Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2009: Test 1

Name:_____

Problem	Points	Score
1	40	
2	40	
3	20	
Total	100	

Q1: (40pts)

 $k \ a$'s, $k \ b$'s and $n - 2k \ c$'s are placed on the vertices of an n vertex polygon so that each a is followed clockwise by b which is followed by a non-empty sequence of c's until the next a. Show that the number of ways of doing this is $\frac{n}{k} \binom{n-2k-1}{k-1}$.

Solution: There are *n* ways of choosing a place to put an *a*. A *b* follows immediately. Let there be x_i *c*'s between the *i*th *b* and the i + 1'th *a*. Then we have $x_1 + \cdots + x_k = n - 2k$ and $x_1, \ldots, x_k \ge 1$. The number of choices for the *x*'s is thus $\binom{n-2k-1}{k-1}$ and we multiply by n/k to account for the choice of the "first" *a* and for over-counting.

Q2: (40pts)

n children take off their jackets and shoes and put them into a pile on the floor and go and play. How many ways are there of giving to each of the children a pair of matching shoes and a jacket, so that no child gets his/her own jacket and shoes. Your answer should be a summation.

Re-call that if $A_1, A_2, \ldots, A_N \subseteq A$ then

$$\left|\bigcap_{i=1}^{N} \bar{A}_i\right| = \sum_{S \subseteq [N]} (-1)^{|S|} |A_S|.$$

Solution: Suppose that child *i* is given the jacket of child $\pi_1(i)$ and the shoes of child $\pi_2(i)$. Let

$$A_i = \{(\pi_1, \pi_2) : \pi_1(i) = \pi_2(i) = i\}$$

for i = 1, 2, ..., n.

We need to compute $|\bigcap_{i=1}^{n} \bar{A}_i|$. Now if |S| = k then $|A_S| = ((n-k)!)^2$ since we have fixed $\pi_1(i), \pi_2(i)$ for $i \in S$ and the remaining values can be permuted arbitrarily. Thus

$$\left|\bigcap_{i=1}^{n} \bar{A}_{i}\right| = \sum_{S \subseteq [N]} (-1)^{|S|} ((n-|S|)!)^{2} = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} ((n-k)!)^{2}.$$

Q3: (20pts) How many ways are there of placing k a's and n - k b's on the vertices of an n vertex polygon so that each a is separated by an odd number of b's. There are different answers for n odd or n even.

Solution: There are *n* choices as to where to put an *a* on a vertex. Suppose that after this there are x_i b's between each *a* where $x_1 + \cdots + x_k = n - k$ and each x_i is odd. Let d_k be the number of choices for the *x*'s, in which case the solution is nd_k/k .

Each x_i can be written as $2y_i + 1$ where $y_i \ge 0$ for i = 1, 2, ..., k and $2(y_1 + \cdots + y_k) + k = n - k$. If there is a solution then $n = 2(y_1 + \cdots + y_k + k)$ is even i.e. there are no solutions for odd n. Otherwise, if n is even then $y_1 + \cdots + y_k = n/2 - k$ and the number of choices for the y's and hence the x's is $\binom{n/2 - k + k - 1}{k - 1} = \binom{n/2 - 1}{k - 1}$. So the final answer is

$$\frac{n}{k} \binom{n/2 - 1}{k - 1}.\tag{1}$$

Alternate solution found by some students:

The polygon's vertices are partitioned into a sequence of segments where each segment starts with an a and continues with an odd number of b's. Thus each segment is even and so n must be even. Furthermore, if n = 2m and we partition the vertices into $A = \{1, 3, \ldots, 2m - 1\}$ and $B = \{2, 4, \ldots, 2m\}$ then all a's must be placed in A or all a's must be placed in b and any such placement is valid. Thus the number of choices is

$$\binom{n/2}{k}.$$

You can check that this is the same as (1).