Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2005: Test 4

Name:_____

Problem	Points	Score
1	33	
2	33	
3	34	
4	34	
Total	100	

Q1: (33pts)

Consider the following general game involving one pile of chips . There is a finite set of positive integers S and each move involves choosing $s \in S$ and removing this number of chips from the pile. The game ends when there are no moves possible. Show that the SPRAGUE-GRUNDY function g satisfies $g(n) \leq |S|$ for all $n \geq 0$.

Solution First observe that if A is a set of non-negative integers, then $mex(A) \leq |A|$. This is because either $A = \{0, 1, 2..., |A| - 1\}$, in which case mex(A) = |A| or there exists i < |A| such that $i \notin A$, in which case $mex(A) \leq i$.

Now g(n) = mex(A) where $A = \{g(n-s); s \in S\}$ and $|A| \le |S|$.

Q2: (33pts)

Consider the following game involving two piles of chips. A move consists of removing one pile and splitting the remaining pile into two non-empty piles. There is a unique terminal position in which both piles have one chip. Suppose that the two piles have m, n chips respectively. Here are the N, P

positions for $1 \le m, n \le 6$.

	1	2	3	4	5	6
1	Р	Ν	Р	Ν	Р	Ν
2	Ν	Ν	Ν	Ν	Ν	Ν
3	Р	Ν	Р	Ν	Р	Ν
4	Ν	Ν	Ν	Ν	Ν	Ν
5	Р	Ν	Р	Ν	Р	Ν
6	Ν	Ν	Ν	Ν	Ν	Ν

When in general is $m, n \neq P$ position. Prove your claim.

Solution m, n is a *P*-position iff m, n are both odd. We can prove this by induction on m + n. The base case is m + n = 2 i.e. m = n = 1.

If m, n are both odd then any move will involve splitting one of the numbers into the sum of an odd and an even position. This is an N-position, by induction.

If m is even then we can remove the n and split m into the sum of two odd numbers, a P-position, by induction.

Thus our partition into N, P has the requisite properties.

Q3: (34pts)

Consider the following game involving one pile of chips. A move consists of removing 2^k chips where $k = 0, 1, 2, 3, \ldots$ The first few values of the SPRAGUE-GRUNDY function g are given in the following table:

n $0 \ 1 \ 2 \ 0 \ 1$ $2 \ 0 \ 1$ g(n)

What is g(n) in general? Prove your claim by induction.

Solution $g(n) = n \mod 3$. It is clearly true for $n \le 16$.

Observe that $2^k \mod 3 \neq 0$ and so $n \neq n - 2^k \mod n$ for any $k \ge 0$. Since $n \mod 3 \neq n - 1 \mod 3 \neq n - 2 \mod 3$ we see by the induction hypothesis that

$$g(n) = mex(g(n-1), g(n-2), g(n-4), \ldots) = mex(g(n-1), g(n-2)).$$

 $n = 3k: g(n) = mex(3k - 1 \mod 3, 3k - 2 \mod 3) = mex(2, 1) = 0$ $n = 3k + 1: g(n) = mex(3k \mod 3, 3k - 1 \mod 3) = mex(0, 2) = 1$ $n = 3k + 2: g(n) = mex(3k + 1 \mod 3, 3k \mod 3) = mex(1, 0) = 2$

Q4: (33pts)

An $m \times n$ 0,1 matrix A and a $p \times q$ 0,1 matrix B are compatible if A(i, j) = B(i, j) for $1 \le i \le \min\{m, p\}$ and $1 \le j \le \min\{n, q\}$.

Suppose that A_i is an $m_i \times n_i \ 0, 1$ matrix for i = 1, 2, ..., N and that there do **not** exist i, j such that A_i is compatible with A_j . Prove that

$$\sum_{i=1}^{N} \frac{1}{2^{m_i n_i}} \le 1.$$

Solution Let $P = \max m_i$ and $Q = \max n_i$. Let X be a random $P \times Q \ 0,1$ matrix and let \mathcal{E}_i be the event that $X(p,q) = A_i(p,q)$ for $1 \le p \le m_i, 1 \le q \le n_i$. Then the \mathcal{E}_i are disjoint events, since if \mathcal{E}_i and \mathcal{E}_j both occur, then A_i and A_j must be a compatible pair. Thus

$$1 \ge \sum_{i=1}^{N} \mathbf{Pr}(\mathcal{E}_i) = \sum_{i=1}^{N} \frac{1}{2^{m_i n_i}}.$$