Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2009: Test 2 $\,$

Name:_____

Problem	Points	Score
1	40	
2	40	
3	20	
Total	100	

Q1: (40pts)

- (a) If a tree T has n vertices altogether and every vertex is of degree 1 or $k \ge 2$ then how many vertices of degree k does T have?
- (b) How many such trees are there on the vertex set $\{1, 2, ..., n\}$?

Solution: Let n_1 be the number of vertices of degree one and let n_k be the number of vertices of degree k. Then

$$n_1 + n_k = n$$
 and $n_1 + kn_k = 2n - 2$.

This gives us

$$n_k = \frac{n-2}{k-1}.$$

The number of such trees will be

$$\binom{n}{n_k}\binom{n-2}{k-1,k-1,\ldots,k-1}$$

The binomial coefficient gives the number of choices for the vertices of degree k. Having fixed these, the multinomial coefficient gives the number of trees with degree sequence $k, k, \ldots, k, 1, 1, \ldots, 1$ where there are n_k k's.

Q2: (40pts)

A particle does a random walk on 0, 1, 2, ..., L until it reaches L where it stops. When at 0 it moves immediately to 1. When at $i \ge 1$ it moves to i-1 with probability 1/2 and to i+1 with probability 1/2.

When at site s it picks up a reward of s before making a move.

Let E_k denote the expected total reward obtained before stopping at L if we started the walk at k. Thus

$$E_0 = E_1$$
 and $E_L = L$.

- 1. Find a recurrence involving the E_k , $0 \le k \le L$.
- 2. Prove inductively that $E_k = E_{k+1} + k(k+1)$ for $0 \le k < L$.
- 3. Deduce that $E_0 = L + \frac{L(L-1)(L+1)}{3}$.

Solution:

- 1. $E_k = k + \frac{E_{k-1} + E_{k+1}}{2}$.
- 2. Base Case: $E_0 = E_1$ Assume true for k - 1: Then

$$E_k = k + \frac{E_{k-1} + E_{k+1}}{2} = k + \frac{E_k + (k-1)k + E_{k+1}}{2}$$

and so

$$E_{k+1} = 2k + (k-1)k = k(k+1).$$

3. It follows from 2 and 3 that

$$E_L = \sum_{i=0}^{L-1} i(i+1) + E_L = \frac{L(L-1)(L+1)}{3} + L.$$

Q3: (20pts) A graph G has a cycle C and it contains a path P of length k joining two vertices of C. Show that G contains a cycle of length at least $\lceil 2k^{1/2} \rceil$.

(You will get most of the points if you can show that there is a cycle of length at least $k^{1/2}$).

Solution: Suppose that C has length ℓ . If $\ell \geq \lceil 2k^{1/2} \rceil$ then we are done. Let the vertices on $P \cap C$ be x_1, x_2, \ldots, x_l where x_1 and x_l are the start and end of P. The x_i are distinct, as P is a path. The path P breaks up into sub-paths P_i , $i = 1, 2, \ldots, l - 1$ where P_i goes from x_i to x_{i+1} . Here $l \leq \ell$. Now at least one of these sub-paths must be of length $\frac{k}{l-1} \geq \frac{k}{\ell-1}$. Take one such path x_j say, and extend it to a cycle by adding the longer of the two paths in C from x_j to x_{j+1} . Thus G contains a cycle of length at least

$$\frac{k}{\ell-1} + \frac{\ell}{2}$$

Now the above expression is minimised at $\ell = 1 + \sqrt{2k}$ giving $\sqrt{2k} + 1/2$ and the result follows, as the cycle length is integer..