Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2005: Test 3

Name:_____

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)

Let n, p be positive integers and let $N = n^2 p + 1$. Suppose that x_1, x_2, \ldots, x_N are real numbers. Show that either (i) there is a *strictly* increasing subsequence of length n + 1 or (ii) a *strictly* decreasing subsequence of length n + 1 or (iii) a *strictly* decreasing subsequence of length n + 1 or (iii) a *strictly* here are a subsequence of length n + 1.

Solution Assume that there is no constant sequence of length p + 1 i.e. no real value appears more than p times in the sequence. Then the number of distinct values appearing is at least $\lceil \frac{N}{p} \rceil = n^2 + 1$.

Choose a subsequence consisting of these $\geq n^2 + 1$ distinct values. By the Erdős-Szekerés theorem this subsequence contains a monotone subsequence of length $\geq n+1$. Since the values are distinct, such a monotone subsequence is strict.

Q2: (33pts)

A tree T has n = 2m vertices. All vertices of T have degree one or three. There are n_1 vertices of degree one and n_3 vertices of degree three. Determine the values of n_1, n_3 in terms of m. Justify your claim.

How many such trees are there on vertex set $\{1, 2, ..., n\}$? Solution We have $n_1 + n_3 = n$ and $n_1 + 3n_3 = 2n - 2$ (sum of degrees = twice number of edges). Solving these equations gives

$$n_1 = m + 1$$
 and $n_3 = m - 1$.

The number of such trees is

$$\binom{2m}{m+1}\binom{2m-2}{2,2,\ldots,2,0,0,\ldots,0} = \binom{2m}{m+1}\frac{(2m-2)!}{2^{m-1}}$$

where in the multi-nomial there are m - 1 2's and m + 1 0's.

The factor $\binom{2m}{m+1}$ counts the number of ways of choosing the vertices of degree 1 and the multi-nomial coefficient is the number of trees with a fixed degree sequence, consisting of m-1 3's and m+1 1's.

Q3: (34pts)

Let p, q be positive integers and n = p + q - 1. Let T be a fixed tree with q vertices. Show that if we color the edges of K_n Red or Blue then either (i) there is a vertex with Red degree p or (ii) there is a Blue copy of T. **Solution** If there is no vertex of Red degree p then every vertex has Blue degree at least n - 1 - (p - 1) = q - 1. Thus the Blue sub-graph contains a copy of every tree with q - 1 + 1 = q vertices. (See HW6,Q3).