Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2006: Test 4

Name:_____

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts) A is an $n \times n$ matrix with entries 0 or 1. Let k be a positive integer. Show that if $n \ge R(2k, 2k)$ then there exists a set of rows I and columns J such that (i) |I| = |J| = k and (ii) $i, i' \in I$ and $j, j' \in J$ implies A(i, j) = A(i', j').

Solution This is HW9, Q2. Given A we construct a coloring τ of the edges of K_n as follows. If i < j then we give the edge (i, j) of K_n the color Red if $A_{i,j} = 0$ and Blue if $A_{i,j} = 1$.

Since $n \ge R(2k, 2k)$ we see that K_n contains a mono-colored copy of K_{2k} . If the set of vertices of this copy is S, divide S into two parts S_1, S_2 of size k where max $S_1 < \min S_2$. It follows that the sub-matrix given by $I = S_1, J = S_2$ satisfies our requirements. **Q2:** (33pts) $A_1, A_2, \ldots, A_{mn+1}$ are non-empty subsets of [n]. Show that there exists $I \subseteq [mn+1]$ such that (i) |I| = m+1 and (ii) if $i, j \in I$ then $A_i \not\subseteq A_j$ and $A_j \not\subseteq A_i$.

Solution Consider the poset on $\{A_1, A_2, \ldots, A_{mn+1}\}$ with \leq equal to \subseteq . The maximum length of a chain $X_1 \subset X_2 \subset \cdots \subset X_k$ in this poset is at most n, since $|X_k| \geq k$. Applying Dilworth's theorem, we see that there is an anti-chain $\{A_i : i \in I\}$ of size $\lceil (mn+1)/n \rceil = m+1$. **Q3:** (34pts) Consider the following game: There is a pile of n chips. A move consists of removing 3^k chips for some $k \ge 0$.

- (a) Compute the Sparague-Grundy numbers g(n) for n = 0, 1, 2, ..., 10.
- (b) Make a guess at the general form of g(n).
- (c) Give an inductive proof of your conjecture in (b).

Solution

- (b) $g(n) = n \mod 2$.
- (c) This is true for $0 \le n \le 10$. Because 3^i is odd for $i \ge 0$ we see that for k > 5 we have

$$g(2k-1) = mex\{g(2k-1-3^i): i \ge 0, 3^i \le 2k-1\} = mex\{0, 0, \dots, 0\} = 1.$$

$$g(2k) = mex\{g(2k-3^i): i \ge 0, 3^i \le 2k\} = mex\{1, 1, \dots, 1\} = 0.$$