Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2009: Test 1

Name:

Q1: (40pts)

k a's, k b's and $n - 2k$ c's are placed on the vertices of an n vertex polygon so that each a is followed clockwise by b which is followed by a non-empty sequence of c 's until the next a . Show that the number of ways of doing this is $\frac{n}{k} \binom{n-2k-1}{k-1}$ $_{k-1}^{-2k-1}$).

Solution: There are *n* ways of choosing a place to put an a . A b follows immediately. Let there be x_i c's between the *i*th *b* and the *i* + 1'th *a*. Then we have $x_1 + \cdots + x_k = n - 2k$ and $x_1, \ldots, x_k \ge 1$. The number of choices for the x's is thus $\binom{n-2k-1}{k-1}$ $\binom{-2k-1}{k-1}$ and we multiply by n/k to account for the choice of the "first" a and for over-counting.

Q2: (40pts)

n children take off their jackets and shoes and put them into a pile on the floor and go and play. How many ways are there of giving to each of the children a pair of matching shoes and a jacket, so that no child gets his/her own jacket and shoes. Your answer should be a summation.

Re-call that if $A_1, A_2, \ldots, A_N \subseteq A$ then

$$
\left| \bigcap_{i=1}^{N} \bar{A}_{i} \right| = \sum_{S \subseteq [N]} (-1)^{|S|} |A_{S}|.
$$

Solution: Suppse that child i is given the jacket of child $\pi_1(i)$ and the shoes of child $\pi_2(i)$. Let

$$
A_i = \{(\pi_1, \pi_2) : \ \pi_1(i) = \pi_2(i) = i\}
$$

for $i = 1, 2, ..., n$.

We need to compute $\left|\bigcap_{i=1}^n \bar{A}_i\right|$. Now if $|S| = k$ then $|A_S| = ((n-k)!)^2$ since we have fixed $\pi_1(i), \pi_2(i)$ for $i \in S$ and the remaining values can be permuted arbitrarily. Thus

$$
\left|\bigcap_{i=1}^{n} \bar{A}_{i}\right| = \sum_{S \subseteq [N]} (-1)^{|S|} ((n-|S|)!)^{2} = \sum_{k=0}^{n} (-1)^{k} {n \choose k} ((n-k)!)^{2}.
$$

Q3: (20pts) How many ways are there of placing k a's and $n - k$ b's on the vertices of an *n* vertex polygon so that each a is seperated by an odd number of b's. There are different answers for n odd or n even.

Solution: There are *n* choices as to where to put an a on a vertex. Suppose that after this there are x_i b's between each a where $x_1 + \cdots + x_k = n - k$ and each x_i is odd. Let d_k be the number of choices for the x's, in which case the solution is nd_k/k .

Each x_i can be written as $2y_i + 1$ where $y_i \geq 0$ for $i = 1, 2, ..., k$ and $2(y_1 + \cdots + y_k) + k = n-k$. If there is a solution then $n = 2(y_1 + \cdots + y_k + k)$ is even i.e. there are no solutions for odd n . Otherwise, if n is even then $y_1 + \cdots + y_k = n/2 - k$ and the number of choices for the y's and hence the x 's is $\binom{n/2-k+k-1}{k-1}$ $\binom{-k+k-1}{k-1} = \binom{n/2-1}{k-1}$ $\binom{m}{k-1}$. So the final answer is

$$
\frac{n}{k} \binom{n/2 - 1}{k - 1}.\tag{1}
$$

Alternate solution found by some students:

The polygon's vertices are partitioned into a sequence of segments where each segment starts with an a and continues with an odd number of b 's. Thus each segment is even and so n must be even. Furthermore, if $n = 2m$ and we partition the vertices into $A = \{1, 3, \ldots, 2m-1\}$ and $B = \{2, 4, \ldots, 2m\}$ then all a 's must be placed in A or all a 's must be placed in b and any such placement is valid. Thus the number of choices is

$$
2\binom{n/2}{k}.
$$

You can check that this is the same as (1) .