Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2007: Test 1

Name:_____

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)

Show that the number of ways of placing k 1's and n-k 0's on the vertices of an n vertex polygon so that each 1 is separated by at least 2 0's is $\frac{n}{k} \binom{n-2k-1}{k-1}$. **Solution** Let the 1's be at position x_1, x_2, \ldots, x_k in order round the polygon. There are n choices for x_1 and then if y_i is the number of zero's between x_i and x_{i+1} for $i = 1, 2, \ldots, k$ (here $x_{k+1} = x_1$) then (i) $y_i \ge 2, i = 1, 2, \ldots, k$ and (ii) $y_1 + \ldots + y_k = n - k$. There are $\binom{n-2k-1}{k-1}$ choices for the y's and n choices for x_1 . Each placement arises exactly k times in this manner.

Q2: (33pts)

(a): We have *n* boxes B_1, B_2, \ldots, B_n and kn distinguishable balls b_1, b_2, \ldots, b_{kn} . Show that there are $\frac{(kn)!}{k!^n}$ ways to place the balls into the boxes so that each box gets *k* balls.

(b): An allocation of balls to boxes is said to be *scrambled* if there does **not** exist *i* such that box B_i contains balls $b_{(i-1)k+1} \ldots, b_{ik}$. Use the Inclusion-Exclusion formula to determine the number of scrambled allocations. Re-call that if $A_1, A_2, \ldots, A_N \subseteq A$ then

$$\left|\bigcap_{i=1}^{N} \bar{A}_{i}\right| = \sum_{S \subseteq [N]} (-1)^{|S|} |A_{S}|.$$

Solution

(a) An allocation of balls to boxes gives rise to a permutation of the balls, where the balls in box B_i precede the balls in box B_{i+1} for $1 \le i < n$. There are (kn)! permutations and each allocation gives rise to $(k!)^n$ permutations, since the balls within a box can permuted arbitrarily.

(b) Let $A_i = \{allocations in which box B_i \text{ gets balls } b_{(i-1)k+1}, \dots, b_{ik}\}$. We want $\left|\bigcap_{i=1}^N \bar{A}_i\right|$. From (a) we get $|A_S| = \frac{(k(n-|S|))!}{(k!)^{n-|S|}}$ and then the inclusion-exclusion formula gives

$$\left|\bigcap_{i=1}^{N} \bar{A}_{i}\right| = \sum_{S \subseteq [N]} (-1)^{|S|} \frac{(k(n-|S|))!}{(k!)^{n-|S|}} = \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} \frac{(k(n-i))!}{(k!)^{n-i}}.$$

Q3: (34pts) The sequence $a_0, a_1, \ldots, a_n, \ldots$ satisfies the following: $a_0 = 1$ and

$$a_n - 4a_{n-1} = 4^n$$

for $n \ge 1$.

(a): Find the generating function $a(x) = \sum_{n=0}^{\infty} a_n x^n$. (b): Find an expression for $a_n, n \ge 0$. Solution

Multiply each equation by x^n and sum. We have

$$\sum_{n=1}^{\infty} (a_n - 4a_{n-1})x^n = \sum_{n=1}^{\infty} 4^n x^n.$$

$$(a(x) - 1) - 4xa(x) = \frac{1}{1 - 4x} - 1.$$

$$a(x) = \frac{1}{(1 - 4x)^2}$$

$$= \sum_{n=0}^{\infty} (n+1)4^n x^n.$$

So,

$$a_n = (n+1)4^n.$$