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§1 The Hales-Jewett Theorem

The following theorem was proved in 1927 by van der Waerden [20], answering a con-

jecture of Schur:

Theorem 1.1. If the natural numbers are partitioned into two sets, then one set must

contain arbitrarily long arithmetic progressions.

This result was proved before Ramsey’s Theorem, and led to a number of generalizations,

with implications in Ramsey Theory. Theorem 1.1 can be rewritten as follows: for any

pair of positive integers k, r, there exists an integer W = W (k, r) such that if [W ] is

r-coloured, then we may find a monochromatic k-term arithmetic progression.

In this section, an important theorem known as the Hales-Jewett Theorem [8] is proved.

Consider the following notation. For x ∈ [k]N , A ⊂ [N ] and j ∈ [k] define

(x⊕ jA)i =







xi i 6∈ A
j i ∈ A

A Hales-Jewett line is a set of the form {x ⊕ jA : 1 ≤ i ≤ k}, for some x ∈ [k]N and

A ⊂ [N ], A 6= ∅. The Hales-Jewett Theorem implies van der Waerden’s Theorem. To

see this, represent points in the cube [k]N by the coefficients in a base k expansion of

non-negative integers less than kN . Provided N is large enough, a monochromatic line

exists, corresponding to a monochromatic arithmetic progression.

Hales-Jewett Theorem. Let k, r ∈ N. Then there exists N such that if [k]N is

r-coloured, then it contains a monochromatic Hales-Jewett line.

Proof. Let HJ(k, r) denote the smallest integer for which the theorem works. We

must show HJ(k, r) is always finite. If k = 1 set N = 1. Suppose that N = HJ(i, r)

has been found for each i < k and set i = k. Let N1 = HJ(k − 1, r2r−1) and set

Ni = HJ(k − 1, r2r−iksr
)

for i = 1, 2, . . . , r, where sr =
∑

i<rNi. Let κ be an r-colouring of [k]
∑

Ni (which

gives a colouring of [k]N1 × · · · × [k]Nr in the natural way). For x ∈ [k]Nr , we find a

colouring κx on [k]sr by sending (x1, . . . , xr−1) to κ(x1, . . . , xr−1, x). The number of such
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induced colourings κx is at most rk
sr

– the number of ways of colouring [k]sr with r

colours. Let the distinct ones be κi : 1 ≤ i ≤ s. We therefore obtain an s-colouring

of [k]Nr where x is receives colour i if κx = κi. This induces an obvious s-colouring

of [k − 1]Nr , as [k − 1]Nr ⊂ [k]Nr . So, by definition of Nr, we can find zr ∈ [k]Nr

and ∅ 6= Ar ⊂ [Nr] such that κzr⊕jAr
is the same function for 1 ≤ j ≤ k − 1. Set

Lr = {zr ⊕ jAr : 1 ≤ j ≤ k}. Let κx be the colouring of [k]sr−1 × Lr induced by κ with

κx(x1, x2, . . . , xr−2, zr ⊕ jAr) = κ(x1, x2, . . . , xr−2, x, zr ⊕ jAr). The number of possible

functions κx is now at most r2ksr−1
, where the factor of two appears since colourings

don’t change as 1 ≤ j ≤ k − 1 By definition of Nr−1, we find zr−1, Ar−1 such that

κzr−1⊕jAr−1
is constant over j ∈ [k − 1] (as before). Continue this procedure until we

have L1×L2× · · ·Lr with κ(z1⊕ j1A1, . . . , zr ⊕ jrAr), depending only on {i : ji = i}. If
we r-colour the sets ∅, {1}, {1, 2}, . . . , [r], we clearly find two of the same colour. Hence

considering J = {i : ji = k} in this range, there exist t and u such that the colour

assigned under κ is the same when J = [t] as when J = [u]. If we let elements in any of

the Ai : t < i ≤ u range from 1 to k, the colour assigned is still the same – we knew it

wouldn’t change up to k − 1 and k is taken care of by definition of t and u. So, if

x = (z1 ⊕ kA1, . . . , zt ⊕ kAt, zt+1 ⊕ 1At+1, . . . , zu ⊕ 1Au, . . . , zr ⊕ 1Ar)

and A =
⋃

t<i≤uAi, then {x⊕ jA : 1 ≤ j ≤ k} is a monochromatic line. 2

This extends easily to a d-dimensional theorem. If we define a d-dimensional Hales-

Jewett subspace of [k]N to be a set of the form

{x⊕ j1A1 ⊕ j2A2 ⊕ · · · ⊕ jdAd : 1 ≤ ji ≤ k},

where A1, A2, . . . , Ad are disjoint and non-empty in [N ], then for every k, r, d there exists

an N such that, however [k]N is r-coloured, there is a monochromatic d-dimensional

Hales-Jewett subspace. Another way of viewing the Hales-Jewett theorem: if [N ] is

coloured with r colours, then there exist disjoint sets A0, A1, . . . , Ak such that A0∪
⋃

i∈I Ai

are all monochromatic where I ⊂ [k]. The following remarkable inductive proof of the

Hales-Jewett theorem is due to Shelah [14]:

Proof. LetM = HJ(k−1, r) and define N1 = r(k−1)M−1

and Ni = r(k−1)M−i

kN1+...+Ni−1

for i = 2, 3, . . . , r. Let κ be an r-colouring of [k]N1×· · ·× [k]NM . Given x ∈ [k]NM , let κx

4



be the colouring of [k]N1×· · ·×[k]NM−1 induced by κ. There are at most rkN1+...NM−1 such

colourings, so we can find two points x1 and x2 ,of the form (k − 1, . . . , k − 1, k, . . . , k),

such that κx1
= κx2

. If the first m and first n co-ordinates of x1 and x2 are (k − 1),

respectively, and Am = (m,n], then κzm
⊕jAm is the same for j = k−1 and j = k, where

zm = x. Let LM = {zM ⊕ jAM : 1 ≤ j ≤ k}. For each i, we have an induced colouring

of [k]N1 × · · · × [k]Ni−1 × Li+1 × · · · × LM . There are at most rk
N1+...+Ni−1

(k − 1)M−i

different colourings of this kind, so we find a line Li ⊂ [k]Ni , Li = {zi⊕ jAi : 1 ≤ j ≤ k}
such that κzi⊕jAi

is the same for j = k − 1, k. At the end of this process, we construct

L1 × · · · × LM so that κ, restricted to L1 × · · · × LM does not vary over co-ordinate

change from k − 1 to k. This completes the inductive step. 2

This proof was a breakthrough in that it was the first to give primitive recursive bounds

on the van der Waerden numbers. Erdős and Turán [4] hoped this could be achieved

by finding, for each k ∈ N, an o(N) function nk(N) such that every subset of [N ] of

size at least nk(N) contains an arithmetic progression of length k. We now look at this

problem more closely.
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§2 Roth’s Theorem

The following theorem was first proved by Szemerédi [17] using ingenious combinatorial

techniques, and later by Fürstenburg [6], using methods in ergodic theory.

Szemerédi’s Theorem. Let A be a set of positive upper density in N. Then A contains

arbitrarily long arithmetic progressions.

Szemerédi actually proved more than this. Let nk(N) denote the smallest integer such

that any subset of nk(N) elements taken from [N ] contains an arithmetic progression of

length k. Szemerédi established that nk(N) = o(N) for each k, thus proving a conjecture

of Erdős and Turán [4]. The proof used van der Waerden’s Theorem and Szemerédi’s

Regularity Lemma, therefore the upper bound on the order of nk(N) obtained can be

no better than the bounds given by these theorems.

Roth [11] gave a remarkable analytic proof that n3(N) = o(N) in 1954. Szemerédi

proved it for the more difficult case k = 4 [16] which then generalized to the above

theorem, for general k. We present the theorem of Roth here. The interest in this proof

is that it gives a good lower bound on n3(N) – n3(N) ≤ cN/ log logN for some constant

c > 0 – and that it offers the possibilty of generalization. Szemerédi’s Theorem was

proved by markedly different techniques and Fürstenburg’s proof gives no bounds on

the van der Waerden numbers.

Let n ∈ N and f : ZN → C. The (discrete) Fourier transform f̂ of f is defined by

f̂(r) =
∑N−1

s=0 f(s)ωrs, where ω = exp(2πi/N). We define the convolution of f and g,

f ∗ g by (f ∗ g)(r) = ∑

t−u=r f(t)g(u). The following properties are easily proved from

the definition, and will be used throughout the material to follow. The first identity is

known as Parseval’s Identity and the third will be called the convolution formula.

Lemma 2.2. The following properties hold for fourier transforms

(1)
∑ |f̂(r)|2 = N

∑ |f(r)|2

(2)
∑

f̂(r) ĝ(r) = N
∑

f(r) g(r)

(3) (f ∗ g)̂ = f̂ ĝ

(4) N
∑ |(f ∗ g)(r)|2 =

∑ |f̂(r)|2|ĝ(r)|2

(5)
∑ |f̂(r)|4 = N

∑

a+b=c+d f(a)f(b)f(c)f(d)
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An arithmetic progression in Z is called a Z-arithmetic progression if it is an arithmetic

progression when considered as a subset of Z.

Lemma 2.3. Let a, d ∈ ZN with d 6= 0 and let m ≤ N . Then the set A = {a, a +

d, . . . , a + (m − 1)d} can be partitioned into fewer than 3m1/2 subsets, which are Z-
arithmetic progressions.

Proof. Let ` = bm1/2c and consider the numbers {a, a+ d, . . . , a+(m− 1)d}. At least
two lie within N/` of each other so there exists s ∈ [`− 1] with −N/` ≤ sd ≤ N/` such

that we split A into subprogressions, each with common difference sd. If P is one of

them, then P can be partitioned into Z-arithmetic progressions, all but two of which

have size at least ` ≥ m1/2, as |sd| ≤ N/`. So the whole set can be partitioned into at

most m/m1/2 + 2s ≤ 3m1/2 Z-arithmetic progressions. 2

The idea in the proof of Roth’s Theorem is that if a set A does not contain an arithmetic

progression of length three, then Â has a large Fourier coefficient. This implies that A has

an intersection with a long ZN -arithmetic progression, where the density of A increases.

As the density is bounded above by 1, and ZN -arithmetic progressions are taken care of

by the Lemma 2.3, this completes the argument, provided N is large enough.

Roth’s Theorem. There is a constant c > 0 such that for any N ∈ N and A ⊂ [N ] of

size at least cN/ log logN , A contains an arithmetic progression of length three.

Proof. In general, if X,Y and Z are subsets of ZN with densities α, β, γ respectively,

then the number of triples (x, y, z) ∈ X × Y × Z such that x + z = 2y (mod N) is

N−1|X||Y ||Z| + ∑

r X̂(r)Ŷ (−2r)Ẑ(r). Using Cauchy–Schwartz, the second term has

modulus at most

N−1 max
r 6=0

|X̂(r)|
(

∑

r

|Ŷ (−2r)|2
)1/2(∑

r

|Ẑ(r)|2
)1/2

.

Using Parseval’s Identity for Ŷ and Ẑ, this expression is βγN maxr 6=0 |X̂(r)|. Provided

max |X̂(r)| ≤ 1
2
αβ1/2γ1/2z1/2N , there are at least 1

2
αβγN 2 triples of the required form

as N−1|X||Y ||Z| = αβγN 2. A non-trivial solution occurs if 1
2
αβγN 2 > N .

Now let A have density δ and B = {a ∈ A : N
3
< x < 2N

3
}. We plan to show that A has a

substantial intersection with, and higher density in, a long arithmetic progression P . If

|B| ≤ δN/5, then A has density at least 6δ/5 in [0, N/3] or [2N/3, N), and we have the
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required arithmetic progression P , of length bN/3c or bN/3c+ 1. Suppose |B| ≥ δN/5.

Then there exists a non-trivial solution a + c = 2b with (a, b, c) ∈ A × B × B, or

|Â(r)| ≥ δ2N/10 for some r. In the first case, we have a Z-arithmetic progression of

length three in A, as required.

Partition the unit circle into M consecutive equal intervals I1, I2, . . . , IM of diameter as

close to δ2/20 as possible. Define Pj = {x : ω−rx ∈ Ij}. Then each Pj is an arithmetic

progression in ZN with common difference −r−1 (mod N) (the ZN inverse of −r). Define

f(x) = A(x)− δ. Then
∑

f(x) = 0 and f̂ = Â. So

δ2N/10 ≤ |f̂(r)| =
∣

∣

∣

∑

x

f(x)ω−rx
∣

∣

∣ ≤
∣

∣

∣

∑

j

∑

x∈Pj

f(x)ω−rx
∣

∣

∣ ≤
∑

j

∣

∣

∣

∑

x∈Pj

f(x)ω−rx
∣

∣

∣.

Now fix j and let xj ∈ Pj. Then
∣

∣

∣

∑

x∈Pj

f(x)ω−rx
∣

∣

∣ ≤
∣

∣

∣

∑

x∈Pj

f(x)ω−rxj

∣

∣

∣ +
∣

∣

∣

∑

x∈Pj

f(x)
(

ω−rx − ω−rxj

)∣

∣

∣

≤
∣

∣

∣

∑

x∈Pj

f(x)
∣

∣

∣+
∑

x∈Pj

δ2

20

≤
∣

∣

∣

∑

x∈Pj

f(x)
∣

∣

∣+
δ2|Pj|
20

.

Summing over j, we find δ2N
10
≤ ∑M

j=1|
∑

x∈Pj
f(x)| + δ2

20

∑M
j=1 |Pj|. Since the last sum is

N , we get
∑M

1 |
∑

Pj
f(x)| ≥ δ2N

20
. Recalling that

∑

f(x) = 0, we find
∑M

1 (|∑Pj
f(x)| +

∑

Pj
f(x)) is at least δ2N

20
. So there exists j such that

∑

x∈Pj
f(x) ≥ δ2|Pj |

40
. As A(x) =

f(x) + δ, |A(x) ∩ Pj| ≥ δ(1 + δ/40)|Pj|. By Lemma 2.3, Pj may be partitioned into

r ≤ 3|Pj|1/2 Z-arithmetic progressions Q1, Q2, . . . , Qr. This gives

r
∑

i=1

∑

x∈Qi

f(x) ≥ δ2|Pj|
40

and so there is k such that
∑

Qk
f(x) ≥ δ2|Qk|/80 and |Qk| ≥ δ2|Pj|/80r ≥ δ3N1/2/5000.

In other words, A has density δ(1+δ/80) in the long arithmetic progression Qk. We now

repeat the argument on A ∩ Qk in Qk. As the density increases by a factor δ/80 each

time, this procedure must stop in 160/δ steps. That is, A must contain an arithmetic

progression of length three provided that δ ≥ 500/ log logN . 2

Heath-Brown [9] and Szemerédi [18] have recently improved the denominator to (logN)−c,

for some constant c > 0.
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§3 Weyl’s Inequality

Let f : N → R be a function and write {f(x)} for the fractional part of f(x). We say

that f is uniformly distributed if for α ∈ (0, 1],

lim
n→∞ |{m ≤ n : {f(m)} < α}| = α

Weyl [23] established that if f(x) is a polynomial that has at least one non-constant term

with an irrational coefficient, then f is uniformly distributed. This theorem is proved

using a fundamental inequality, known as Weyl’s Inequality, involving exponential sums.

