Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2008: Test $4\,$

N.T.		
Name:		

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)

(a) Show that if you Red-Blue color the edges of K_9 then either there is a vertex with Red degree at least 4 or Blue degree at least 6.

[Hint: Suppose there is no such vertex. Now you know the Red and Blue degrees of each vertex. Now use the fact that the number of odd vertices in a graph is even.]

(b) Show that if you Red-Blue color the edges of K_9 then either there is a Red K_3 or a Blue K_4 .

Solution

- (a) Let d_R, d_B denote degree in the graphs induced by the Red and Blue edges. If $d_R(v) \leq 3$ and $d_B(v) \leq 5$ for all v then $d_R(v) + d_B(v) = 8$ implies that $d_R(v) = 3$ and $d_B(v) = 5$ for all v. But then the Red graph has an odd number of vertices of odd degree (as does the Blue graph) and this is a contradiction.
- (b) Suppose first that there is a vertex of Red degree at least 4. Assume w.l.o.g. that the edges (1,2), (1,3), (1,4), (1,5) are all Red. Now either the sub-graph spanned by 2,3,4,5 contains a Red edge and so we have a Red K_3 . Or the sub-graph spanned by 2,3,4,5 contains only Blue edges and we have a Blue K_4 .

Now suppose that there is a vertex of Blue degree at least 6. Assume w.l.o.g. that the edges (1,2), (1,3), (1,4), (1,5), (1,6), (1,7) are all Blue. Now R(3,3)=6 and so the sub-graph spanned by $2,3,\ldots,7$ contains a Red K_3 or a Blue K_3 . In the latter case, adding 1 to the Blue K_3 gives Blue K_4 .

Q2: (33pts)

Consider the following two one pile take-away games.

- (a): In game one you can take away 2^k chips for any $k \ge 0$. Prove inductively that the Grundy number $g_1(n)$ is given by $g_1(n) = n \mod 3$.
- (b): In game two you can take away 3^k chips for any $k \geq 0$. Prove inductively that the Grundy number $g_2(n)$ is given by $g_2(n) = n \mod 2$.
- (c): Now consider the two pile game where one can either take 2^k , $k \ge 0$ chips from the first pile or you can take 3^k , $k \ge 0$ chips from the second pile. Is the position (150,95) a P or an N position? Justify your claim. If it is an N position, what is a correct move?

Solution

(a) Letting $g_1(0) = 0$, $g_1(1) = 1$, $g_1(2) = 2$ and inducting on n we see that for $n \ge 2$

$$g_1(n+1) = \max\{g_1(n+1-2^k) : 0 \le k \le \lfloor \log_2(n+1) \rfloor\}$$

$$= \max\{(n+1-2^k \mod 3 : 0 \le k \le \lfloor \log_2(n+1) \rfloor\}$$

$$= \max\{n \mod 3, n-1 \mod 3\}$$

$$= n+1 \mod 3.$$

(b) Letting $g_2(0)=0, g_2(1)=1, g_2(2)=2$ and inducting on n we see that for $n\geq 1$

$$g_2(n+1) = \max\{g_2(n+1-3^k): 0 \le k \le \lfloor \log_3(n+1) \rfloor\}$$

= $\max\{(n+1-3^k \mod 2: 0 \le k \le \lfloor \log_3(n+1) \rfloor\}$
= $\max\{n \mod 2\}$
= $n+1 \mod 2$.

(c) We have $g_1(150) \oplus g_2(95) = 0 \oplus 1 = 1$. So (150,95) is an N position. Taking 2^{2k+1} from pile one or 3^k from pile two is a winning move.

Q3: (34pts) How many distinct Red-Blue colorings D are there of the 6 region diagram below. The group G consists of 2 rotations e, b, (0° and 180°) and 2 reflections r, s (one on each diagonal). One possible coloring is shown.

Use the formula

$$D = \frac{1}{|G|} \sum_{g \in G} |Fix(g)|.$$

Solution: Let D denote the number of distinct colorings.

g	е	b	r	\mathbf{s}
Fix(g)	2^{6}	2^3	2^3	2^4

Here e is the identity, a,b,c are rotations and p,q,r,s are reflections. This gives D=24.