Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2009: Test 4

Name:_____

Problem	Points	Score
1	40	
2	40	
3	20	
Total	100	

Q1: (40pts)

How many ways are there of k-coloring the squares of the above picture if the group acting is $e_0, e_1, e_2, e_3, p, q, r, s$ where e_j is rotation by $2\pi j/4$ and p, q, r, s are horizontal, vertical, diagonal reflections. Solution:

So the total number of colorings is

$$\frac{k^{20} + k^5 + k^{10} + k^5 + k^{10} + k^{10} + k^{13} + k^{13}}{8}.$$

Q2: (40 pts)

Consider the following take-away game: There is a pile of n chips. A move consists of removing 5^k chips for some $k \ge 1$. Compute the Sprague-Grundy numbers g(n) for $n \ge 0$ and prove that what you say is correct.

Suppose now that you are playing a game where there are several piles and a move consists of choosing a pile and then removing 5^k chips for $k \ge 1$ if possible. Suppose that there are 3 piles left of size 13,27,33. Is this a P or N position? If it is an N position, give a possible move.

Solution: After looking at the first few numbers 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, ... one sees that

$$g(n) = \begin{cases} 0 & n = 0, 1, 2, 3, 4 \mod 10\\ 1 & n = 5, 6, 7, 8, 9 \mod 10 \end{cases}$$

We verify this by induction. It is true for $n \leq 10$ by inspection. For n > 6 we have $g(n) = mex\{g(n-5), g(n-25), \ldots, \}$. Observe that if $k \geq 2$ then $5^k = 5(5^{k-1}-1)+5$ and so $5^k \mod 10 = 5$. It follows that $g(n) = mex\{g(n-5)\}$ and the induction step follows.

The Sprague-Grundy number of the position is $g(13) \oplus g(27) \oplus g(33) = 0 \oplus 1 \oplus 0 = 1$ and so it is an N position. Removing 5 or 25 from the second or third piles produces a P position. So does removing 5 from the first pile.

Q3: (20pts) Let $s \ge 1$ be fixed. Let \mathcal{A} be a family of subsets of [n] such that there do not exist distinct $A_1, A_2, \ldots, A_{s+1} \in \mathcal{A}$ such that $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_{s+1}$. Show that

$$\sum_{A \in \mathcal{A}} \frac{1}{\binom{n}{|A|}} \le s.$$

Solution: Let π be a random permutation of [n]. Let $\mathcal{E}(A)$ be the event $\{\{\pi(1), \pi(2), \ldots, \pi(|A|) = A\}\}$. Let

$$Z_i = \begin{cases} 1 & \mathcal{E}(A_i) \text{ occurs.} \\ 0 & otherwise. \end{cases}$$

and let $Z = \sum_{i} Z_{i}$ be the number of events $\mathcal{E}(A_{i})$ that occur. Now our family is such that $Z \leq s$ for all π and so

$$E(Z) = \sum_{i} E(Z_i) = \sum_{i} \Pr(\mathcal{E}(A_i)) \le s.$$

On the other hand, $A \in \mathcal{A}$ implies that $\Pr(\mathcal{E}(A)) = \frac{1}{\binom{n}{|A|}}$ and the required inequality follows.