We shall prove this theorem with f(x) = αxk: that is, {α, 2kα, 3kα, . . .} is equidistributed
modulo 1. As a consequence, if α is a real number then for any ε > 0 there exists N

such that N 2α is at distance at most ε from an integer.

We derive the appropriate inequality to prove this result by establishing estimates for

exponential sums. The statements here are written for simplicity, rather than for finding

optimal bounds. We begin with the following elementary lemma:

Lemma 3.1. Let α, β ∈ R. Then for n ∈ N,

∣

∣

∣

n
∑

x=1

e(αx+ β)
∣

∣

∣ ≤ min{n, (2‖α‖)−1}

where ‖α‖ is the distance from α to the nearest integer.

Proof. The constant β does not affect the inequality. If α = 0, then the sum is n. If

α 6= 0, then the sum is e(α)(1 − e(αn))/(1 − e(α)). As sin z = 1
2i
(eiz − e−iz), this is at

most | sinπα|−1. Since | sinπα| ≥ 2‖α‖, the inequality follows. 2

Lemma 3.2. Let m, r,Q ∈ N with Q ≥ 2 and m ≤ r. Let θ1, θ2, . . . , θm be real numbers

with ‖θi − θj‖ ≥ r−1 whenever i 6= j. Then

m
∑

i=1

min
{ 1

‖θi‖
, Q
}

≤ 6 logQ(Q+ r).

Proof. Without loss of generality, θi ∈ [−1/2, 1/2] and the contribution S+ to the sum

from the non-negative θi is at least one half of the total. Suppose the positive θi are

ordered: 0 < θ1 < θ2 < . . . < θk. Then

k
∑

i=1

min
{ 1

‖θi‖
, Q
}

=
k
∑

i=1

min{θ−1
i , Q} ≤

k
∑

i=1

min{r/(i− 1), Q} =
br/Qc
∑

i=0

Q+
∑

r/Q<i<k

r/i.
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Estimating the last term with logarithms, S+ ≤ (1+ r/Q)Q+2r(log k+logQ− log r) ≤
Q+ r + 2r logQ. Therefore the sum is at most 2S+ ≤ 6 logQ(Q+ r). 2

The following lemma will be used in this and subsequent sections.

Lemma 3.3. Let q,Q,R ∈ N, Q ≥ 2, and let α ∈ R be chosen so that there exists a ∈ N
with (a, q) = 1 and |α− a/q| ≤ q−2. Then

R
∑

x=0

min
{ 1

‖αx+ β‖ , Q
}

≤ 48 logQ(Q+ q +R +QR/q).

Proof. Let s, t ≥ 0 be natural numbers. Then ‖sα − tα‖ ≥ ‖(s− t)a/q‖ − |s− t|q−2.

If 0 < |s − t| ≤ q/2 then a(s − t) 6= 0 (mod q), so is at least 1/q − q/2q2 = 1/2q. In

the first case, suppose R < q/2− 1. Then β, α+ β, . . . , Rα+ β are all (2q)−1-separated

(mod 1), so by Lemma 3.2 with r = 2q,

R
∑

x=0

min
{ 1

‖θi‖
, Q
}

≤ 6 logQ(Q+ 2q).

In the second case, split the sum into segments of size at most q/2 – at most 4R/q

segments in total. By Lemma 3.2, each contributes at most 6 logQ(Q + 2q). Therefore

the sum is at most 24 logQ(QR/q + 2R). In both cases, we obtain the upper bound

48 logQ(Q+ q +R +QR/q), as required. 2

Theorem 3.4. Let q,Q ∈ N, Q ≥ 2, let (a, q) = 1 and let α ∈ R with |α − a/q| ≤ q−2.

Let φ(x) = x2 + cx+ d. Then

∣

∣

∣

Q
∑

x=0

e(αφ(x))
∣

∣

∣ ≤ 20 logQ(Q1/2 + q1/2 +Q/q1/2).

Proof. Let ψu(y) =
1
2u
[φ(y + u)− φ(y)] = y + u/2 + c/2. Then

∣

∣

∣

Q
∑

x=0

e(αφ(x))
∣

∣

∣

2
=

∑

y=0

Q
Q
∑

x=0

e(αφ(x)− αφ(y))

=
Q
∑

y=0

Q−y
∑

u=−y
e(αφ(y + u)− αφ(y))

=
−1
∑

u=−Q

Q
∑

y=Q+u

e(αφ(y + u)− αφ(y)) +
Q
∑

u=0

Q−u
∑

y=0

e(αφ(y + u)− αφ(y))
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=
Q
∑

u=−Q

∑

y∈Iu
e(2αuψu(y))

≤
Q
∑

u=−Q

∣

∣

∣

∑

y∈Iu
e(2uαy + βu)

∣

∣

∣

≤
Q
∑

u=−Q
min{‖2uα‖−1, Q}

≤
2Q
∑

u=−2Q

min{‖uα‖, Q}

≤ 48 logQ(Q+ q + 2Q+ 1 +Q(2Q+ 1)/q)

≤ 200 logQ(Q+ q +Q2/q).

where Iu denotes the range of y-summation. This gives the desired bound. 2

In the next results, we will write uj ≡ u1, u2, . . . , uj, for convenience. The next lemma

is the step required to prove Weyl’s Inequality.

Lemma 3.5. Let φ be a monic polynomial of degree k and let 0 ≤ j ≤ k − 1. Let

f(α) =
∑Q

x=1 e(αφ(x)). Then

|f(α)|2j ≤ (2Q)2
j−j−1

∑

u1∈I1

∑

u2∈I2
. . .

∑

uj∈Ij

∣

∣

∣

∑

y∈Iuj

e(αφuj
(y))

∣

∣

∣

where I1, I2, . . . , Ij are integer intervals, contained in (−Q,Q], such that Ii depends on

u1, u2, . . . , ui−1, Iuj
is a sub-interval of [Q] and φuj

is a polynomial of degree k − j with

leading coefficient k!/(k − j)!.

Proof. By induction on j. For j = 0, the result is clear. Now, as (
∑

ai) ≤ n
∑

a2
i ,

|f(α)|2j+1 ≤ (2Q)2
j+1−2j−2(2Q)j

∣

∣

∣

∑

y∈Iuj

e(αφuj
(y))

∣

∣

∣

2

≤
∑

uj+1∈Ij+1

·
∑

y∈Iuj

e(α[φuj
(y + uj+1)− φuj

(y)]),

where Ij+1 is a subset of Iuj
−Iuj

⊂ (−Q,Q] and Iuj+1
⊂ Iuj

. Now φuj
(y+uj+1)−φuj

(y) =

φuj+1
(y) where φuj+1

(y) has degree k − j − 1. The leading coefficient of φuj+1
(y) is

uj+1(k − j) · k!/(k − j)! · u1u2 . . . uj. 2

We now state and prove Weyl’s Inequality.
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Theorem 3.6 Let (a, q) = 1, α ∈ R, |α− a/q| ≤ q−2, k,Q ∈ N, Q ≥ 2. Then

∣

∣

∣

Q
∑

x=1

e(αφ(x))
∣

∣

∣ ≤ 100(logQ)k/2
k−1

Q(Q−1 + q−1 + qQ−k)1/(2
k−1).

Proof. Let k ≥ 2. Given n ∈ N, there are at most (2 log2 n)
2(k−1) ways of writing n as

a product of k − 1 integers. If m = k!Qk−1, then

|f(α)|2k−1 ≤ (2Q)2
k−1−k ·

∑

u1,...,uk−1

∣

∣

∣

∑

y

e(αφuk−1
(y))

∣

∣

∣

≤ (2Q)2
k−1−k ·

∑

uk−1

∣

∣

∣

∑

y

e(αφuk−1
(y))

∣

∣

∣

≤ (2Q)2
k−1−k · 2k−1(log2Q)k−1

m
∑

−m+1

min{Q, ‖αx‖−1}

≤ (2Q)2
k−1−k · 2k−1(log2Q)k−1 · 48 logQ(Q+ 2k!Qk−1 + q + 2k!Qk/q).

This is at most 100(logQ)kQ2k−1

(Q−1 + q−1 + qQ−k). 2

We briefly look at an important practical application of Weyl’s Inequality, which will

lead to Weyl’s Theorem.

Proposition 3.7. Let α ∈ R, N ∈ N. Then there exists q : 1 ≤ q ≤ N such that

‖αq‖ ≤ N−1.

Proof. Of the reals α, 2α, . . . , Nα, two lie within N−1 of each other (mod 1). Thus

there exist s, t : s 6= t with ‖(s− t)α‖ ≤ n−1. Set q = |s− t|. 2

Lemma 3.8. For n ∈ N, the number of factors of n is at most n4/(log logn).

Proof. Let 2 ≤ t ≤ n and write τ(n) for the number of divisors of n. Then

τ(n) =
∏

pa|n

pa+1 6|n

(a+ 1) ≤
∏

pa|n,p≤t

pa+1 6 |n

(a+ 1)
∏

pa|n,p>t

pa+1 6 |n

2a

≤
(

1 +
log n

log 2

)t( ∏

pa|n

pa+1 6 |n

pa
)log 2/ log t

≤ exp
(

t(2 + log log n) + log 2 · log n/ log t
)

.

On choosing t = log n/(log log n)3, we obtain the result. 2
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Lemma 3.9. Let A ⊂ ZN , |A| = M , and suppose that A ∩ (−2L, 2L] 6= ∅. Then there

exists r such that 0 < r < (N/L)2 and |Â(r)| ≥ LM/2N .

Proof. We have x, y ∈ I = (−L,L] implies x−y ∈ (−2L, 2L]. Therefore if (I∗I)(s) 6= 0

then A(s) = 0. So
∑

s(I∗I)(s)A(s) = 0 and
∑

r |Î|2Â(r) = 0 implies
∑

r 6=0 |Î(r)|2|Â(r)| ≥
|Î(0)||Â(0)| = 4L2M . However |Î(r)| = |∑I e(−rs)| ≤ min{‖r/N‖, 2L}. If −N/2 < r <

N/2, then this is min{N/r, 2L}. Consequently
∑

r 6=0

|Î(r)|2|Â(r)| ≤ max
0<|r|≤(N/L)2

|Â(r)|
∑

r

|Î(r)|2 +M
∑

|r|>(N/L)2

(N/r)2

≤ 2LN max
0<r≤(N/L)2

|Â(r)|+ 3MN 2/(N/L)2.

Therefore there exists r for which |Â(r)| ≥ LM/2N . 2

The next theorem, due to Weyl [23], is a well-known consequence of Weyl’s Inequality:

Theorem 3.10. For every k ∈ N there exists ε > 0 such that for all M sufficiently

large and α ∈ R, there exists q ≤M such that ‖qkα‖ ≤ 2M−ε.

Proof. Approximate α arbitrarily closely by a rational a/N with N prime. With-

out loss of generality, α = a/N . If the claim of the theorem is false, then A =

{a, 2ka, . . . ,Mka} and (−2L, 2L] are disjoint when L = bNM−εc. Applying Lemma

3.9, we find r such that 0 < r ≤ (N/L)2 ≤ 2M2ε, and such that |Â(r)| ≥M 1−ε/2. Now

|Â(r)| = |∑M
s=1 e(αrs

k)|. Let q ≤ M with |αr − p/q| ≤ (qM)−1. If q ≥ M 2−k

, applying

Weyl’s inequality gives

∣

∣

∣

M
∑

s=1

e(αrsk)
∣

∣

∣≤M1+ε ·M−1/(2k2k−1),

for M is sufficiently large. With ε = 1/(k2k+3), this is a contradiction. If q ≤ M 2−k

,

then ‖αqr‖ ≤ M−1, by Proposition 3.7. But then ‖α(qr)k‖ ≤ 2kM−1/2M2kε ≤ 2M1−ε

for M sufficiently large. 2
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§4 Vinogradov’s Three-Primes Theorem

Vinogradov’s famous theorem asserts that every sufficiently large odd number is the sum

of three primes. Together with Chen’s theorem (every sufficiently large even number is

the sum of p and q, where p is prime and q is the product of at most two primes) this

is one of the strongest results in the direction of Goldbach’s conjecture. In this section

we shall see how to use exponential-sum estimates to prove Vinogradov’s theorem, and

we shall also gain some insight into why Goldbach’s conjecture itself is out of reach.

We begin with some definitions and simple lemmas. Given n ∈ N, let Λ(n) be log p if

n = pk with p prime, k ≥ 1 and zero otherwise. Let µ(n) = (−1)k if n is a product of k

distinct primes (interpreting this as 1 when n = 1) and zero otherwise. These functions

are called von Mangoldt’s function and the Möbius function respectively.

Lemma 4.1. Let x ∈ N. Then
∑

d|x Λ(d) = log x.

Proof. Write x as a product of prime powers and it becomes obvious. 2

Lemma 4.2. Let x ∈ N. Then
∑

d|x µ(d) = 0 unless x = 1 in which case
∑

d|x µ(d) = 1.

Proof. Let x ≥ 2 and write x = pa1
1 . . . pak

k . Then every subset A ⊂ [k] contributes

(−1)|A| to the sum
∑

d|x µ(d). But

∑

A⊂[k]

(−1)|A| =
k
∑

j=0

(−1)j
(

k

j

)

= (1− 1)k = 0.

(Another way of looking at the last calculation is that a randomly chosen subset of [k]

has the same chance of being of even as of odd size.) 2

Recall that d(x) is defined to be the number of divisors of x. We know from the previous

section that d(x) is sometimes quite large. The next lemma shows that this does not

happen all that often.

Lemma 4.3. Let n ∈ N. Then
∑

x≤n d(x)
2 ≤ 2n(log n)3.

Proof. This is surprisingly easy to prove. Indeed,

∑

x≤n
d(x)2 =

∑

x≤n

∑

b|x
∑

c|x
1

14



=
∑

b≤n

∑

c≤n

∑

y.lcm(a,b)≤n
1

≤
∑

a≤n

∑

d≤n/a

∑

e≤n/ad

∑

y≤n/ade
1

≤
∑

a≤n

∑

d≤n/a

∑

e≤n/ad
n/ade

≤
∑

a≤n

∑

d≤n/a
(n/ad)(log n+ 1)

≤
∑

a≤n
(n/a)(log n+ 1)2

≤ n(log n+ 1)3,

which proves the lemma. 2

It is easy to check that the number of ways of writing n as the sum of three primes is
∫

F (α)3e(−αn)dα, where F (α) is the function
∑

p≤n e(αp). Roughly speaking, our aim

will be to estimate F (α) for every α, and use this estimate to prove that the integral is

non-zero. As in the previous section, F (α) turns out to be small when α is not too close

to a rational with small denominator. When it is close to such a rational, we shall use

results about the distribution of primes in an arithmetic progression to estimate F (α)

directly.

There are, however, certain advantages in weighting the primes so that their density is

approximately constant through the interval. Since the density near m is (logm)−1, the

appropriate weight to give p is log p. Accordingly, we shall estimate the function f(α) =
∑

p≤n log pe(αp). The integral
∫

f(α)3e(−αn)dα gives us the sum of (log p1)(log p2)(log p3)

over all triples (p1, p2, p3) such that p1 +p2 +p3 = n, so for the purposes of Vinogradov’s

theorem it is enough to prove that this integral is non-zero for large enough odd n.

