Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2005: Test 3

Name:

Q1: (33pts)

Let *n*, *p* be positive integers and let $N = n^2p + 1$. Suppose that x_1, x_2, \ldots, x_N are real numbers. Show that either (i) there is a strictly increasing subsequence of length $n+1$ or (ii) a *strictly* decreasing subsequence of length $n+1$ or (iii) a *constant* subsequence of length $p + 1$.

Solution Assume that there is no constant sequence of length $p + 1$ i.e. no real value appears more than p times in the sequence. Then the number of distinct values appearing is at least $\lceil \frac{N}{n} \rceil$ $\frac{N}{p}$] = $n^2 + 1$.

Choose a subsequence consisting of these $\geq n^2 + 1$ distinct values. By the Erdős-Szekerés theorem this subsequence contains a monotone subsequence of length $\geq n+1$. Since the values are distinct, such a monotone subsequence is strict.

Q2: (33pts)

A tree T has $n = 2m$ vertices. All vertices of T have degree one or three. There are n_1 vertices of degree one and n_3 vertices of degree three. Determine the values of n_1, n_3 in terms of m. Justify your claim.

How many such trees are there on vertex set $\{1, 2, \ldots, n\}$? **Solution** We have $n_1 + n_3 = n$ and $n_1 + 3n_3 = 2n - 2$ (sum of degrees = twice number of edges). Solving these equations gives

$$
n_1 = m + 1
$$
 and $n_3 = m - 1$.

The number of such trees is

$$
\binom{2m}{m+1}\binom{2m-2}{2,2,\ldots,2,0,0,\ldots,0} = \binom{2m}{m+1}\frac{(2m-2)!}{2^{m-1}}
$$

where in the multi-nomial there are $m - 1$ 2's and $m + 1$ 0's.

The factor $\binom{2m}{m+1}$ counts the number of ways of choosing the vertices of degree 1 and the multi-nomial coefficent is the number of trees with a fixed degree sequence, consisting of $m - 1$ 3's and $m + 1$ 1's.

Q3: (34pts)

Let p, q be positive integers and $n = p + q - 1$. Let T be a fixed tree with q vertices. Show that if we color the edges of K_n Red or Blue then either (i) there is a vertex with Red degree p or (ii) there is a Blue copy of T . **Solution** If there is no vertex of Red degree p then every vertex has Blue degree at least $n - 1 - (p - 1) = q - 1$. Thus the Blue sub-graph contains a copy of every tree with $q - 1 + 1 = q$ vertices. (See HW6,Q3).