Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2005: Test 1

Name:_____

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts) Let a, m, n, p be positive integers. How many integer solutions are there to

$$x_1 + x_2 + \dots + x_m = n$$

which satisfy $x_i \ge a$ for $i = 1, 2, \ldots, p$ and $x_i \ge 0$ for $i = p + 1, p + 2, \ldots, m$.

Solution Let $y_i = x_i - a$ for i = 1, 2, ..., p and $y_i = x_i$ for i > p. Then $y_1, y_2, ..., y_m$ satisfy

$$y_1 + y_2 + \dots + y_m = n - ap$$
 and $y_1, y_2, \dots, y_m \ge 0$

and we have described a bijection between the x's of the question and the y's that satisfy this.

Thus the number of x's is $\binom{m+n-ap-1}{m-1}$.

Q2: (33pts) Use the inclusion-exclusion formula

$$\left|\bigcap_{i=1}^{N} \overline{A}_{i}\right| = \sum_{S \subseteq [N]} (-1)^{|S|} |A_{S}|$$

to show that the number of permutations $\pi(1), \pi(2), \ldots, \pi(n)$ of [n] which satisfy $\pi(i+1) \neq \pi(i) + 1$ for $i = 1, 2, \ldots, n-1$ is

$$\sum_{k=0}^{n-1} (-1)^k \binom{n-1}{k} (n-k)!$$

Solution Let

$$A_i = \{\pi : \pi(i+1) = \pi(i) + 1\}.$$

In words, when we look at the sequence obtained by putting j into the $\pi(j)$ th position for j = 1, 2, ..., n, we see that i + 1 immediately follows i. Thus we can "merge" i, i + 1 into one symbol and find that $|A_i| = (n - 1)!$ for all i. Similarly, $|A_S| = (n - |S|)!$, since we get A_S by |S| merges. (If i, i + 1 are part of S then the merge contains i, i + 1, i + 2.).

The result follows directly from the inclusion-exclusion formula.

Q3: (34pts) The sequence $a_0, a_1, \ldots, a_n, \ldots$ satisfies the following: $a_0 = 1, a_1 = 4$ and

$$a_n - 4a_{n-1} + 4a_{n-2} = 0$$

for $n \geq 2$.

Determine the generating function $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and hence find a_n .

Solution

$$0 = \sum_{n=2}^{\infty} (a_n - 4a_{n-1} + 4a_{n-2})x^n$$

= $(a(x) - 1 - 4x) - 4x(a(x) - 1) + 4x^2a(x)$
= $a(x)(1 - 4x + 4x^2) - 1.$

So

$$a(x) = \frac{1}{1 - 4x + 4x^2}$$

= $\frac{1}{(1 - 2x)^2}$
= $\sum_{n=0}^{\infty} (n+1)2^n x^n$.