Finally, even this function is not always the most convenient to estimate. The next

lemma shows that we may replace it by g(α) =
∑

x≤n Λ(x)e(αx), with only a small

error.

Lemma 4.4. |f(α)− g(α)| ≤ C
√
n for every α and some absolute constant C.

Proof. g(α)−f(α) = ∑

pk≤n,k≥2 log pe(αp
k) which in modulus is at most (log2 n)

∑

p≤√n 1.

By Chebyshev’s theorem the result follows. 2
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The next lemma is similar to the lemma we kept using during the proof of Weyl’s

inequality, and follows from it. Since we are about to prove several results with the

same hypotheses, let us state them once and for all before starting. Thus, a and q will

be positive integers with (a, q) = 1 and α is a real number with |α− a/q| ≤ q−2.

Lemma 4.5. Let Q,R be positive integers with q ≤ Q. Then

R
∑

x=1

min{‖αx‖−1, Qx−1} ≤ 200 logQ logR(q +R +Qq−1).

Proof. We know, from chapter 3, that the numbers 0, α, 2α, . . . , b(q/2)cα are (2q)−1-

separated. Therefore,

∑

x≤q/2
min{‖αx‖−1, Qx−1} ≤ 2

∑

x≤dq/4e
2q/x ≤ 4q log q.

Given an integer i, let Si be the sum
∑2i−1

x=2i−1 min{‖αx‖−1, Qx−1}. Then

Si ≤
2i−1
∑

x=2i−1

min{‖αx‖−1, Q/2i−1}

which, by Lemma 3.3 of the last chapter, is at most 48 logQ(2−(i−1)Q+2i−1+q+Qq−1).

Summing over all i such that 2i > q/2 and 2i−1 ≤ R, we obtain the desired result. 2

We now prove an identity due to Vaughan [21], which will allow us to show that g(α)

is small when α is not close to a rational with small denominator. This identity seems

mysterious when it is just drawn out of a hat, but the mystery can be reduced with a

few remarks.

We wish to show that g(α) =
∑

x≤n Λ(x)e(αx) is appreciably smaller than n when q is

not too small (or too large). The function which is hard to understand is of course Λ,

but we know that Λ has the nice property that
∑

d|x Λ(d) = log x, which is much more

familiar. Therefore, we try to express g(α) as a sum of pieces of this form. As a first

observation, we notice (or rather, it has been noticed) that

∑

x≤n

∑

y≤n/x
Λ(x)e(αxy) =

∑

u≤n

∑

x|u
Λ(x)e(αu).

This is very promising, because

∑

x≤n
Λ(x)e(αx) =

∑

x≤n

∑

y≤n/x

∑

d|y
µ(d)Λ(x)e(αxy)
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=
∑

d≤n
µ(d)

∑

z≤n/d

∑

x≤n/zd
Λ(x)e(αdxz) ,

which is a ±1-combination of sums of the required form, and therefore seems to have a

chance of being small.

Now it is clearly not easy to obtain a good estimate for the last quantity directly, because

d takes n possible values and for each one we are not going to do better than a modulus

of 1. It is therefore essential to restrict d. However, this introduces a new error term

which must be shown to be small. Moreover, showing that this error term is small turns

out not to be possible unless we also restrict x to be not too small. We now prove the

identity by a process of trial and error, starting with the observations above.

Lemma 4.6. Let X = n2/5. Then g(α) =
∑

x≤n Λ(x)e(αx) = S − T − U + O(n2/5),

where

S =
∑

d≤X
µ(d)

∑

z≤n/d

∑

x≤n/zd
Λ(x)e(αdxz) ,

T =
∑

d≤X
µ(d)

∑

z≤n/d

∑

x≤X,x≤n/zd
Λ(x)e(αdxz)

and

U =
∑

X<u≤n

∑

d|u,d≤X
µ(d)

∑

X<x≤n/u
Λ(x)e(αxu).

Proof. Let us write τu for
∑

d|u,d≤X µ(d). Then, by Lemma 4.2, we know that τu is 1

when u = 1 and 0 when 1 < u ≤ X. Therefore,

∑

u≤n
τu

∑

X<x≤n/u
Λ(x)e(αxu) = U +

∑

X<x≤n
Λ(x)e(αx).

But, by Chebyshev’s theorem (as in the proof of Lemma 4.4),

∑

X<x≤n
Λ(x)e(αx) = g(α) +O(n2/5).

We also know that

∑

u≤n
τu

∑

X<x≤n/u
Λ(x)e(αxu) =

∑

u≤n

∑

d|u,d≤X
µ(d)

∑

X<x≤n/u
Λ(x)e(αxu)

=
∑

d≤X
µ(d)

∑

z≤n/d

∑

X<x≤n/dz
Λ(x)e(αxzd)

= S − T.

The identity follows. 2
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In the next three lemmas, we show that each of S, T and U is small. Notice that S

is the sum we originally expected to be able to bound, and is therefore in a sense the

important one, while T and U are error terms that we were unable to avoid introducing.

Lemma 4.7. |S| ≤ 80(log n)3(q +X + n/q).

Proof. Writing u for xz, we have

|S| =
∣

∣

∣

∑

d≤X
µ(d)

∑

u≤n/d

∑

x|u
Λ(x)e(αdu)

∣

∣

∣ ≤
∑

d≤X

∣

∣

∣

∑

u≤n/d
log ue(αdu)

∣

∣

∣

by Lemma 4.1. But

∣

∣

∣

∑

u≤n/d
log ue(αdu)

∣

∣

∣ =
∣

∣

∣

∑

u≤n/d

∫ u

1
e(αdu) dt/t

∣

∣

∣

≤ ∫ n/d
1

∣

∣

∣

∑

t≤u≤n/d e(αdu)
∣

∣

∣ dt/t

≤ ∫ n/d
1 min{‖αd‖−1, n/d} dt/t

≤ log nmin{‖αd‖−1, n/d}.

Summing over d ≤ X and applying Lemma 4.5 (taking into account that logX =

(2/5) log n) we obtain the bound claimed. 2

Lemma 4.8. |T | ≤ 160(log n)3(q +X2 + n/q).

Proof. Interchanging the order of summation of z and x in the definition of T , and

using the fact that |µ(d)| ≤ 1, we have

|T | ≤
∑

d≤X

∑

x≤X
Λ(x)

∣

∣

∣

∑

z≤n/dx
e(αdxz)

∣

∣

∣.

Now let y = dx, and this becomes

∑

y≤X2

∑

x≤X,x|y
Λ(x)

∣

∣

∣

∑

z≤n/y
e(αyz)

∣

∣

∣.

By Lemma 4.1,
∑

x≤X,x|y Λ(x) ≤ log y ≤ log n, so we can bound this above by

log n
∑

k≤X2

min{‖αy‖−1, n/y}

which is at most the bound stated, by Lemma 4.5. 2

Lemma 4.9. |U | ≤ 40(log n)4(n1/2q1/2 + n/X1/2 + nq−1/2).
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Proof. Given a positive integer i, let Ui be the sum

2i−1
∑

u=2i−1

|τu|
∣

∣

∣

∑

X<x≤n/u
Λ(x)e(αxu)

∣

∣

∣.

Notice that Ui = 0 when 2i−1 ≥ n/X (because it is then impossible to satisfy the

inequality X < x ≤ n/u), and that |U | is therefore at most the sum of all Ui over all

i such that 2i > X and 2i−1 < n/X. It is easy to check that there are at most log n

such values of i. (The fact that 2i is between roughly n2/5 and roughly n3/5 more than

compensates for the replacement of log2 n by log n.) We shall estimate the Ui separately.

By the Cauchy-Schwarz inequality,

U2
i ≤

(

2i−1
∑

u=2i−1

|τu|2
)(

2i−1
∑

u=2i−1

∣

∣

∣

∑

X<x≤n/u
Λ(x)e(αxu)

∣

∣

∣

2)

.

Now |τu| is obviously at most d(u), so

2i−1
∑

u=2i−1

|τu|2 ≤ ∑2i−1
u=2i−1 d(u)2

≤ ∑2i

u=1 d(u)
2 ,

which is at most 2i(log n)3, by Lemma 4.3. As for the other bracket, if we expand out

the modulus squared, we find that it equals

2i−1
∑

u=2i−1

∑

X<x≤n/u

∑

X<y≤n/u
Λ(x)Λ(y)e(α(x− y)u).

Interchanging the sum over u with those over x and y, we find that this is at most

∑

X<x≤n/2i−1

∑

X<y≤n/2i−1

Λ(x)Λ(y)
∣

∣

∣

∑

2i−1≤u<2i,u≤min{n/x,n/y}
e(α(x− y)u)

∣

∣

∣

which is at most

∑

X<x≤n/2i−1

∑

X<y≤n/2i−1

Λ(x)Λ(y)min{‖α(x− y)‖−1, 2i−1}.

Writing z for x−y and observing that each z occurs at most n/2i−1 times, we can bound

this sum above by

(log n)2(n/2i−1)
∑

n/2i−1<z≤n/2i−1

min{‖αz‖−1, 2i−1} ,
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which, by Lemma 3.3 of the last chapter, is at most

(log n)2.48 log n(q + n/2i−2 + 2i−1 + 2n/q).

Multiplying the two estimates together, we have shown that

U2
i ≤ 96n(log n)6(q + 4n/2i + 2i−1 + 2n/q) ,

which implies, since n/2i and 2i−1 are at most n/X, that

Ui ≤ 40(log n)3(n1/2q1/2 + n/X1/2 + nq−1/2).

Since there are at most log n values of i such that Ui contributes to U , the result fol-

lows. 2

Remarks. It may look complicated to split the sum into log n (or so) further pieces,

but this was a good (and standard) thing to do because we were estimating something

of the form
∑

u f(u)g(u), where f(u) appeared to be roughly proportional to u and g(u)

roughly proportional to u−1. So applying the Cauchy-Schwarz inequality straight away

would have been disastrous. Note that the choice of X = n2/5 was made in order to

minimize max{X2, nX−1/2}.

If we put together Lemmas 4.4 and 4.6 to 4.9 we obtain the following result.

Theorem 4.10. Let a, q be positive integers with (a, q) = 1 and let α be a real number

such that |α−a/q| ≤ 1/q2. Then
∑

x≤n Λ(x)e(αx) and
∑

p≤n log p e(αp) are both at most

50(log n)4(n1/2q1/2 + n4/5 + nq−1/2), when n is sufficiently large.

We have now managed to show that f(α) is small, provided that q is not too small. The

usual approach to the rest of the proof is to estimate f(α) when α is close to a rational

with small denominator, using the Siegel-Walfisz theorem (see [19]), and then combine

these results to obtain a fairly accurate estimate for
∫

f(α)3e(−αn) dα (in particular,

accurate enough to show that it is non-zero). In these notes, a different argument is

used, which is believed to explain, in a more intuitive way, why the integral comes out

to be positive. It has the added advantage that we do not actually need to estimate the

integral at all accurately, although it is possible to work harder in order to do so.

20



The main idea is to work out exactly what is meant by the familiar idea that the primes

are somehow randomly distributed. A minor problem to worry about first is that there

are more small primes than large ones, but we have already dealt with that by weighting

a prime p by log p. Now, in chapter 2, we thought of a subset A of {1, 2, . . . , n} as being
random if the Fourier coefficients Â(r) were all much smaller than n, for non-zero r.

However, it is clear that the primes are not random in this sense, because, for example,

only one prime is a multiple of five.

Which constraints of this kind have an effect on Fourier coefficients? It is an easy

exercise to show that congruence conditions mod q have an effect if and only if q is

small. Motivated by this observation, we let p1, . . . , pk be the primes less than or equal

to (log n)A, in ascending order, and define Q to be the set of integers less than or equal

to n that are not multiples of any pi. Here, A is an absolute constant (in fact we shall

choose A = 16), but there is some freedom in the argument, and we could have made pk

quite a bit larger. What we shall do in the rest of the section is show that the weighted

primes behave like a random subset of Q.

It is not hard to work out how to interpret this statement. It means that the Fourier

transforms f(α) =
∑

p≤n log p e(αp) and h(α) =
∑

x∈Q e(αx) are roughly proportional.

This implies that integrals involving these functions are also roughly proportional, so

that, roughly speaking, whatever is true for Q is true for the weighted primes as well.

(That “roughly speaking” is important: a good exercise is to see why Lemma 4.20 below

does not translate into a solution of the Goldbach conjecture.)

We begin by obtaining an estimate similar to Theorem 4.10 for the function h(α). The

proof is much simpler, however.

Lemma 4.11. Suppose that (a, q) = 1 and |α− a/q| ≤ q−2. Then

|h(α)| ≤ 100(log n)2(n1/2 + q + nq−1 + n1−1/4A).

Proof. Notice first that

h(α) =
k
∑

s=0

(−1)s
∑

1≤i1≤...≤is≤k

∑

y≤n/pi1
...pis

e(αpi1 . . . pisy).

The justification of this is similar to the proof of Lemma 4.2. If z ∈ Q then e(αz) is

added when s = 0, and otherwise does not appear. If z /∈ Q then z = pa1
j1 . . . p

ar
jrw
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for some w ∈ Q, and ai ≥ 1, and e(αz) is added (−1)|B| times for every subset B of

{j1, dots, jr}, giving a total contribution of zero.

The inner sum is at most min{‖αpi1 . . . pis‖−1, n/pi1 . . . pis}. Let t = log n/2A log log n

and note that ptk ≤
√
n. These estimates and the fundamental theorem of arithmetic

imply that
∣

∣

∣

t
∑

s=0

(−1)s
∑

1≤i1≤...≤is≤k

∑

y≤n/pi1
...pis

e(αpi1 . . . pisy)
∣

∣

∣

is at most
∑

x≤√nmin{‖αx‖−1, n/x}, which, by Lemma 4.5, is at most 100(log n)2(n1/2+

q + nq−1).

The rest of the sum is, in modulus, at most

k
∑

s=t+1

∑

1≤i1≤...≤is≤k
n

s
∏

j=1

p−1
ij

,

which is at most

n
k
∑

s=t+1

(s!)−1(p−1
1 + . . .+ p−1

k )s.

It is well known (and follows from the prime number theorem) that p−1
1 + . . . + p−1

k is

about log log k, and so at most 2 log log log n, when n is sufficiently large. Approximating

s! by (s/e)s, we obtain an upper bound of 2n(2e log log log n/t)t, since t ≥ 4e log log log n.

It is not hard to check that this is at most n−1/4A when n is sufficiently large. This,

together with the first estimate, proves the lemma. 2

We now turn to the “major-arcs” estimates, that is, estimates for f(α) and h(α) when

α is close to a rational with small denominator. It turns out that such estimates are

more or less equivalent to estimating
∑

p∈X log p and |X ∩Q| for certain long arithmetic

progressions X. In the case of the primes themselves, we shall appeal to known estimates

of this type, as given in the next result, the Siegel-Walfisz theorem.

