Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2007: Test 2

Name:_____

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (30pts)

A Hamilton path in a tournament on vertex set [n] is a permutation π of [n] such that $\pi(i+1)$ beats $\pi(i)$ for $1 \leq i < n$. Suppose that n = 2m+1 is odd. Show that there is a tournament with $\geq m!(m+1)!/2^{n-1}$ Hamilton paths in which the odd numbered vertices are in odd position i.e. $\pi(2k+1)$ is odd for all $0 \leq k \leq m$.

Solution: There are m!(m + 1)! permutations π of [n] in which the odd numbered vertices are in odd positions. For each there is the probability $2^{-(n-1)}$ that $\pi(i+1)$ beats $\pi(i)$ for $1 \leq i < n$. Thus the expected number of such Hamilton paths is $m!(m+1)!/2^{n-1}$ and so there must exist a tournament with at least this number.

Q2: (30pts)

Let $G = G_{n,p}$ and let dist(x, y) be the minimum number of edges in a path from x to y.

 $(G_{n,p} \text{ is the graph with vertex set } [n] \text{ where each of the } \binom{n}{2} \text{ possible edges is included independently with probability } p.)$

Show that

$$\Pr(\exists x, y: \ dist(x, y) \ge 3) \le \binom{n}{2} (1 - p^2)^{n-2}.$$

Solution:

$$\begin{aligned} \Pr(\exists x, y: \ dist(x, y) \ge 3) &\leq \sum_{x, y} \Pr(dist(x, y) \ge 3) \\ &\leq \sum_{x, y} \Pr(\not\exists z \ne x, y: \ (x, z, y) \ is \ a \ path \ in \ G_{n, p}) \\ &= \sum_{x, y} (1 - p^2)^{n-2} \\ &= \binom{n}{2} (1 - p^2)^{n-2}. \end{aligned}$$

Q3: (40pts)

Let A_1, A_2, \ldots, A_m and B_1, B_2, \ldots, B_m be subsets of [n]. Suppose that (i) $A_i \cap B_i = \emptyset$ for $i = 1, 2, \ldots, m$.

(ii)
$$A_i \cap B_j \neq \emptyset$$
 for $i \neq j$.

Let π be a random permutation of [n] and for disjoint sets A, B define the event $\mathcal{E}(A, B)$ by

$$\mathcal{E}(A, B) = \{ \pi : \max \{ \pi(a) : a \in A \} < \min \{ \pi(b) : b \in B \} \}.$$

(a) Show that the events
$$\mathcal{E}_i = \mathcal{E}(A_i, B_i), i = 1, 2, \dots, m$$
 are disjoint

(b) Show that for two fixed disjoint sets A, B, |A| = a, |B| = b there are exactly $\binom{n}{a+b}a!b!(n-a-b)!$ permutations that produce the event $\mathcal{E}(A, B)$. (c) Deduce that

$$\sum_{i=1}^{m} \frac{1}{\binom{|A_i|+|B_i|}{|A_i|}} \le 1.$$
(1)

(d) Use a suitable choice of B_i to deduce the LYM inequality from (1): The LYM inequality states that if A_1, A_2, \ldots, A_m are pair-wise incomparable under set inclusion then

$$\sum_{i=1}^{m} \frac{1}{\binom{n}{|A_i|}} \le 1.$$

$$\tag{2}$$

Solution:

(a) Suppose that $\mathcal{E}(A_i, B_i)$ and $\mathcal{E}(A_j, B_j)$ occur. Let $x \in A_i \cap B_j$ and $y \in A_j \cap B_i$. x, y exist by (ii) and (i) implies that they are distinct. Then $\mathcal{E}(A_i, B_i)$ implies that $\pi(x) < \pi(y)$ and $\mathcal{E}(A_j, B_j)$ implies that $\pi(x) > \pi(y)$, contradiction.

(b) There are $\binom{n}{a+b}$ places to position $A \cup B$. Then there are a!b! that place A as the first a of these a + b places. Finally, there are (n - a - b)! ways of ordering the remaining elements not in $A \cup B$. (c) Thus

$$\Pr(\mathcal{E}(A_i, B_i)) = \frac{n!}{(|A_i| + |B_i|)!(n - |A_i| - |B_i|)!} |A_i|!|B_i|!(n - |A_i| - |B_i|)!\frac{1}{n!}$$
$$= \frac{1}{\binom{|A_i| + |B_i|}{|A_i|}}.$$

But (a) implies that $\sum_{i=1}^{m} \Pr(\mathcal{E}(A_i, B_i)) \leq 1$.

(d) Put $B_i = [n] \setminus A_i$. Clearly, (i) is satisfied. Furthermore, $A_i \cap B_j = \emptyset$ iff $A_i \subseteq A_j$. So if A_1, A_2, \ldots, A_m are a Sperner family, (b) holds. Inequality (2) follows from (1) and $|A_i| + |B_i| = n$.