Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2009: Test 2

Name:

Q1: (40pts)

The sequence $a_0, a_1, \ldots, a_n, \ldots$ satisfies the following: $a_0 = 1$ and

$$
a_n - 5a_{n-1} = 4^n
$$

for $n \geq 1$.

(a): Find the generating function $a(x) = \sum_{n=0}^{\infty} a_n x^n$. (b): Find an expression for $a_n, n \geq 0$.

 $[\text{Hint: } \frac{1}{(1-5x)(1-4x)} = \frac{5}{1-5x} - \frac{4}{1-4x}].$ **Solution:** Multiply each equation by x^n and sum. We have

$$
\sum_{n=1}^{\infty} (a_n - 5a_{n-1})x^n = \sum_{n=1}^{\infty} 4^n x^n.
$$

\n
$$
(a(x) - 1) - 5xa(x) = \frac{1}{1 - 4x} - 1.
$$

\n
$$
a(x) = \frac{1}{(1 - 4x)(1 - 5x)}
$$

\n
$$
= \frac{5}{1 - 5x} - \frac{4}{1 - 4x}
$$

\n
$$
= \sum_{n=0}^{\infty} (5^{n+1} - 4^{n+1})x^n.
$$

So,

$$
a_n = 5^{n+1} - 4^{n+1}
$$

Q2: (40pts)

A particle does a random walk on $0, 1, 2, \ldots, L$ until it reaches L where it stops. When at 0 it moves immediately to 1. When at $i \geq 1$ it moves to $i-1$ with probability $1/2$ and to $i + 1$ with probability $1/2$.

Let E_k denote the expected number of visits to 0 before stopping at L if we started the walk at k.

- 1. What is E_L ?
- 2. Find a recurrence involving the E_k .
- 3. Prove inductively that $E_k = 1 + E_{k+1}$ for $k < L$.
- 4. Deduce that $E_k = L k$ for $k \geq 0$.

Solution:

- 1. $E_L = 0$
- 2. $E_k = (E_{k-1} + E_{k+1}/2)$
- 3. Base Case: $E_0 = 1 + E_1$ Assume true for some k : Then $E_{k+1} = ((1 + E_{k+1}) + E_{k+2})/2$ or $E_{k+1} = 1 + E_{k+2}$.
- 4. This follows by induction from 1 and 3.

Q3: (20pts) Let A be an $n \times n$ real matrix with pair-wise distinct entries. Show that if n is large then there is a permutation of the rows so that no column contains an increasing subsequence of length $10n^{1/2}$.

(If c_1, c_2, \ldots, c_n is a column (after row permutaion), then an increasing subsequence of length t is a sequence $i_1 < i_2 < \cdots < i_t$ such that $c_{i_1} < c_{i_2} <$ $\cdots < c_{i_t}$).

(You can use the inequality $m! \ge (m/e)^m$ if you need to).

Solution: Let π denote a random permutation of the rows.

Let $\mathcal E$ denote the event that there is a column with a monotone increasing sequence of size $k = 10n^{1/2}$.

Let $\mathcal{E}(i, S)$ denote the event

 $\{S \text{ entries of column } i \text{ are monotone increasing}\}.$

 $Pr(\mathcal{E}) \leq \sum_{i=1}^n \sum_{S} P(\mathcal{E}(i, S)).$

 $Pr(\mathcal{E}) \leq n {n \choose k}$ $\binom{n}{k}/k! \leq n^{k+1}/(k!)^2 \leq n^{k+1}e^{2k}/k^{2k} \leq n^{k+1}e^{2k}/(100n)^k \to 0.$