Siegel-Walfisz Theorem. Let A be a positive real number, let x be an integer, let

q ≤ (log x)A be another integer and let (a, q) = 1. Then

∑

p≤x,p≡a (q)

log p =
x

φ(q)
+O(exp(−C

√

log x)) ,

where C is a constant depending on A only.
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Notice that from the Siegel-Walfisz Theorem it follows that, if q ≤ (log n)A, and X is

the arithmetic progression {a, a + q, . . . , a + (m − 1)q}, where (a, q) = 1 and 1 ≤ a ≤
n− (m− 1)q, then for any constant B, we have

∑

p∈X
log p =

mq

φ(q)
+O(n/(log n)B) ,

with the implied constant in the error term depending on A and B only.

We shall now obtain an estimate for |X ∩ Q|, when X is an arithmetic progression of

the kind above.

Lemma 4.13. Let q ≤ (log n)A, let X = {a, a+ q, . . . , a+ (m− 1)q} be a subset of [N ]

with m ≥ N 1/2 and suppose that (q, a) = 1. Then

|X ∩Q| = mq

φ(q)

k
∏

i=1

(1− p−1
i ) +O(mn−1/4A).

Proof. Let x ∈ X be chosen uniformly at random, and for each i let Xi be the event

pi|x. Then the probability of Xi is p
−1
i + O(m−1) if pi 6 | q and O(m−1) if pi|q. More

generally, for any choice 1 ≤ i1 ≤ . . . ≤ is ≤ k we have

Prob(Xi1 ∩ . . . ∩Xis) =
s
∏

j=1

εij/pij +O(m−1) ,

where εi = 1 if pi 6 | q and 0 if pi|q. It follows from this and the inclusion-exclusion

formula that, for any t,

1− Prob
(

k
⋃

i=1

Xi

)

=
t
∑

s=0

(−1)s
∑

1≤i1≤...≤is≤k

s
∏

j=1

εij/pij +O(m−1)
t
∑

s=1

(

k

s

)

.

Now
k
∏

i=1

(1− εi/pi) =
k
∑

s=0

(−1)s
∑

1≤i1≤...≤is≤k

s
∏

j=1

εij/pij

and

∑

1≤i1≤...≤is≤k

s
∏

j=1

εij/pij ≤ (s!)−1(p−1
1 + . . .+ p−1

k )s

≤ (4e log log log n/s)s

when n is sufficiently large. If t ≥ 8e log log log n, then this quantity summed from t+1

to k is at most (4e log log log n/t)t. Furthermore,
∑t

s=1

(

k
s

)

is easily seen to be at most

kt. It follows that

1− Prob
(

k
⋃

i=1

Xi

)

=
k
∏

i=1

(1− εi/pi) +O((log n)At + (4e log log log n/t)t).
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Choosing t to be log n/2A log log n gives an error of at most O(n−1/4A), as in the proof

of Lemma 4.11. Note finally that

k
∏

i=1

(1− εi/pi) =
k
∏

i=1

(1− 1/pi)
∏

pi|q
(1− 1/pi)

−1

=
k
∏

i=1

(1− 1/pi)
∏

p|q
(1− 1/p)−1

=
q

φ(q)

k
∏

i=1

(1− p−1
i ).

Multiplying everything by m proves the lemma. 2

Corollary 4.14. Let a, q,X be as in Lemma 4.13, let K =
∏k
i=1(1 − p−1

i )−1 and let B

be any positive constant. Then

K|X ∩Q| −
∑

p∈X
log p = O(n(log n)−B).

Proof. This follows immediately from Lemma 4.13 and the remark following Lemma

4.12. (Strictly speaking one must consider what happens if (a, q) 6= 1 but then it is easy

to see that both K|X ∩Q| and ∑p∈X log p are very small.) 2

Lemma 4.15. Let q ≤ (log n)A, let (b, q) = 1 and let α be a real number such that

|α− b/q| ≤ (log n)A/qn. Let G be a function from {1, 2, . . . , n} to R such that |G(x)| ≤
log n for every x and such that

∣

∣

∣

∑

x∈X
G(x)

∣

∣

∣ = O(n(log n)−B)

for every arithmetic progression X = {a, a + q, . . . , a + (m − 1)q}, where B ≥ 4A + 2.

Then
∣

∣

∣

∑

x≤n
G(x)e(αx)

∣

∣

∣ = O(n(log n)−A).

Proof. Let β = α − b/q and let X be one of the arithmetic progressions of the above

type. Notice that, if x, y ∈ X, then

|e(βx)− e(βy)| = |1− e(β(x− y))| ≤ 2π|x− y||β| ≤ 2πm(log n)A/n.

Therefore, letting x0 be an arbitrary element of X, we have

∣

∣

∣

∑

x∈X
G(x)e(αx)

∣

∣

∣ =
∣

∣

∣

∑

x∈X
G(x)e(bx/q)e(βx)

∣

∣

∣
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≤
∣

∣

∣e(ab/q)
∑

x∈X
G(x)(e(βx)− e(β0x))

∣

∣

∣+
∣

∣

∣e(ab/q)e(βx0)
∑

x∈X
G(x)

∣

∣

∣

=
∣

∣

∣

∑

x∈X
G(x)(e(βx)− e(βx0))

∣

∣

∣+
∣

∣

∣

∑

x∈X
G(x)

∣

∣

∣

≤ (2πm(log n)A/n)m log n+O(n(log n)−B)

= O((log n)A+1m2n−1 + n(log n)−B).

But we can partition [n] into 2n/m0 arithmetic progressions of the form of X, with

m ≤ m0 in each case. Therefore, choosing m0 = n(log n)−B/2 and summing over all

these, we find that
∣

∣

∣

∑

x≤n
G(x)e(αx)

∣

∣

∣ = O(n(log n)A+1−B/2)

which proves the result. 2

Recall that f(α) =
∑

p≤n log p e(αp). Let us define h1(α) to be K
∑

x∈Q e(αx) = Kh(α).

Corollary 4.16. Let A = 16. Then, for every real number α, f(α) − h1(α) =

O(n(log n)−A/4).

Proof. Let α be a real number. Then we can find q ≤ n(log n)−A and b with (b, q) = 1

such that |α − b/q| ≤ (log n)A/nq. If q ≥ (log n)A, then Theorem 4.10 implies that

f(α) = O(n(log n)4−A/2), while Lemma 4.11 (with an easy estimate for K) implies that

h1(α) = O(n(log n)3−A), so the result holds.

If on the other hand q ≤ (log n)A, then set G(x) = log x − KQ(x) if x is prime, and

−KQ(x) otherwise. Corollary 4.14 tells us that G satisfies the conditions for Lemma

4.15. But
∑

x≤nG(x)e(αx) = f(α) − h1(α), so Lemma 4.15 gives us the result in this

case. 2

This is all we need for the three-primes theorem. However, it is perhaps of some interest

to obtain an actual estimate for f(α) and h1(α) when q is small, rather than merely

showing that they are close. So the next two lemmas are here for interest only.

For notational convenience, when we write (a, q) = 1 in the next lemma we shall mean

that a and q are coprime and that 1 ≤ a ≤ q.

Lemma 4.17. For every q,
∑

(a,q)=1 e(a/q) = µ(q).
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Proof. If q = 1 then the result holds. If q is a prime, then

∑

(a,q)=1)

e(a/q) =
∑

1≤a<q
e(a/q) = 0− 1 = −1.

If q = pk with p prime and k ≥ 2, then

∑

(a,q)=1

e(a/q) =
∑

1≤a≤q
e(a/q)−

∑

1≤b≤pk−1

e(b/pk−1) = 0− 0 = 0.

Finally, if q and r are coprime, then

∑

(a,q)=1

e(a/q)
∑

(b,r)=1

e(b/r) =
∑

(a,q)=1,(b,r)=1

e(ar + bq/qr).

But ar+bq runs through all residues mod qr, and (ar+bq, qr) = 1 if and only if (a, q) = 1

and (b, r) = 1. So the sum is
∑

(a,qr)=1 e(a/qr).

These properties of the left hand side force it to equal µ.

2

Now, given q ≤ (log n)A, let us define a function Hq : [n] → R by letting Hq(x) equal

q/φ(q) if (x, q) = 1 and zero otherwise.

Lemma 4.18. Let q ≤ (log n)A, let (b, q) = 1 and let α be a real number such that

|α− b/q| ≤ (log n)A/nq. Let β = α− b/q. Then

∑

x≤n
Hq(x)e(αx) =

µ(q)

φ(q)

∑

x≤n
e(βx) +O((log n)2A).

Proof. Let us write Xa for the set of integers less than or equal to n and congruent

to a mod q. If (a, q) 6= 1, then clearly
∑

x∈Xa
Hq(x)e(αx) = 0. On the other hand, if

(a, q) = 1, then

∑

x∈Xa

Hq(x)e(αx) =
q

φ(q)

∑

x∈Xa

e(bx/q)e(βx)

=
q

φ(q)
e(ab/q)

∑

x∈Xa

e(βx).

Now, if a1, a2 ≤ q, then

∣

∣

∣

∑

x∈Xa1

e(βx)−
∑

x∈Xa2

e(βx)
∣

∣

∣ ≤ 1 +
∣

∣

∣

∑

x∈Xa1

e(βx)
∣

∣

∣|1− e(β(a1 − a2))|.
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Since |a1− a2| ≤ q, we know that 1− e(β(a1− a2)) = O((log n)A/n), so this shows that,

for every a,
∑

x∈Xa

e(βx) = q−1
∑

x≤n
e(βx) +O((log n)A).

(In words, the numbers
∑

x∈Xa
e(βx) are all approximately equal, and therefore all ap-

proximately equal to their average.) It follows that

∑

0≤a<q

∑

x∈Xa

Hq(x)e(αx) =
q

φ(q)

∑

(a,q)=1

e(ab/q)
(

q−1
∑

x≤n
e(βx) +O(log n)A

)

.

Since (b, q) = 1, the result follows from Lemma 4.17. 2

Corollary 4.19. Let α, b, q and β be as in Lemma 4.18. Then f(α) and h1(α) are both

equal to (µ(q)/φ(q))
∑

x≤n e(βx) +O(n(log n)−A).

Proof. This follows easily from Theorem 4.12 and Lemmas 4.13, 4.15 and 4.18. Let

P (x) be the function log x if x is prime and zero otherwise. Setting G(x) = P (x)−Hq(x),

Theorem 4.12 tells us that the conditions for Lemma 4.15 are satisfied. But this implies

that f(α) =
∑

x≤nHq(x)e(αx)+O(n(log n)−A). Then Lemma 4.18 gives us our estimate

for f(α). The same argument works for h1(α) if we use Lemma 4.13 instead of Theorem

4.12. 2

After that diversion, let us now finish the proof of the three-primes theorem. There are

two steps to the proof. First, we show that every sufficiently large odd integer is the

sum of three elements of Q (or fake primes) in many ways, using the Brun sieve once

again. Then we deduce, from the fact that f and h1 are uniformly close, that the same

is true of the genuine primes.

Lemma 4.20. Let m be an integer. Then the number of ways of writing m = x+y with

x and y both in Q is at least m
∏k
i=1(1 − ri/pi) + O(m−1n1/2 +mn−1/4A), where ri = 1

if pi|m and 2 otherwise.

Proof. Choose x randomly and uniformly from the set [m]. For each i let Xi be the

event that pi|x or pi|m − x. As in the proof of Lemma 4.13, it is easy to show that

Prob(Xi) = ri/pi+O(m−1). (The point about the ri is that the events pi|x and pi|m−x
are the same if pi|m and mutually exclusive otherwise.) More generally, it is not hard

to show that

Prob(Xi1 ∩ . . . ∩Xis) =
s
∏

j=1

rij
Pij

+O(m−1).
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Therefore, by the inclusion-exclusion formula,

1− Prob
(

k
⋃

i=1

Xi

)

=
t
∑

s=0

(−1)s
∑

1≤i1≤...≤is≤k

s
∏

j=1

rij/pij +O(m−1)
t
∑

s=1

(

k

s

)

.

But
k
∏

i=1

(1− ri/pi) =
k
∑

s=0

(−1)s
∑

1≤i1≤...≤is≤k

s
∏

j=1

rij/pij

and

∑

1≤i1≤...≤is≤k

s
∏

j=1

rij/pij ≤ (s!)−1(2p−1
1 + . . .+ 2p−1

k )s

≤ (8e log log log n/s)s.

As in the proof of Lemma 4.13, it follows that

1− Prob
(

k
⋃

i=1

Xi

)

=
k
∏

i=1

(1− ri/pi) +O(m−1(log n)At + (8e log log log n/t)t)

for any t ≥ 16e log log log n. Choosing t to be log n/2A log log n implies the lemma. 2

Corollary 4.21. If n is sufficiently large and odd, then the number of ways of writing

n as the sum of three elements of Q is at least (n2/16)K−1∏k
i=2(1− 2p−1

i ).

Proof. Note first that Lemma 4.13 implies that the number of elements of Q less than

or equal to n/2 is at least K−1n/4 (when n is sufficiently large). For every odd z ≤ n/2,

the number of ways of writing n− z as the sum of two elements of Q is, by Lemma 4.20,

at least (n/4)
∏k
i=2(1− 2/pi). The result follows. 2

It is possible to be much more careful and work out the number of ways of writing n as

the sum of three elements of Q to within a factor 1 + o(1), but we do not need this.

Vinogradov’s Three-Primes Theorem. Every sufficiently large odd integer is the

sum of three primes.

Proof. Note first that (16K)−1∏k
i=2(1− 2p−1

i ) is easily shown to be at least (log n)−1

when n is sufficiently large, so the number of ways of writing n as the sum of three

elements of Q is at least n2/ log n. On the other hand, it is also
∫

h(α)3e(−αn) dα, so
we certainly have

∫

h1(α)
3e(−αn) dα ≥ n2/ log n.
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As we commented at the beginning, it is sufficient for our purposes to establish that
∫

f(α)3e(−αn) dα 6= 0. But, by Corollary 4.16,

∣

∣

∣

∫

f(α)3e(−αn) dα −
∫

h1(α)
3e(−αn) dα

∣

∣

∣

= O(n(log n)−A/4)
∫

|f(α)2 + f(α)h1(α) + h1(α)
2| dα

= O(n(log n)−A/4)
∫

|f(α)|2 + |h1(α)|2 dα
= O(n(log n)−A/4)

(

∑

p≤n
(log p)2 +K2|Q|

)

= O(n2 log n(log n)−A/4).

Since we chose A to be 16, this and our estimate for the integral with h1 are enough to

prove the theorem. 2
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§5 The Geometry of Numbers

A lattice in Rn is a subgroup generated by n linearly independent vectors. A basis for

a lattice Λ is a linearly independent set in Λ that generates Λ.

Lemma 5.1. Let Λ be a lattice and let x1, x2, . . . , xn and y1, y2, . . . , yn be distinct bases

of Λ. Let α : xi 7→ yi be linear. Then det(α) = 1.

