{n\choose k-1}}{{n\choose k}}.
$$

Here is a really slick solution using the LYM inequality. $\mathcal{A} \cup \left(\binom{[n]}{k-1} \right)$ $\left[\begin{smallmatrix} [n] \ k-1 \end{smallmatrix}\right) \setminus \partial \mathcal{A}$) is a Sperner family. So,

$$
\frac{|\mathcal{A}|}{{n \choose k}}+\frac{{n \choose k-1}-|\partial \mathcal{A}|}{{n \choose k-1}}\leq 1.
$$

Here is another nice solution: Let π be a random permutation of $[n]$ and for a set X let \mathcal{E}_X denote the event that $X = {\pi(1), \pi(2), \ldots, \pi_{|X|}}$. Then

$$
\bigcup_{X \in \mathcal{A}} \mathcal{E}_X \subseteq \bigcup_{Y \in \partial \mathcal{A}} \mathcal{E}_Y
$$

because if there exists $X \in \mathcal{A}$ such that \mathcal{E}_X occurs, then there exists $Y \in \partial \mathcal{A}$ such that \mathcal{E}_Y occurs.

But, the events \mathcal{E}_X for $X \in \mathcal{A}$ are disjoint as are the events \mathcal{E}_Y for $Y \in \partial \mathcal{A}$. So

$$
\frac{|\mathcal{A}|}{\binom{n}{k}} = \Pr\left(\bigcup_{X \in \mathcal{A}} \mathcal{E}_X\right) \le \Pr\left(\bigcup_{Y \in \partial \mathcal{A}} \mathcal{E}_Y\right) = \frac{|\partial \mathcal{A}|}{\binom{n}{k-1}}.
$$