Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2006: Test 3

Name:_____

Problem	Points	Score
1	33	
2	33	
3	34	
1 Total	100	

Q1: (33pts)

(a) A connected graph G has two paths P_1, P_2 of lengths k_1, k_2 respectively. Show that if P_1 and P_2 are vertex disjoint then G contains a path of length at least $\lceil k_1/2 \rceil + \lceil k_2/2 \rceil + 1$. (The length of path P is the number of edges in it.)

(b) Using (a), show that if G is a connected graph and P_1, P_2 are paths of *maximum* length then they share at least one common vertex.

Solution:

(a) G is connected and so there is a path joining a vertex in P_1 to a vertex in P_2 . Take a shortest such path Q. Suppose it joins $a \in P_1$ to $b \in P_2$. Since Q is as short as possible, the internal vertices of Q are disjoint from P_1, P_2 . Now let P'_1 be the longer of the two sub-paths of P_1 which have end-point a and an end-point of P_1 . Then P'_1 has length $\geq \lceil k_1/2 \rceil$. Define P'_2 similarly. Let P''_1 be the reversal of P'_1 . Then the path P''_1, Q, P'_2 has length at least $\lceil k_1/2 \rceil + \lceil k_2/2 \rceil + 1$.

(b) Suppose that P_1, P_2 are of maximum length k and are vertex disjoint. Part (a) implies that G has a path of length at least $2\lceil k/2\rceil + 1 > k$, contradiction. Q2: (33pts)

- (a) A tree has n_i vertices of degree *i* for i = 1, 2, 3 and no vertex of degree 4 or more. Show that $n_1 = n_3 + 2$.
- (b) What is the tree corresponding to the Prüfer code 1, 1, 1, 1, 1, ..., 1 (n-2 1's)?
- (c) T is a tree on vertex set V. Vertices $x, y \in V$ and e = (x, y) is not an edge of T. Show that T + e contains a cycle.
- (d) C is a cycle of T + e in (c). f is an edge of C. Show that T + e f is a tree.

Solution:

(a) We have

$$n_1 + n_2 + n_3 = n$$

$$n_1 + 2n_2 + 3n_3 = 2n - 2.$$

Subtracting the second equation from twice the first gives the answer.

(b) Vertex 1 has degree n - 1 and all other vertices have degree 1. So the tree consists of the n - 1 edges $(1, i), 2 \le i \le n$.

(c) T + e is connected and has n edges. It has too many edges for a tree and so it must have a cycle.

(d) T + e - f has n - 1 edges and it is connected and so it is a tree. (If f = (x, y) and P = P', x, y, P'' is a walk in T + e using (x, y) then we can replace it by the walk P', C - f, P'' i.e. T + e - f is indeed connected).

Q3: (34pts)

Let m, n be positive integers and let S be a subset of $\{1, 2, \ldots, m + n\}$ such that |S| > (m + n)/2. Show that there exist $x, y \in S$ such that $|x - y| \in \{m, n\}$.

Hint: Consider the array

Solution:

Each $x \in [m+n]$ appears twice in the array. So the elements of S appear at least m+n+1 times. But then by the PHP some column of the array must have two entries from S, implying that the required x, y exist.