Proof. Each yi is an integer combination of xi so both α and α−1 are non-singular and

have integer determinants. 2

Let Λ be a lattice with basis x1, x2, . . . , xn. The fundamental parallellopiped of Λ with

respect to x1, x2, . . . , xn is the set P = {a1x1 + a2x2 + . . . + anxn : 0 ≤ ai < 1}. Note

that the sets x + P , x ∈ Λ are disjoint and their union is Rn. The determinant det(Λ)

of Λ is the volume of P , which is well-defined by the Lemma 5.1. Alternatively, det(Λ)

is |det(A)|, where A = (x1, x2, . . . , xn) and the xi are column vectors with respect to the

canonical basis for Rn. A convex body is a bounded convex open subset of Rn.

Lemma 5.2. Let Λ be a lattice and suppose that K is a convex body in Rn. Then

vol(K) = limt→∞ |Λ ∩ tK|det(Λ)/tn.
Proof. Let Q be a translate of a fundamental parallellopiped P of Λ. Then tQ contains

exactly tn points in Λ if t is an integer. However, |Λ ∩ tQ| lies between btcn and dten.
Therefore the result is true for all sets of the form z+ ρP with z ∈ Rn and ρ > 0. As K

is convex, it can be approximated by finite unions of such sets. 2

A sublattice of a lattice Λ in Rn is a subgroup M ⊂ Λ which is also a lattice.

Lemma 5.3. Let Λ be a lattice and let M be a sublattice of Λ. Then the index of M as

a subgroup of Λ is det(M)/det(Λ).

Proof. Let P be a fundamental parallellopiped for M . Then every vector x ∈ Rn can

be written uniquely as y + z, where y ∈ M and z ∈ P . Therefore every x ∈ Λ can be

written uniquely as y + z with y ∈ M and z ∈ Λ. So the index of M is |P ∩ Λ|. If t

is an integer, |tP ∩ Λ| = tn|P ∩ Λ|. Thus volP = |P ∩ Λ|det(Λ), by Lemma 5.2, and it

follows that det(M) = |P ∩ Λ|det(Λ). 2
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Blichfeldt’s Lemma. Let K ⊂ Rn be a measurable set, Λ a lattice and suppose

vol(K) > det(Λ). Then K −K contains a non-zero lattice point.

Proof. Let x1, x2, . . . , xn be a basis for Λ and let Q = {a1x1+. . .+anxn : −1 ≤ ai < 1}.
Then vol(K) = 2ndet(Λ) and Q contains 2n points of Λ. Provided M is sufficiently

large, vol(K ∩MQ) is still greater than det(Λ). So K ⊂ MQ. Let N be an integer,

chosen such that (1 +M/N)n < vol(K)/det(Λ). If the lemma were false, then the sets

x + K, x ∈ Λ ∩ NQ are disjoint. The union of these sets is contained in (M + N)Q

and has volume (2N)nvol(K), since there are (2N)n lattice points in Q. Therefore

(2N)nvol(K) ≤ (2(N +M))ndet(Λ). By the choice of M , this is a contradiction. 2

Minkowski’s First Theorem. Let Λ be a lattice and let K a centrally symmetric

convex body with vol(K) > 2ndet(Λ). Then K contains a non-zero point of Λ.

Proof. As K is convex and centrally symmetric, K = 1
2
K − 1

2
K. However, vol 1

2
K >

det(Λ), so the result follows by Blichfeldt’s Lemma. 2

Let Λ be a lattice, let K be a centrally symmetric convex body. Define 0 < λ1 ≤
λ2 ≤ . . . ≤ λn by λk = inf{λ : λK contains k linearly independent vectors in Λ}. The

numbers λ1, λ2, . . . , λn are called the successive minima of K with respect to Λ. Note

that we can find vectors b1, b2, . . . , bk ∈ Rn such that bk ∈ λkK ∩ Λ for each k ≤ n.

These bi actually form a basis for Λ.

Minkowski’s Second Theorem. Let Λ be a lattice and let K be a convex body.

Suppose 0 < λ1 ≤ λ2 ≤ . . . ≤ λn are the successive minima of K with respect to Λ.

Then λ1λ2 . . . λnvol(K) ≤ 2ndet(Λ).

Proof. Let b1, b2, . . . , bn be a basis as defined above. Set V1 = {0} and, for each i, set

Vi = 〈b1, b2, . . . , bi−1〉 and Wi = 〈bi, bi+1, . . . , bn〉. Define a map ci : iK → K by setting

ci(x) equal to the centre of gravity of (x+ Vi) ∩K. We note that ci is continuous (K is

open) and ci(x) does not depend on the first i−1 co-ordinates of x. Also ci(x)−x ∈ Vi and
so if ci(x)j is the jth co-ordinate of ci(x) with respect to b1, b2, . . . , bn, then ci(x)j = xj

for j ≥ i. Now define φ(x) =
∑n

i=1(λi − λi−1)ci(x), with λ0 = 0. Then, expanding φ(x),

φ(x) =
n
∑

i=1

(λi − λi−1)
n
∑

j=1

ci(x)jbj

=
n
∑

j=1

bj
[

j
∑

i=1

ci(x)j(λi − λi−1)
]
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=
n
∑

j=1

bj
[

j
∑

i=1

xj(λj − λj−1) +
n
∑

i=j+1

ci(x)j(λi − λi−1)
]

=
n
∑

j=1

bj(λjxj + φj(xj+1, . . . , xn),

where φj is some continuous function. The next claim is that volφ(K) = λ1λ2 . . . λnvol(K).

First note that φ(x)n = λnxn. For fixed t, let K(t) denote the cross section {x ∈ K :

xn = t} of K. Then φ restricted to K(t) can be represented by a formula

φ(
n−1
∑

i=1

xibi + tbn) = λntbn +
n−1
∑

j=1

bj(λjxj + ψj(xj+1, . . . , xn−1)

as t is fixed, so by induction vol(φ(K(t))) = vol{y ∈ φ(K) : yn = λnt} = λ1λ2 . . . λn−1.

Applying Fubini’s theorem, the theorem is proved. 2

For further reading on Minkowski’s Theorems, see [15].

Let r1, r2, . . . , rk ∈ Zn and δ > 0. Then the Bohr neighbourhood B(r1, r2, . . . , rk; δ) is

the set {s ∈ Zn : |ris| ≤ δN, i = 1, 2, . . . , k} where |ris| is the distance from ris to the

nearest multiple of N . A d-dimensional arithmetic progression is a subset of Z or ZN

of the form {x0 +
∑d

i=1 aixi : 0 ≤ ai < si}. It is proper if the numbers
∑d

i=1 aixi are

all distinct. It will be seen, in §6, that Bohr neighbourhoods can be used as a step in

finding arithmetic progressions, using Fourier transforms.

Theorem 5.7. Let r1, r2, . . . , rk ∈ ZN and 0 < δ < 1/2. Then the Bohr neighbourhood

B(r1, . . . , rk, δ) contains a proper k-dimensional arithmetic progression of cardinality at

least (δ/k)kN .

Proof. We have s ∈ B(r1, r2, . . . , rk; δ) if and only if (r1s, r2s, . . . , rks) lies within `
k
∞-

distance δN of a point in NZk. Or, equivalently, (r1s, r2s, . . . , rks) + NZk contains a

point x with ‖x‖∞ ≤ δN . Let Λ be the lattice generated by NZk and (r1, r2, . . . , rk).

The index of NZk is clearly Nk, and it has index N in Λ. Therefore Λ has index N k−1 in

Zk, implying det(Λ) = N k−1 by Lemma 5.3. Let K = {(a1, a2, . . . , ak) : −1 < ai < 1};
we apply Minkowski’s Second Theorem to K and Λ, to obtain a basis b1, b2, . . . , bk

of Rk with bi ∈ Λ and bi having ‖b‖∞ = λi, where λ1λ2 . . . λkvol(K) ≤ det(Λ) · 2k.
Therefore λ1λ2 . . . λk ≤ Nk−1. Now notice that if a1, a2, . . . , ak are integers with |ai| ≤
δN/kλi, then ‖

∑

aibi‖ ≤
∑

(δN/λik) · λi = δN . However bi is a vector of the form
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(r1si, r2si, . . . , rksi). So |∑ aisirj| ≤ δN , j = 1, 2, . . . , k. Let P be the k-dimensional

arithmetic progression {∑k
i=1 aisi : |ai| ≤ δN/kλi}. As the vectors b1, b2, . . . , bk are

independent and ‖∑ aibi‖ ≤ δN , P is proper – no two terms are equal (mod N). The

number of integers ai in the interval [−δN/kλi, δN/kλi] is at least δN/kλi, therefore

|P | ≥ ∏

δN/kλi = (δ/k)kNk · (λ1λ2 . . . λk)
−1 ≥ (δ/k)kN . 2

A layered graph is a graph G with vertex set comprising a disjoint union V0∪V1∪ . . .∪Vn
of sets such that each edge lies between Vi and Vi+1 for some i ∈ [0, n− 1]. It will often

be convenient to have an implicit orientation of the edges, from Vi to Vi+1 for each i. A

layered graph G is called a Plünnecke Graph if it satisfies the following two conditions:

(1) For u ∈ Vi−1, v ∈ Vi and distinct w1, w2, . . . , wk ∈ Vi+1 with uv, vwi ∈
E(G), i = 1, 2, . . . , k then there exist distinct v1, v2, . . . , vk ∈ Vi such

that uvi and viwi ∈ E(G).

(2) For distinct u1, u2, . . . , uk ∈ Vi−1, v ∈ Vi and w ∈ Vi+1, uiv, viw ∈ E(G)

there exist distinct v1, v2 . . . , vk such that uivi−1, viw ∈ E(G).

| | |

|

|

|

|

|

| |

|

|

½
½
½
½
½
½
½½

Z
Z
Z
Z
Z
Z
ZZ

,
,
,
,
,
,,

c
c
c
c
c
c
c

u v

w

w

w w

w

w

v

v

v

u

1

2

k

1

2

k
k

2

1

Given two layered graphs G,H with vertex sets V0 ∪V1 ∪ . . .∪Vn and W0 ∪W1 . . .∪Wn,

the product graph G×H has vertex set V0 ×W0 ∪ V1 ×W1 ∪ · · · ∪ Vn ×Wn) and (v, w)

joined to (v′, w′) if and only if vv′ ∈ E(G) or ww′ ∈ E(G). It is easily seen that G×H

is a Plünnecke Graph if G and H are. The ith magnification ratio Di(G) of a layered

graph G with vertex set V0 ∪ V1 ∪ . . . ∪ Vn is defined to be

min
{ |Imi(Z)|

|Z| : Z ⊂ V0, Z 6= ∅
}

where Imi(Z) = {y ∈ Vi : there is a directed path from some z ∈ Z to y}.
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Lemma 5.8. Let G,H be layered graphs. Then Di(G×H) = Di(G)Di(H).

Proof. Suppose G,H have vertex sets V0 ∪ V1 ∪ . . . ∪ Vn and W0 ∪ W1 ∪ . . . ∪ Wn

respectively. Let Y ⊂ V0, Z ⊂ W0 satisfy |Imi(Y )|/|Y | = Di(G) and |Imi(Z)|/|Z| =
Di(H). Then (v, w) ∈ Imi(Y × Z) if and only if there are paths from some y ∈ Y to v

and some z ∈ Z to w – equivalently (v, w) ∈ Imi(Y )× Imi(Z). Therefore Di(G×H) ≤
Di(G)Di(H).

Conversely, if F is a layered graph with vertex set P ∪Q∪R and D(P,Q), D(Q,R) and

D(P,R) are the magnification ratios in the layered subgraphs between P,Q, Q,R and

P,R respectively, then D(P,R) ≥ D(P,Q)D(Q,R). Define layered graph F and vertex

sets P,Q and R as follows: let P = V0 ×W0, Q = V0 ×Wi and R = Vi ×Wi. Join

(v, w) ∈ V0 ×W0 to (v′, w′) ∈ V0 ×Wi in F if v = v′ and w′ ∈ Imi({w}). Similarly, join

(v, w) ∈ V0 ×Wi to (v′, w′) ∈ Vi ×Wi if w = w′ and v′ ∈ Imi({v}). Then there exists

a path from (v, w) ∈ P to (v′, w′) ∈ Q if and only if there exists a path from (v, w) to

(v′, w′) in G×H. Hence D(P,R) = Di(G×H). We next show that D(P,Q) = Di(H).

If C ⊂ W0 with |Imi(C)|/|C| = Di(H), let v ∈ V0 and C ′ = {v} × C. This shows

D(P,Q) ≤ Di(H). Conversely, let C ⊂ P = V0 ×W0. For each x ∈ V0, let Cx = {y :

(x, y) ∈ C}. Then |ImQ(Cx)|/|Cx| ≥ Di(H) hence D(P,Q) = Di(H) – note that Cx and

ImQ(Cx) are disjoint and non-empty and C is arbitary. Similarly D(Q,R) = Di(G).

Therefore Di(G)Di(H) ≤ Di(G×H). 2

Menger’s Theorem. Let G be a graph and let a, b ∈ V (G). Then the maximum number

of internally disjoint a-b paths equals the size of a smallest set of vertices separating a

from b.

Lemma 5.10. Let G be a Plünnecke Graph, on V0∪V1∪ . . .∪Vn, such that Dn(G) ≥ 1.

Then there are |V0| disjoint paths from V0 to Vn and, in particular, Di ≥ 1 for all i ≤ n.

Proof. Add a vertex a joined to all of V0 and a vertex b joined to all of Vh. Let m

be the maximum number of disjoint a-b paths. There exists a set S = {s1, s2, . . . , sm}
of size m separating a from b, by Menger’s Theorem. Set Si = S ∩ Vi. Choose S such

that M =
∑

s iSi(s) is a minimum. We claim that S ⊂ V0 ∪ Vn. Suppose this is false;

there exists i : 1 ≤ i < n such that S ∩ Vi = {s1, s2, . . . , sq} 6= ∅. Let P1, P2, . . . , Pm

be disjoint paths from V0 to Vn. Each Pi contains exactly one si, by the minimality of

m. Let s−i and s+
i denote the predecessor and successor of si on the path containing
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si, oriented from V0 to Vn, 1 ≤ i ≤ q. By the minimality of M , we cannot replace any

elements of S with predecessors on the paths. So we find a path P from V0 to Vn that

misses {s−1 , s−2 , . . . , s−q , sq+1, . . . , sm}. This path must intersect S, as S is a separating

set. Let {r} = P ∩ Vi−1. Then the next vertex of P must be si for some i : 1 ≤ i ≤ q.

We claim that every path from {s−1 , s−2 , . . . , s−q , r} to s+
1 , s

+
2 , . . . , s

+
q passes through the

vertices s1, s2, . . . , sq. Suppose that this claim is false. If there exists a path Q from s−i to

s+
j missing s1, s2, . . . , sq, then the path comprises the segment of Pi to s

−
i , the segment

of Q to s+
j and the segment of Pj onwards, misses S. This contradicts the fact that

S is a separating set. Therefore the graph induced by {s−1 , . . . , s−q , r}, {s1, . . . , sq} and

{s+
1 , . . . , s

+
q } is a Plünnecke Graph. In this subgraph, let d+(x) and d−(X) be the in- and

out-degrees of x. Since s−i is joined to si, d
+(s−i ) ≥ d+(si). Similarly, d−(si) ≥ d−(s+

i ).

Also
∑q

i=1 d
+(si) =

∑q
i=1 d

−(s+
i ) by counting edges, and d+(r) +

∑

d+(s−i ) =
∑

d−(si).

Since d+(r) > 0, we have a contradiction. Therefore S ⊂ V0 ∪ Vn and, by minimality,

S = (V0 ∩ S) ∪ (Imn(V0\S) and |S| = |V0 ∩ S|+ |Imn(V0\S)| ≥ |V0 ∩ S|+ |V0\S| = |V0|.

Plünnecke’s Theorem. Let G be a Plünnecke Graph on V0 ∪ V1 ∪ . . . ∪ Vn. Then

D1 ≥ D
1/2
2 ≥ . . . ≥ D1/n

n .

Proof. It is enough to show D
1/i
i ≥ D1/n

n for i < n. When Dn = 1, this holds. Suppose

Dn < 1. Choose a positive integer r; then Dn(G
r) = Dr

n, by Lemma 5.8. Given an

integer m, we can find a set {b1, b2, . . . , bm} ⊂ Z such that all sums bj1 + bj2 + . . .+ bji ,

with i ≤ m and j1 ≤ . . . ≤ ji, are distinct. The number of these sums, given i, is
(

m+i−1
i

)

– betweenmi/i! andmi. Let B = {b1, b2, · · · bm}, A = {0} and Hm be the natural layered

graph with layers A,A + B, . . . , A + nB. Let m be minimal such that mnDr
n/m! ≥ 1.

Then m = d(n!D−rn )1/ne ≤ (n!D−rn )1/n+1. By the choice of m, Dm(G
r ×Hm) ≥ 1 so by

Lemma 5.10, Di(G
r ×Hm) ≥ 1, and Di(G)r ·Di(Hm) ≥ 1. However, Di(Hm) ≤ mi so

Di = Di(G) ≥ m−i/r ≥
[

(n!D−rn )1/n
]−i/r → Di/n

n .

This completes the proof when Dn < 1. If Dn > 1, consider the reverse In of Hn – vertex

sets A+ nB,A+ (n− 1)B, . . . , A+B,A. Then Dn(Im) ≥
(

m+n−1
m

)−1
and

Di(Im) ≤
(

m+ n− i− 1

m− i

)

·
(

m+ n− 1

m

)−1

≤ n!mn−i/mn = n!m−i.

Let r be a positive integer and m maximal such that Dr
nm

−n ≥ 1. Then m = bD−r/nn c ≥
Dr/n
n − 1. Then Dn(G

r× Im) ≥ 1 so Di(G
r× Im) ≥ 1. However Di(G

r× Im) ≤ Dr
in!m

−i

so Dr
i ≥ min!−1 implying Di ≥ [(Dr/n

n − 1)in!−1]1/r → Di/n
n , as required. 2
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Corollary 5.12. Let A and B be non-empty subsets of ZN such that |A+ iB| ≤ C|A|.
For h ≥ i, there is a ∅ 6= A′ ⊂ A such that |A′ + hB| ≤ Ch/i|A′|.
Proof. Let G be the natural Plünnecke Graph. If the result were false, then Dh(G) >

Ch/i so Di(G) > C which implies that |A′ + iB| > C|A|, a contradiction. 2

Corollary 5.13. If A is a non-empty subset of Z and |A+A| ≤ C|A|, then |kA| ≤ Ck|A|
for each k ≥ 3.

Proof. Take i = 1 and B = A in the preceding Corollary. This implies that there

exists a non-empty A′ ⊂ A such that |A′+ kA| ≤ Ck|A′| ≤ Ck|A|, but |A′+ kA| ≥ |kA|,
so the result is proved. 2

Lemma 5.14. Let U, V,W ⊂ Z. Then |U ||V −W | ≤ |U + V ||U +W |.
Proof. Define, for x ∈ V −W , φ(u, x) = (u+v(x), u+w(x)) where v(x) ∈ V , w(x) ∈W
satisfy v(x)−w(x) = x. Then φ is an injection U × (V −W )→ (U +V )× (U +W ). 2

Theorem 5.15. Let A,B ⊂ Z such that |A + B| ≤ C|A| and let k and l be natural

numbers with l ≥ k. Then |kB − lB| ≤ Ck+l|A|.
Proof. Suppose l ≥ k ≥ 1. By Corollary 5.12, there exists A′ ⊂ A with |A′ + kB| ≤
Ck|A′|. Again there exists A′′ ⊂ A′ with |A′′ + lB| ≤ C l|A′′|. Using Lemma 5.14,

|A′′||kB − lB| ≤ |A′′ + kB||A′′ + lB| ≤ Ck+l|A′||A′′| and the result follows on dividing

by |A′′|. 2

In the next chapter, we will see the use of Theorem 5.15. In essence, the arithmetic

properties of kA for large k are easier to deal with than when k is small. Theorem 5.15

also allows one to deal with distinct set sums A + B by converting the problem to a

single set difference problem kB − lB.
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§6 Freiman’s Theorem

Freiman’s Theorem [5] describes the structure of a set A under the condition that A+A

has size close to that of A. We define a generalised arithmetic progression to be a

sum P of ordinary arithmetic progressions (see Theorem 5.7). If P is a subset of a small

generalised arithmetic progression then |P+P | is close to |P |. Freiman’s Theorem states

the converse: if |P + P | is close to P then P must be contained in a small generalized

arithmetic progression.

We now proceed to the proof of Freiman’s Theorem, using a remarkable and ingenious

approach due to Ruzsa [12].

Let A ⊂ Zs or A ⊂ Z and B ⊂ Zt. Then φ : A → B is called a (Freiman) k-

homomorphism if whenever x1 + x2 + . . . + xk = y1 + y2 + . . . + yk, with xi, yi ∈ A,
∑

φ(xi) =
∑

φ(yi). In addition, φ is called a k-isomorphism if φ is invertible and φ and

φ−1 are k-homomorphisms.

Note that φ is a k-homomorphism if the map ψ : (x1, . . . , xk) 7→
∑

φ(xi) induced by φ

is a well defined map kA → kB, and a k-isomorphism if ψ is a bijection. Our interest

will be in 2-isomorphisms, as these preserve arithmetic progressions – a set 2-isomorphic

to an arithmetic progression is clearly an arithmetic progression. We use the following

notation: if φ : A→ B and A′ ⊂ A, then φ|A′ denotes the restriction of φ to A′.

Lemma 6.1. Let A ⊂ Z and suppose |kA−kA| ≤ C|A|. Then, for any prime N > C|A|,
there exists A′ ⊂ A with |A′| ≥ |A|/k that is k-isomorphic to a subset of ZN .

Proof. We may suppose A ⊂ N and select a prime p > kmaxA. Then the quotient

map φ1 : Z → Zp is a homomorphism of all orders, and φ1|A is a k-isomorphism. Now

let q be a random element of [p − 1] and define φ2 : Zp → Zp by φ2(x) = qx. Then

φ2 is an isomorphism of all orders, and hence a k-isomorphism. Let φ3(x) = x where

φ3 : Zp → Z. Then for any j, φ3|Ij is a k-isomorphism where

Ij = {x ∈ Zp :
j − 1

k
p ≤ x <

j

k
p− 1}.

For, if
∑k

i=1 xi =
∑k

i=1 yi (mod p) with xi, yi ∈ Ij, then
∑k

i=1 xi =
∑k

i=1 yi in Z. By

the pigeonhole principle, there exist A′ ⊂ A with |A′| ≥ |A|/k (depending on q) and
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φ2φ1[A
′] ⊂ Ij for some j. Restricted to A′, φ3φ2φ1 is a k-homomorphism. Finally,

let φ4 be the quotient map (a k-homomorphism) Z → ZN . Then with φ = φ4φ3φ2φ1,

φ(x) = qx (mod p) (mod N) and φ|A′ is a k-homomorphism, as it is the composition of

k-homomorphisms.

The only way φ|A′ is not a k-isomorphism is if there are a1, a2, . . . , ak, a
′
1, a

′
2, . . . , a

′
k ∈ A′

such that
∑k

i=1 φ(ai) =
∑k

i=1 φ(a
′
i) but

∑k
i=1 φ(ai) 6=

∑k
i=1 φ(a

′
i). Now

∑

i ai 6=
∑

i a
′
i

implies
∑

i ai 6=
∑

i a
′
i (mod p) so we have q(

∑

i ai −
∑

i a
′
i) (mod p) is a multiple of N .

The probability of this event is at most |kA− kA|/N < 1 since |kA − kA| ≤ C|A| and
N > C|A|. So for some q, φ|A′ is a k-isomorphism. 2

The next theorem, due to Bogolyubov [3], shows that we may find long arithmetic

progressions with small dimension in 2A− 2A. The proof is surprisingly simple.

Theorem 6.2 Let A ⊂ ZN with |A| ≥ αN . Then 2A − 2A contains an arithmetic

progression of length at least (α2/4)α
−2

N and dimension at most α−2.

Proof. Let g(x) be the number of ways of writing x = (a−b)−(c−d) with a, b, c, d ∈ A.
That is, g = (A ∗ A) ∗ (A ∗ A) and x ∈ 2A − 2A if and only if g(x) 6= 0. Now

g(x) = N−1∑

r |Â(r)|4ωrx, by Lemma 2.2 (3). Let K = {r 6= 0 : Â(r) ≥ α3/2N}. Then
∑

r 6=0
r 6∈K

|Â(r)|4 ≤ max
r 6=0
r 6∈K

|Â(r)|2
∑

r

|Â(r)|2 < α3N2 · αN 2 = α4N4.

Therefore, if x is such that Re(ωrx) ≥ 0 for all r ∈ K, then

Re
(

∑

r

|Â(r)|4ωrx
)

> |Â(0)|4 − α4N4 = 0.

Therefore g(x) 6= 0 and 2A−2A contains the Bohr neighbourhood B(K; 1/4) – Re(ωrs) ≥
0 if and only if −N/4 ≤ rs ≤ N/4. Now

∑

r∈K |Â(r)|2 ≥ kα3N2 and
∑

r∈K |Â(r)|2 ≤
αN2. By Theorem 5.7, 2A− 2A contains the required arithmetic progression. 2

We now present Ruzsa’s proof of Freiman’s Theorem.

Freiman’s Theorem. Let A ⊂ ZN be a set such that |A + A| ≤ C|A|. Then A is

contained in a d-dimensional arithmetic progression P of cardinality at most k|A| where
d and k depend on C only.
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Proof. By Theorem 5.15, |8A− 8A| ≤ C16|A|. By Lemma 6.1, A contains a subset A′

of cardinality at least |A|/8 which is 8-isomorphic to a a set B ⊂ ZN with C16|A| < N ≤
2C16|A|, where N is prime and C|A| < N ≤ 2C|A|, using Bertrand’s Postulate. So |B| =
αN with α ≥ (16C16)−1. By Theorem 6.2, 2B − 2B contains an arithmetic progression

of dimension at most α−2 and cardinality at least (α2/4)α
−2

N ≥ (α2/4)α
−2 |A|. Since B

is 8-isomorphic to A′, 2B−2B is 2-isomorphic to 2A′−2A′. Any set 2-isomorphic to a d-

dimensional arithmetic progression is a d-dimensional arithmetic progression. Therefore

2A′−2A′, and hence 2A−2A, contains an arithmetic progression Q of dimension at most

α−2 and cardinality γ|A|, where γ ≥ (α2/4)α
−2

. Now let X = {x1, x2, . . . , xk} ⊂ A be

maximal such that x, y ∈ X, x 6= y imply x−y ∈ Q−Q. Equivalently, all the sets x+Q

are disjoint, soX+Q = |X||Q|. SinceX is maximal, A ⊂ X+(Q−Q) andX is contained

in the k-dimensional arithmetic progression R =
{

∑k
i=1 aixi : 0 ≤ ai ≤ 1

}

. Clearly |R| ≤
2k. Therefore A is contained in the arithmetic progression R+(Q−Q), of dimension at

most α−2+k. We know that X+(Q−Q) ⊂ A+(4A−4A) = A+2A−2A+2A−2A, and

that X +Q ⊂ A+ 2A− 2A = 3A− 2A. So |X +Q| ≤ |3A− 2A| ≤ C5|A|, by Theorem

5.15. So k ≤ C5|A|/|Q| ≤ C5γ−1. Finally, |Q − Q| ≤ 2α
−2 |Q|, by d-dimensionality.

So A is contained in an arithmetic progression of dimension at most α−2C5γ−1, and

cardinality at most 2k2α
−2 |Q| ≤ 2k2α

−2 |2A− 2A| ≤ kC42α
−2 |A|. 2

The constants from this theorem can be chosen to be d = exp(Cα) and k = expexp(Cβ),

where α, β > 0 are absolute constants. Using a refinement of the same approach, a

better result can be obtained for set differences of the same set (see [2]):

Theorem 6.4. Let C be a positive real number. Suppose A is a set of integers satisfying

|A − A| ≤ C|A| and |A| ≥ bCcbC+1c
2(bC+1c−C)

. Then A is a subset of an arithmetic progression

of dimension at most bC − 1c and cardinality at most expexp(Cγ) where γ > 0 is an

absolute constant.

It is likely that a result with very much the same constants is true for A + A. These

theorems can be generalized to theorems about abelian groups [4], [13]. We now turn to

results concerning difference sets, which will eventually aid in finding four-term arith-

metic progressions in the next chapter.

Lemma 6.5. Let A1, A2, . . . , Am be subsets of [N ], α > 0 and suppose that
∑m

i=1 |Ai| ≥
αmN . Then there exists B ⊂ [m], of cardinality at least α5m/2, such that for at least
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ninety percent of pairs (i, j) ∈ B ×B, |Ai ∩ Aj| ≥ α2N/2.

Proof. Let x1, x2, . . . , x5 be chosen randomly and independently from [N ]. Let B =

{i : {x1, x2, . . . , x5} ⊂ A}. Then Prob[i ∈ B] = (|Ai|/N)5 and thus the expected size

of B is
∑m

i=1(|Ai|/N)5 ≥ m(
∑ |Ai|/mN)5 ≥ α5m, by Jensen’s Inequality. By Cauchy-

Schwartz, E[|B|2] ≥ α10m2. If |Ai ∩Aj| ≤ α2N/2, then Prob[i ∈ B, j ∈ B] < α10/32. So

if C = {i, j ∈ B × B : |Ai ∩ Aj| < α2N/2}, then E[|C|] < α10m2/32. It follows that the

expected value of E[|B|2 − 16|C|] > α10m2/2. Hence there exist x1, x2, . . . , x5 such that

|B|2 > α10m2/2 and |B|2 ≥ 16|C|. 2

The following theorem is due to Balog and Szemerédi [1]:

Theorem 6.6. Let A be a subset of an abelian group. Suppose α > 0 and that there are

at least α|A|3 quadruples (a, b, c, d) ∈ A × A × A × A such that a − b = c − d. Then A

contains a subset A′ such that |A′| ≥ c|A| and |A′ − A′| ≤ C|A| where c and C depend

on α only.

Proof. Set |A| = n. Let f(x) = (A ∗ A)(x), the number of ways of writing x = a − b

with a, b ∈ A. Then
∑

x f(x) = n2,
∑

x f(x)
2 ≥ αn3 and max f(x) ≤ n. It follows that

f(x) ≥ αn/2 for at least αn/2 values of x: otherwise let B = {x : f(x) < αn/2} and note
∑

B f(x)
2 < maxB f(x)

∑

B f(x) < αn3/2 which implies
∑

x f(x)
2 < αn3. Let x be called

a popular difference if f(x) ≥ αn/2. Define a graph G with vertex set A and edge set

{ab : a−b is a popular difference} – note that f is symmetric. There are at least α2n2/8

edges in G, by the first part of the proof. Let Γ(a) denote the open neighbourhood of

a vertex a in G. Then
∑

a∈A |Γ(a)| ≥ α2n2/4 so, by the preceding lemma, we can find

B ⊂ A of cardinality at least α10n/211 such that |Γ(a) ∩ Γ(b)| ≥ α4n/32 for at least

ninety percent of pairs (a, b) ∈ B ×B.

Define a new graph H with vertex set B and edge set {ab : |Γ(a) ∩ Γ(b)| ≥ α4n/32}.
Since the average degree in H is at least 9|B|/10, at least 4|B|/5 vertices have degree

at least 4|B|/5. Let A′ be the set of all such vertices; this will be the desired set. Let

a, b ∈ A′. There are at least 3|B|/5 numbers c ∈ B such that ac and bc are edges of H,

by definition of A′. If ac is an edge of H, then |Γ(a) ∩ Γ(c)| ≥ α4n/32, so there are at

least α4n/32 numbers d such that ad and cd are edges of G, and similarly for bc. If ad is

an edge of G then there are at least αn/2 pairs (x, y) ∈ A× A such that y − x = d− a
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so a+ y − x = d, and similarly for other edges of G. Therefore there are at least

3

5
· α

10

211
n ·
(α4n

32

)2(αn

2

)4

distinct octuples (x1, y1, x2, y2, . . . , x4, y4) ∈
∏8
i=1A such that a+y1−x1 +y2−x2 +y3−

x3+y4−x4 = b. If we choose a different pair (a′, b′) ∈ A′×A′ such that b′−a′ 6= b−a, then
the corresponding set of octuples is disjoint. Using the above inequality, |A′ − A′| ≤ n8

and so |A′ − A′| ≤ 226α−22n. Setting c = α10/(5 · 29) and C = 226α−22 completes the

proof. 2

Corollary 6.7. Let A ⊂ Zk with |A| = m and such that the number of quadruples

(a, b, c, d) ∈ A × A × A × A, with a − b = c − d, is at least cm3. Then there exists an

arithmetic progression P of cardinality at most Cm and dimension at most d such that

|A ∩Q| ≥ cm, where C and d depend only on c.

Proof. This follows directly from the preceding result and Freiman’s Theorem. 2

This corollary, or rather a derivative of it, will be very useful in studying four-term

arithmetic progressions in the next chapter. In fact, this result is equivalent to Freiman’s

Theorem.

Any integer quadruple (a, b, c, d) such that a− b = c− d is called an additive quadruple.

For a function φ : B → ZN , where B ⊂ ZN , we say (a, b, c, d) ∈ B × B × B × B is an

additive quadruple of φ if (a, b, c, d) is an additive quadruple and (φ(a), φ(b), φ(c), φ(d))

is an additive quadruple. If B ⊂ Zd, then (A ∗ A)(x) is the number of representations

of x as y − z. Therefore the number of quadruples (a, b, c, d) ∈ A × A × A × A with

a− b = c− d is ‖A ∗ A‖2
2. The result we shall use in the next chapter is the following:

Corollary 6.8. Let B ⊂ ZN be a set of cardinality βN , and let φ : B → ZN be

a function with at least αN 3 additive quadruples. Then there exist constant γ and η,

depending only on β and c, a ZN -arithmetic progression P of cardinality at least N γ and

a linear function ψ : P → ZN such that ψ(s) = φ(s) for at least η|P | values of s ∈ P .
Proof. Let Γ denote the graph of φ in Z × Z. By Theorem 6.6, there are constants

c and C, depending only on α, and a set A′ ⊂ A of cardinality at least c|A| such that

|A′−A′| ≤ C|A|. A result of Ruzsa shows that if A is any set with |A−A| ≤ C|A|, then
there exists a Z-arithmetic progression Q of dimension at most 218C32 and size at least
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(220C32)−218C32|A|, such that |A ∩Q| ≥ C−52−d|Q|. Applying this result to A′, we get a

d-dimensional Z-arithmetic progression Q of cardinality at most CN , with |Γ∩Q| ≥ cN ,

where d, c, C depend on α and β only. If Q = Q1+Q2+ . . .+Qd, then at least one Pi has

cardinality at least (CN)1/d ≥ (cN)1/d, so Q can be partitioned into one-dimensional

arithmetic progressions of cardinality at least (cN)1/d. Therefore there is an arithmetic

progression R ⊂ Z × Z, of cardinality at least (cN)1/d such that |R ∩ Γ| ≥ cC−1|R|.
As Γ is the graph of a function, R is not vertical unless |R ∩ Γ| = 1 in which case the

result is proved. So there exists an arithmetic progression P ⊂ Z of the same size as R

and a linear function ψ such that Γ contains at least cC−1|P | pairs (s, ψ(s)). Reducing
modulo N gives the required result. 2

Following Ruzsa’s proof of Freiman’s Theorem, we may take γ = αK and η = exp(−α−K),
where K > 0 is an absolute constant.

42



§7 Szemerédi’s Theorem

To prove Szemerédi’s Theorem [16] for four term arithmetic progressions, following Gow-

ers [7], a two case argument: we consider first sets which behave roughly like random

sets, and then those which do not. Then, if a set does not behave in the first sense

above, it can be restricted to an arithmetic progression, of reasonable length, in which

its density increases. This argument applies a finite number of times as the density

is bounded above by 1. Notice the similarities in approach with the proof of Roth’s

Theorem. The difference is that a stronger condition, namely quadratic uniformity is

required for random-like behaviour with regards to four term arithmetic progressions.

The difficult part is finding an arithmetic progression of reasonable length in which the

density increases.

We now define the concept of quadratic uniformity. Let f : ZN → {z ∈ C : |z| ≤ 1}
and α > 0. Then f is α-uniform if

∑

r |f̂(r)|4 ≤ αN 4. If A ⊂ ZN , |A| = δN and f(x) =

A(x) − δ, then A is α-uniform if f is α-uniform – A is α-uniform if
∑

r |Â(r)|4 ≤ (δ4 +

α)N 4. The concept of α-uniformity is not quite strong enough, in terms of containing

the expected number of arithmetic progressions of length four. We say f is quadratically

α-uniform if
∑

k

∑

r

|∆̂(f ; k)(r)|4 ≤ αN 5

where ∆(f ; k)(x) = f(x)f(x− k). We generally define

∆(f ; k1, k2, . . . , kr) = ∆(∆(f ; k1, k2, . . . , kr−1); kr).

This is independent of the order of the ki. Also

∑

k

∑

r

|∆̂(f ; k)(r)|4 = N
∑

x,k,l,m

∆(f ; k)(x)∆(f ; k)(x− `)∆(f ; k)(x−m)∆(f ; k)(x− l −m)

=
∑

x,k,l,m

∆(f ; k, l,m)(x)

= N
∑

k,l

∣

∣

∣

∑

x

∆(f ; k, l)(x)
∣

∣

∣

2
.

In this chapter, D will denote the unit disc in the complex plane.

Lemma 7.1 Let f : ZN → D. Then f is α-uniform if and only if for any function

g : Z → C,
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∑

k

∣

∣

∣

∑

s

f(s)g(s− k)
∣

∣

∣

2 ≤ √αN 2‖g‖2
2.

Also, f is α-uniform if maxr |f̂(r)| ≤ α1/2N .

Proof. For the first part, we know that

∑

k

|
∑

s

f(s)g(s− k)|2 =
∑

k

|f ∗ g)k)|2

= N−1
∑

r

|(f ∗ g)̂(r)|2

= N−1
∑

r

|f̂(r)|2|ĝ(r)|2

≤
(

∑

r

|f̂(r)|4
)1/2(∑

r

|ĝ(r)|4
)1/2

,

by the Cauchy-Schwartz inequality, and Lemma 2.2. Since (
∑

r |ĝ(r)|4)1/2 ≤
∑

r |ĝ(r)|2,
if f is α-uniform then the inequality in f and g above must hold. For the second part,

we use the fact that
∑

r |f̂(r)|4 ≤ maxr |f̂(r)|2
∑

r |f̂(r)|2, and Parseval’s Identity from

Lemma 2.2 to obtain
∑

r |f̂(r)|2 ≤ N2 and the result follows. 2

The first few results lead to showing that quadratically α-uniform sets do contain four-

term arithmetic progressions. We begin by proving a number of technical lemmas con-

cerning α-uniformity. The following lemma shows that a quadratically uniform set is

also uniform.

Lemma 7.2. If f is quadratically α-uniform, then f is α1/2-uniform.

Proof.
(

∑

r

|f̂(r)|4
)2

=
(

N
∑

x,k,l

f(x)f(x− k)f(x− l)f(x− k − l)
)2

= N2
(

∑

x,k,l

∆(f ; k, l)(x)
)2

≤ N4
∑

k,l

∣

∣

∣

∑

x

∆(f ; k, l)(x)
∣

∣

∣

2

= N3
∑

k,r

|∆̂(f ; k)(r)|4 ≤ αN 8.
2

Lemma 7.3. Let f1, f2, f3 : ZN → D. Suppose that f3 is α-uniform. Then we have

|∑a,d f1(a)f2(a+ d)f3(a+ 2d)| ≤ α1/4N2.
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Proof. If S =
∑

a,d f1(a)f2(a+ d)f3(a+ 2d) then

|S| =
∣

∣

∣

∑

a+c=2b

f1(a)f2(b)f3(c)
∣

∣

∣

=
∣

∣

∣N−1
∑

r

f̂1(r)f̂2(−2r)f̂3(r)
∣

∣

∣

≤ N−1 max
r
f̂3(r) ·

(

∑

r

|f̂1(r)|2
)1/2 ·

(

∑

r

|f̂2(r)|2
)1/2

≤ N−1 · α1/4N ·N 2 = α1/4N2. 2

Lemma 7.4. Let f1, f2, f3, f4 : ZN → D and α > 0. Suppose f4 is quadratically

α-uniform. Then |∑a,d f1(a)f2(a+ d)f3(a+ 2d)f4(a+ 3d)| ≤ α1/8N2.

Proof. Let S be the sum we are estimating. Then

|S|2 ≤ N
∑

a

∣

∣

∣

∑

d

f1(a)f2(a+ d)f3(a+ 2d)f4(a+ 3d)
∣

∣

∣

2

≤ N
∑

a

∣

∣

∣

∑

d

f2(a+ d)f3(a+ 2d)f4(a+ 3d)
∣

∣

∣

2

≤
∑

a

∑

d,e

f2(a+ d)f2(a+ e)f3(a+ 2d)f3(a+ 2e)f4(a+ 3e)f4(a+ 3e)

= N
∑

a

∑

d,k

∆(f2; k)(a+ d)∆(f3; 2k)(a+ 2d)∆(f3; 3k)(a+ 3d)

= N
∑

a

∑

d,k

∆(f2; k)(a)∆(f3; 2k)(a+ 2d)∆(f3; 3k)(a+ 3d).

Since f4 is quadratically α-uniform, there are α(k), k ∈ ZN such that for each k, ∆(f4; k)

is α(k)-uniform and N−1∑

k α(k) = α. By Lemma 7.3, the above expression is at most

N
∑

k

α(3k)1/4N2 = N
∑

k

α(k)α(k)1/4N2

≤ Nα1/4NN2 = α1/4N4. 2

Theorem 7.5. Let A1, A2, A3, A4 ⊂ ZN with |Ai| = δiN . Suppose that A3 is α1/2-

uniform and A4 is quadratically α-uniform. Then
∑

a,dA1(a)A2(a+ d)A3(a+2d)A4(a+

3d)− δ1δ2δ3δ4N
2 ≤ 12α1/8N2.

Proof. Set fi(x) = Ai(x) − δi. Replace the Ai(·) with fi(·) + δi in the sum we wish

to estimate. The sum splits into sixteen parts. We think of δi as constant functions

and apply the two preceding lemmas. If we choose f4 in applying Lemma 7.4, then the

sum is at most α1/8N2. If we do not choose f4, but choose f3, then the sum is at most

(α1/2)1/4N2 = α1/8N2, by Lemma 7.3. If neither f3 nor f4 is chosen, we use the identity
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∑

a,d

g1(a)g2(a+ d) =
∑

a,b

g1(a)g2(b) =
(

∑

a

g1(a)
)(

∑

b

g2(b)
)

.

This shows that all of the remaining terms are zero, apart from the constant term, which

is
∑

a,d δ1δ2δ3δ4 = N2δ1δ2δ3δ4. This completes the proof of Theorem 7.5. 2

Corollary 7.6. Let A ⊂ [N ], |A| = δN where δ > 0. Suppose that A is quadratically

α-uniform. If α ≤ δ32/288 and N ≥ 200/δ4, then A contains an arithmetic progression

of length four or we can find a subprogression where A has density at least 9
8
δ.

Proof. Let A1 = A2 = A ∩ [2N/5, 3N/5] and A3 = A4 = A. If |A| ≤ δ/10, we

have A ∩ [0, 2N/5] or A ∩ [3N/5, N) of cardinality at least δ(9N/20). By Theorem 7.5,

A1 ×A2 × · · · ×A4 contains at least (δ4/100− 12α1/8)N2 ZN arithmetic progressions of

length four. Provided this is greater than N , we have a Z-arithmetic progression – all

ZN arithmetic progressions in A1 × A2 × A3 × A4 are Z-arithmetic progressions. 2

We now turn to the case where f is not quadratically uniform. If A is the corresponding

set of density δ, then we plan to show that A intersects a Z-arithmetic progression

P ⊂ {1, 2, . . . , N} of size at least N d and such that |A ∩ P | ≥ (δ + ε)|P | where ε and d

depend only on α and δ.

Lemma 7.7. Suppose that f is not quadratically α-uniform. Then there exists a set B,

of cardinality at least αN/2, and a function φ : B → ZN such that

∑

k∈B
|∆̂(f ; k)(φ(k))|2 ≥ (α/2)2N3.

Proof. Since f is not quadratically α-uniform,
∑

k

∑

r |∆̂(f ; k)(r)|4 > αN 5. So there

must be more than αN/2 values of k for which
∑

r |∆̂(f ; k)(r)|4 ≤ αN 3/2. So there are

more than αN/2 values of k such that maxr |∆̂(f ; k)(r)| ≥ (α/2)1/2N , by the second

part of Lemma 7.1. Therefore there exists a set B, of cardinality at least αN/2, and a

function φ such that |∆̂(f ; k)(r)| ≥ (α/2)1/2N for all k ∈ B. Summing this over k ∈ B
gives the required result. 2

Recall the definition of an additive quadruple, given in the last part of the last chapter.
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Lemma 7.8. Suppose that f : ZN → D, B ⊂ ZN and φ : ZN is a function such that,

for some α > 0,
∑

k∈B
|∆̂(f ; k)(φ(k))|2 ≥ αN 3.

Then there exist at least α4N3 quadruples (a, b, c, d) ∈ B×B×B×B such that a+b = c+d

and φ(a) + φ(b) = φ(c) + φ(d).

Proof. Expanding the left hand side of the inequality, we get:

∑

k∈B
|∆̂(f ; k)(φ(k))|2 ≥ (α/2)2N3

⇒
∑

k∈B

∑

s,t

f(s)f(s− k)f(t)f(t− k)ω−φ(k)(s−t) ≥ αN 3

⇒
∑

k∈B

∑

s,u

f(s)f(s− k)f(s− u)f(s− k − u)ω−φ(k)u ≥ αN 3

⇒
∑

u,s

∣

∣

∣

∑

k∈B
f(s− k)f(s− k − u)ω−φ(k)u

∣

∣

∣≥ αN 3

⇒
∑

u,s

∣

∣

∣

∑

k∈B
f(s− k)f(s− k − u)ω−φ(k)u

∣

∣

∣

2≥ α2N4.

Let γ(u) satisfy
∑

s|
∑

B f(s− k)f(s − k − u)ω−φ(k)u|2= γ(u)N 3. Using the first part of

Lemma 7.1, we deduce that B(k)ωφ(k)u is not γ(u)2-uniform, and therefore (by definition)
∑

r|
∑

B ω
φ(k)u−rk|4 ≥ γ(u)2N4. By the above inequalities,

∑

u γ(u) ≥ α2N so
∑

u γ(u)
2 ≥

α4N . Therefore
∑

u

∑

r

|
∑

k∈B
ωφ(k)u−rk|4 ≥ α4N5.

Expanding the left hand side we find that:

∑

u,r

∑

a,b,c,d∈B
ω(φ(a)+φ(b)−φ(c)−φ(d))uω−r(a+b−c−d) ≥ α4N5.

However, the left side is N 2 times the number of quadruples (a, b, c, d) ∈ B×B×B×B
for which a+ b = c+ d and φ(a) + φ(b) = φ(c) + φ(d). 2

We recall the definition of additive quadruples for a function φ, from the end of chapter

six.

Lemma 7.9. Suppose that φ : ZN → ZN has at least αN 3 additive quadruples. Then

there exist η, γ, depending only on α, and an arithmetic progression P of length at least

Nγ such that for some λ and µ,
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∑

k∈P
|∆̂(f ; k)(λk + µ)|2 ≥ ηN 2|P |.

Proof. This follows from Corollary 6.8 with γ = αK and η = exp(−α−K). 2

Lemma 7.10. Let f : ZN → D. Let η > 0 and P ⊂ ZN be an ZN -arithmetic progression

such that, with λ, µ ∈ ZN ,

∑

k∈P
|∆(f ; k)̂ (2λk + µ)|2 ≥ η|P |N 2

Then, for |P | ≤ N 1/2, there exists a partition of ZN into translates P1, P2, . . . , PM of P

or P with an endpoint removed, such that for each i we can find ri ∈ ZN such that

∑

i

|
∑

x∈Pi

f(x)ω−λx
2−rix| ≥ η|P |N/2.

Proof.
∑

k∈P

∣

∣

∣

∑

x

f(x)f(x− k)ω−(2λk+µ)x
∣

∣

∣ ≥ η|P |N 2

⇒
∑

k∈P

∑

x

∑

y

f(x)f(x− k)f(y)f(y − k)ω−(2λk+µ)(x−y) ≥ η|P |N 2

⇒
∑

k∈P

∑

x

∑

u

f(x)f(x− k)f(x− u)f(x− k − u)ω−(2λk+µ)u ≥ η|P |N 2.

Every u ∈ ZN can be written in exactly |P | ways as v + l with v ∈ ZN and l ∈ P ,

therefore,

∑

k∈P

∑

l∈P

∑

x

∑

v

f(x)f(x− k)f(x− v − l)f(x− v − k − l)ω−(2λk+µ)(v+l) ≥ η|P |2N2.

Hence we can find v ∈ ZN such that

∣

∣

∣

∑

k∈P

∑

l∈P

∑

x

f(x)f(x− k)g(x− l)g(x− k − l)ω−(2λvk+µv+2λkl+µl)
∣

∣

∣ ≥ η|P |2N

where g(x) = f(x− v). Now with 2λvk = 2λv(x− l − (x− k − l)), µl = µ(x− (x− l))

and 2λkl = λ(x2 − (x− k)2 − (x− l)2 + (x− k − l)2),

∣

∣

∣

∑

k∈P

∑

l∈P

∑

x

h1(x)h2(x− k)h3(x− l)h4(x− k − l)
∣

∣

∣ ≥ η|P |2N
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where h1(x) = f(x)ω−λx
2−µx, h2(x) = f(x)ω−λx

2

, h3(x) = g(x)ω−λx
2+(2λv−µ)x and

h4(x) = g(x)ω−λx
2+2λvx. This implies that

∑

x

∣

∣

∣

∑

k∈P

∑

l∈P
h1(x)h2(x− k)h3(x− l)h4(x− k − l)

∣

∣

∣ ≥ η|P |2N.

For each x, define η(x) by |∑k∈P
∑

l∈P h2(x− k)h3(x− l)h4(x−k− l)| = η(x)|P |2. Then

N−1
∣

∣

∣

∑

r

∑

k∈P

∑

l∈P

∑

m∈P+P

h2(x− k)h3(x− l)h4(x−m)ωr(k+l−m)
∣

∣

∣ ≥ η(x)|P |2

⇒
∑

r

∣

∣

∣

∑

k∈P
h2(x− k)ω−rk

∣

∣

∣ ·
∣

∣

∣

∑

l∈P
h3(x− l)ω−rl

∣

∣

∣ ·
∣

∣

∣

∑

m∈P+P

h4(x−m)ω−rm
∣

∣

∣ ≥ η(x)|P |2N.

However
∑

r|
∑

l∈P h3(x − l)ω−rl|2 = N
∑

l∈P |h3(x − l)|2 ≤ N |P | and similarly for h4.

Applying Cauchy-Schwartz,

max
r

∣

∣

∣

∑

k∈P
h2(x− k)ω−rk

∣

∣

∣ · 21/2N |P | ≥ η(x)|P |2N.

So there exists rx such that |∑k∈P h2(x− k)ωrxk| ≥ η|P |2−1/2. That is,

∣

∣

∣

∑

k∈P
f(x− k)ω−λ(x−k)2+rx(x−k)

∣

∣

∣ ≥ η(x)|P |2−1/2.

Summing over all x, we obtain
∑

x|
∑

y∈x−P f(y)ω
−λy2+rxy| ≥ η|P |N2−1/2. An easy aver-

aging argument then shows that we can partition ZN into translates of copies of P (or

P with an endpoint removed), which we call P1, P2, · · · , PM with

∑

i

∣

∣

∣

∑

y∈Pi

f(y)ω−λy
2−riy

∣

∣

∣ ≥ ηN |P |/2.

The division by 21/2 is to ensure that the Pi differ in length by at most 1. 2

Let φ : ZN → ZN be a function. We define, for S ⊂ Zn, diamφ(S) = max{φ(x)− φ(y) :

x, y ∈ S}.

Lemma 7.11. Let m, r, l ∈ [N ] and let P be a ZN -arithmetic progression of length

m. Let φ : ZN → ZN be a linear function. Then, provided that l ≤ (m/r)1/3, P can be

partitioned into subprogressions Pi, i ≥ 1 of lengths l or l−1, such that diamφ(Pi) ≤ N/r

for each i.

Proof. Without loss of generality, suppose P = [0,m−1]. By the pigeonhole principle,

there exists d ≤ rl such that |φ(d)− φ(0)| ≤ N/rl. Set Q = {x, x+ d, . . . , x+ (l− 1)d}.
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Then |φ(x+ ld)−φ(x)| ≤ l|φ(d)−φ(0)| ≤ N/r so diamφ(Q) ≤ N/r. As each congruence

class modulo d has size at least m/d ≥ m/rl ≥ l2, we can split P into copies Pi of Q,

differing in length by at most one. 2

In the next lemma, we apply Weyl’s Theorem (Theorem 3.10):

Lemma 7.12. Let m ∈ [N ]. and let φ : ZN → ZN be a quadratic function and let P be a

ZN -arithmetic progression of length m. Then for any l ≤ m1/18.128, P can be partitioned

into subprogressions Pi, i ≥ 1, of lengths l or l − 1, with diamφ(Pi) ≤ Cm−1/6.128N .

Proof. Suppose φ(x) = ax2 + bx+ c and P = [m]. Choose d ≤ m1/2 such that, modulo

N , |ad2| ≤ m−1/128N : this is possible, by Theorem 3.10 with k = 2. Let t ≤ m1/3.128 and

Qi = {x, x+d, . . . , x+(t−1)d}. Then φ(x+ td)−φ(x) = (2axd+ bd)t+ad2t2. We note

that |ad2t2| ≤ Cm−1/3.128N modulo N . Applying Lemma 7.11 to Qi, with r = m1/6.128,

for l ≤ m1/18.128, Qi can be partitioned into subprogressions Rij of sizes l or l − 1 with

diamφ(Rij) ≤ N/r = Cm−1/6.128N . Considering a partition of P into Qis, the Rij form

the required arithmetic progressions. 2

Lemma 7.13. Let φ : ZN → ZN be a quadratic polynomial and r ≤ N . Then there

exists m ≤ Cr1−1/18.128 such that [0, r−1] can be partitioned into arithmetic progressions

P1, P2, . . . , Pm, of lengths differing by at most 1, and such that, if f : ZN → D is any

function with

∣

∣

∣

r−1
∑

x=0

f(x)ω−φ(x)
∣

∣

∣ ≥ ηr,

then
m
∑

j=1

∣

∣

∣

∑

x∈Pj

f(x)
∣

∣

∣ ≥ ηr/2.

Proof. By Lemma 7.12, we find P1, P2, . . . , Pm such that diamφ(Pi) ≤ CNr−1/6.128.

Provided N is sufficiently large, this is at most ηN/4π. By the triangle inequality,
m
∑

j=1

∣

∣

∣

∑

x∈Pj

f(x)ω−φ(x)
∣

∣

∣ ≥ ηr.

Let xj ∈ Pj. The estimate on the diameter of φ(Pi) implies that |ω−φ(x)−ω−φ(xj | ≤ η/2

for all x ∈ Pj. So
m
∑

j=1

∣

∣

∣

∑

x∈Pj

f(x)
∣

∣

∣ =
m
∑

j=1

∣

∣

∣

∑

x∈Pj

f(x)ω−φ(xj)
∣

∣

∣

≥
m
∑

j=1

∣

∣

∣

∑

x∈Pj

f(x)ω−φ(x)
∣

∣

∣−
m
∑

j=1

(η/2)|Pj| ≥ ηr/2.
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This completes the proof. 2

Szemerédi’s Theorem. There exists an absolute constant c > 0 such that if A ⊂ [N ],

|A| = δN and δ ≥ (log log logN)c, then A contains an arithmetic progression of length

four.

Proof. Regard A as a subset of ZN . If A is quadratically α = δ32/288-uniform, then

the theorem is proved, by Corollary 7.6. Let f(x) = A(x) − δ and suppose f is not

quadratically α-uniform. By Lemma 7.7, there exists a set B of cardinality at least

αN/2 and a function φ : B → ZN such that

∑

k∈B
|∆̂(f ; k)(φ(k))| ≥ (α/2)2N3.

By Lemma 7.8, φ has at least (α/2)8N3 additive quadruples and so, by Lemma 7.9,

there exists an arithmetic progression P with |P | ≥ N γ and

∑

k∈P
|∆(f ; k)̂ (2λk + µ)|2 ≥ η|P |N 2

By Ruzsa’s proof of Freiman’s Theorem, we may choose γ = αK and η ≥ exp(−α−K)
where K > 0 is an absolute constant. By Lemma 7.10, we then have

∑

i

|
∑

x∈Pi

f(x)ω−λx
2−rix| ≥ η|P |N/2,

where the Pi are as in Lemma 7.10. Apply Lemma 7.13 in each Pi to obtain further pro-

gressions Pij, of cardinalities differing by at most 1, and with average lengths C|P |1/18.128

(for some constant C > 0) and such that

∑

i

m
∑

j=1

∣

∣

∣

∑

x∈Pij

f(x)
∣

∣

∣ ≥ ηN |P |/4.

A consequence of Lemma 7.12 is that we can insist that the Pij are Z-arithmetic pro-

gressions, except that (by Lemma 2.3) the average length of Pij is C|P |1/2.18.128, where
C > 0 is a constant and no Pij has more than twice this length.

Relabel the Pijs as Q1, Q2, . . . , QM , where M = N−γ/2.18.128 and the Qi have average

length Nγ/2.18.128. As
∑

f(x) = 0, we have

∑

i

(∣

∣

∣

∑

x∈Qi

f(x)
∣

∣

∣+
∑

x∈Qi

f(x)
)

≥ ηN/4.
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The contribution of Qi with |Qi| ≤
√

N/M is at most 2N/
√
M ≤ ηN/8, therefore there

exists Qi such that |Qi| ≥
√

N/M such that |∑x∈Qi
f(x)|+∑

x∈Qi
f(x) ≥ η|Qi|/8. This

implies that
∑

x∈Qi
f(x) ≥ η|Qi|/16.

So we have shown that there exists an arithmetic progression Q, of length at least
√

N/M ≥ Nγ/4.18.128 = N δc

such that |A ∩ Q| ≥ (δ + exp[−δc])|Q|, where c > 0 is a

constant. Rewriting this in terms of δ, a four-term arithmetic progression must be found

when δ ≥ (log log logN)−c for some c > 0. 2
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Notation

A general integer set

A+B sum set {a+ b : a ∈ A, b ∈ B}
‖α‖ distance from α to the nearest integer

{α} fractional part of α

A∗ set of subset sums {∑ εiai : εi ∈ {0, 1}, ai ∈ A}
B(K, δ) Bohr neighbourhood

C field of complex numbers

c(q) min{c : |A| ≥ c, A ⊂ Zq ⇒ A∗ = Zq}
c, C constant

Γ graph of a function

Γ(a) neighbourhood of a vertex a

d dimension of arithmetic progression

D unit disc in C
Di(G) ith magnification ratio

det(Λ) determinant of lattice Λ

∆(f ; k)(r) f(r)f(r − k)

e(α) exp(2πiα)

E expectation

δ density

f ∗ g convolution

f̂ fourier transform of f

‖g‖2 `2-norm of function g

G×H product of layered graphs

HJ(k, r) Hales-Jewett numbers

i, j, k counting variables

Imi(Y ) image of Y in ith layer
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kA k-fold sum A+A+ . . .+A of A

K convex body or absolute constant

K(t) tth cross-section of body K

Λ(x) von Mangoldt’s function

(m,n] integers greater than m and less than or equal n

µ(x) Möbius function

nk(N) number of elements required in [N ] for a k-term progression

N large integer

[N ] {1, 2, . . . , N}
N natural numbers

Prob probability

R real numbers

τ(n) divisor function

vol(K) volume of K

W (k, r) van der Waerden numbers

x⊕ jA Hales-Jewett line

Z set of integers

ωr exp(2πir/N)
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